in NFE2L1-dependent slow-twitch muscle atrophy, because
of interference in the NFE2L1 system by oxidative stress.
Furthermore, fast-twitch plantaris muscles atrophied same
extent by denervation in the presence and the absence of
PARK2-mediated mitophagy, express lower levels of PARK2
and NFE2L1 than slow-twitch muscles during denervation
atrophy. Therefore, we speculate that tissues regulated by the
NFE2L1 system express more PARK2 to eliminate damaged
mitochondria than do other tissues. Our findings highlight the
linkage between mitochondria autophagy and the UPS, 2 major
intracellular protein degradation systems, and their different
roles in slow-twitch skeletal muscle atrophy.

Materials and Methods

Antibodies and reagents

Anti-ATG7 antibodies were described previously.® Anti-
PARK2 (Parkin, 4211), anti-PDHAI (pyruvate dehydrogenase,
3205), anti-PSMD4 (Rpnl0/S5a, 3846), anti-GAPDH (2118),
anti-TRP53 (p53, 2524), anti-NFE2L1 (T'CF11/Nrfl, 8052),
anti-BCL2 (Bcl-2, 2870) and anti-BCL2L1 (BclxL, 2764)
antibodies were obtained from Cell Signaling Technology.
Anti-PSMA5 (Proteasome 20S a5 subunit, BML-PW8125),
anti-PSMB7 (Proteasome 20S 2 subunit, BML-PW9300) and
anti-PSMC6 (Proteasome 19S Rpt4 subunit, BML-PW8830)
were obtained from Enzo Life Sciences. Anti-OPA1 (612606)
and anti-DNMIL (Drpl, 611112) were obtained from BD
transduction laboratories. Anti-SQSTMI1 (GP62-C) was
obtained from Progen. Anti-MYH7(myosin heavy chain
I, Clone NOQ7.5.4D, M8421) was obtained from Sigma-
Aldrich. Anti-multi ubiquitin (Clone FK2, D058-3) was
obtained from MBL. Anti-PPARGCIA (PGC-1, AB3242)
was obtained from Millipore. MitoProfile Total OXPHOS
Rodent WB Antibody Cocktail (MS604) was obtained from
MirtoSciences. Anti-TOMM20 (Tom20, sc-11415), anti-
CYCS (Cytochrome ¢, sc-13156), anti-NFE2L1 (Nrfl, H-285,
sc-13031, for immunostaining of HeLa cells), anti-NFE2L2
(Nrf2, H-300, sc-13032) and anti-LMNB (Lamin B, sc-6216)
were obtained from Santa Cruz Biotechnology. Anti-DMD
(Dystrophin, ab15277) and anti-MUL1 (ab84067) were
obtained from Abcam. Anti-MFN1 (H00055669-M04) was
obtained from Abnova. Anti-FIS1 (10956-1-AP) was obtained
from Proteintech. Anti-8-OHdG (MOG-020P) was obtained
from the Japan Institute for the Control of Aging, NIKKEN
SEIL Co, Ltd. The Protein Carbonyls Western Blot Detection
Kit was obtained from SHIMA Laboratories. Alexa 488- and
Alexa 594-conjugated secondary antibodies (A11034, A11029,
A11037, A11032) were obtained from Molecular Probes. The
M.O.M. Immunodetection kit and Texas Red Avidin DCS
were obtained from VECTOR Laboratories. Tunicamycin
(T7765), tBHQ (112941), CCCP (C-2759), rotenone (R-8875),
antimycin  (A-8674) and N-acetyl-cysteine (A9165) were
obtained from Sigma-Aldrich. MG-132 (474790) was obtained
from CALBIOCHEM. Succinyl-Leu-Leu-Val-Tyr-7-amido-4-
methylcoumarin (Suc-LLVY-MCA, 3120-v) and epoxomicin
(4381-v) were obtained from Peptide Institute, Inc.

www.landesbioscience.com

Animals

HSA-Cre-ER™ transgenic mice were a gift from Dr Pierre
Chambon. To produce Azg7" lox/Flox, LISA_ERT2-Cre mice, Arg7* lox/
Flo« mice were bred with HSA-Cre-ER™ transgenic mice. To delete
the floxed Azg7 gene from skeletal muscle, Cre-ER™ recombinase
activity was induced in 4-wk-old mice by i.p. injections of 1
mg tamoxifen for 5 consecutive days. GFP-LC3 transgenic and
Park2 knockout mice have been previously described. All mice
were maintained in an environmentally controlled room (lights
on from 8:00 to 20:00) and were fed a pelleted laboratory diet
and tap water ad libitum, unless otherwise stated. Denervation
was performed at 4 wk after tamoxifen injections. To standardize
autophagic activity in the skeletal muscles, mice were fasted for
24 h before euthanasia. Experimental protocols were approved
by the Ethics Review Committee for Animal Experimentation of
Juntendo University.

Histological analysis and electron microscopy

Cryosections, 10 um thick, from mouse hind limbs were
stained with hematoxylin and eosin (H&E), stained for
succinate dehydrogenase (SDH) or cytochrome ¢ oxidase (COX)
activities, or immunolabeled with anti-PARK2, anti-TOMM20,
anti-myosin heavy chain I (MYH?7), anti-DMD and anti-8-
OHJG antibodies. To quantify the SDH or COX activities of
soleus muscles, Image J software was used. For EM analysis,
soleus muscles were directly fixed with 2% glutaraldehyde in
0.1 M cacodylate buffer on ice. Embedding, sectioning and
microphotography were performed by the Hanaichi Electron
Microscopic Laboratory, Inc.

Cell culture and siRNA transfection

C2C12 cells and HelLa cells were maintained in DMEM
supplemented 10% fetal calf serum and antibiotics. For RNA
interference experiments, ON-TARGETplus mouse Nfe2/l
siRNA (Thermo Scientific Dharmacon, L-062252-01-0005) or
nontargeting controls (Thermo Scientific Dharmacon, D-001810-
01-05) were transfected into C2C12 cells using Lipofectamine
RNAIMAX reagent according to the manufacturer’s protocols
(Invitrogen, 13778075).

Isolation of mitochondrial fractions and nuclear extracts

Mitochondrial fractions of soleus muscles were isolated using
the Mitochondria Isolation Kit for Tissue (Pierce, 89801), and
nuclear extracts of soleus muscles or C2C12 cells were prepared
using NE-PER Nuclear and Cytoplasmic Extraction Reagents
(Pierce, 78833) according to the manufacturer’s protocols.

Western blotting

For tissue lysate preparation, mouse skeletal muscles were
homogenized in 10 volumes of 50 mM TRIS-HCI (pH 7.4)
containing 0.15 M NaCl, 1 mM EDTA, 1% Triton X-100, 0.5%
sodium deoxycholate, 0.1% SDS, a protease inhibitor cocktail
(Roche Diagnostics, 11836170001), and a phosphatase inhibitor
cocktail (Roche Diagnostics, 04906837001), using a motor-
driven homogenizer (As One, $-203). For C2C12 cell lysate
preparation, cells were lysed with the same buffer. The lysates
were centrifuged at 12,000 x g for 10 min at 4 °C to remove
debris. The supernatants, mitochondrial fractions, or nuclear
extracts were analyzed by western blotting. Densitometric
analysis was performed using Image] software.
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Quantitative real-time PCR analysis

RNA was isolated using TRIzol reagent (Invitrogen,
15596026). cDNA was prepared using the Superscript III
first strand synthesis kit (Invitrogen, 18080-044) according
to the manufacturer’s protocol. For mtDNA copy number
quantification, genomic DNA was prepared. Quantitative real-
time PCR was performed using the Fast SYBR Green Master
Mix (Applied Biosystems, 4385612). The primers used for gene
expression analysis are listed in Table S1 and those used for
mtDNA copy number analysis are listed in Table S2.

Measurement of proteasomal activity

Proteasome activities in soleus muscle extracts were measured
using a fluorescent substrate, Suc-LLVY-MCA, as described
previously.®

Statistics

All data are expressed as means + s.d. Differences between
groups were examined for statistical significance using one-way
ANOVA, followed by Tukey-Kramer post hoc test or Student #
test. A P value < 0.05 was considered statistically significant.
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ARTICLE INFO ABSTRACT

The glucocerebrosidase gene (GBA) is a known risk factor of Parkinson's disease (PD). We sequenced
entire coding exons and exon/intron boundaries of GBA in 147 Japanese familial PD (FPD) patients from
144 families and 100 unrelated control subjects. Twenty-seven of 144 (18.8%) of index patients were
heterozygous for known Gaucher disease mutations, suggesting that GBA heterozygous mutations are
strongly associated with FPD (odds ratio = 22.9, 95% confidence interval = 3.1—171.2). The frequency was
significantly higher in autosomal dominant PD (ADPD) compared with autosomal recessive PD. Ac-
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Key M.lordS:, . . . cording to clinical assessments, PD patients with GBA mutations exhibited typical manifestations of PD or
Parkinson’s disease/Parkinsonism . . . . N . . e

GBA dementia with Lewy bodies (DLB), such as L-dopa responsive parkinsonism with psychiatric problems
Dementia andfor cognitive decline. Interestingly, they also presented with reduced myocardial %*-meta-~

iodobenzylguanidine uptake. Our findings suggest that heterozygous GBA mutations are strong risk
factors in FPD, especially for autosomal dominant PD. Some patients with GBA heterozygous mutations
develop clinical features of DLB. We speculate that GBA dysfunction may promote Lewy body formation,

Gaucher disease

resulting in more severe PD or DLB phenotypes that are inherited in families.

'© 2014 Published by Elsevier Inc.

1. Introduction

Parkinson’s disease (PD) is one of the most common neurode-
generative disorders. Patients develop disabled movement and
complicating nonmotor symptoms, such as psychiatric disorders,
cognitive dysfunction, olfactory nerve dysfunction, and sleep dis-
orders (Weintraub and Burn, 2011). Cardinal features of PD are
caused by marked loss of dopaminergic neurons in the substantia
nigra, which is evidenced by the pathologic hallmark of Lewy
bodies; however, PD is a more complicated and systemic disease.
PD etiology was thought to be influenced mainly by the interactions
between genetic and environmental factors. Nevertheless, recent
developments in genetics have revealed that causative genes are
involved in Mendelian-inherited parkinsonism (Hatano et al,
2009). Moreover, recent genome-wide association studies have
also identified several common loci as genetic risk factors for PD
(Hamza et al., 2010; Satake et al., 2009; Simon-Sanchez et al., 2009).
During these studies and a subsequent meta-analysis, rare variants
of the glucocerebrosidase gene (GBA; MIM#606463) have been

* Corresponding author at: Department of Neurology, Juntendo University School
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0197-4580/$ — see front matter © 2014 Published by Elsevier Inc.
http://dx.doi.org/10.1016/j.neurobiolaging.2013.09.019

found as risk factors of sporadic PD (SPD) (Aharon-Peretz et al.,
2004; Sidransky et al., 2009). GBA is also known as the causative
gene of Gaucher disease (GD), which is caused by a loss of function
of hydrolytic enzyme activity and is inherited in an autosomal
recessive pattern (Hruska et al., 2008; Tsuji et al., 1987).

Some genetic mutations in GBA were characterized as strong risk
factors for SPD; however, there are few large studies of GBA mu-
tations in familial PD (FPD) (Mitsui et al., 2009; Nishioka et al., 2010;
Sidransky et al., 2009). Cosegregation was previously reported in a
small number of families (Mitsui et al.,, 2009). One recent study
emphasized an association between GBA mutations and cognitive
impairment in PD (Alcalay et al., 2012).

In this study, we aimed to clarify the role of GBA mutations in PD,
especially in FPD, by sequencing GBA in 147 FPD patients from 144
families and performing a comparative analysis of the clinical
phenotype and severity to evaluate the association between GBA
mutations and FPD.

2. Methods
2.1. Subjects

The study subjects comprised 147 FPD patients from 144 Jap-
anese families and 100 Japanese controls (Table 1). The cohort of
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Table 1
Patient information
“n Male/female  AAS (range) AAQ (range)
Patients 147  59/88 60.0 + 12.8 (21—84) 50.8  13.9 (13—81)
AD .- 85 35/50 57.7 + 13.7 (21-84) 483 + 14.2 (13-77)
AR = 62 24/38 63.1 + 10.8 (37—84) 543 +£12.7 (25-81)
Controls. 100  47/53 56.8 & 16.3 (29—~87)

Key: AAO, age at onset; AAS, age at sampling; AD, autosomal dominant; AR, auto-
somal recessive.

Japanese patients consisted of 85 autosomal dominant PD (ADPD)
and 59 autosomal recessive PD (ARPD). For the mode of inheri-
tance to be considered autosomal dominant, there had to be
affected family members in at least 2 consecutive generations; for
autosomal recessive, we looked for affected siblings in the same
generation. After detecting mutations, family members were
analyzed to assess cosegregation. DNA samples were provided
from various hospitals. Each patient submitted to a neurologic
examination performed by expert neurologists and was given a
diagnosis of PD on the basis of established criteria (Hughes et al.,
1992). Diagnosis of dementia was given by the each clinician based
on Mini Mental State Examination score (Folstein et al., 1975). All
patients had good response to L-dopa. This study was approved by
the ethics review committee of Juntendo University School of
Medicine. All subjects provided informed and written consent
prior to participation.

2.2. GBA mutation analysis

Genomic DNA was extracted from peripheral blood lymipho-
cytes using standard protocols. Polymerase chain reaction was
performed using previously reported primers to avoid amplifying
the pseudogene (Mitsui et al, 2009). The purified polymerase
chain reaction product obtained by ExoSAP IT (GE Healthcare, Salt
Lake City, UT, USA) was subsequently used for dideoxy sequencing
with BigDye Terminator Chemistry (Applied Biosystems, Foster
City, CA, USA). The resulting products were loaded on ABI 310 or
3130 automated DNA sequence analyzers (Applied Biosystems)
and analyzed with Sequencing Analysis Software v5.1 (Applied
Biosystems). All exons and exon-intron boundaries were analyzed
by direct sequencing.

To confirm RecNcil allele, we used TOPO TA cloning kit (Invi-
trogen, Carlsbad, CA, USA) for TA cloning and separating alleles.
After separating each allele, direct sequencing was performed as
described above.

2.3. Clinical data analysis

To clarify the clinical features of patients with GBA mutations, 19
items (Table 2) concerning prominent PD symptoms were statisti-
cally compared between GBA mutation—positive and GBA muta-
tion—negative groups. Other affected members with GBA mutations
were also included.

2.4. Statistical analysis

Statistical analysis included the t test, Fisher’s exact test, odds
ratio, and its confidence interval, using GraphPad Prism version
5.0d (GraphPad Prism Software). The Hardy-Weinberg equilibrium
test was performed using SNPAlyze v5.1 software (Dynacom, Chiba,
Japan). In all statistical analyses, p values <0.05 were considered
statistically significant.
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3. Results
3.1. GBA mutations observed in FPD

In this study, we only observed heterozygous mutations; no in-
dividual had mutations in both alleles. We detected 6 non-
synonymous mutations: p.(-20)V, p.G64V, p.R120W, p.D40%H,
pl444P, and p.J489V; 1 nonsense mutation: p.W393X; 1 synony-
mous mutation: pK466K; 1 frame-shift mutation: c.1447-
1466delTGins; and 1 recombinant allele (RecNcil) in the Japanese
population (Table 3). Among them, 5 mutations, p.R120W, p.D409H,
p.L444P, c1447-1466delTGins, and RecNcil, have been reported as
causative mutations in GD patients. Patients with GBA mutation did
not have causative PARK2, PINK1, and common LRRK2 mutations.

p.I(-20)V is an amino acid change in the signal peptide region
and was considered to be a single nucleotide polymorphism. The
frequency of p.I(-20)V in patients with FPD (13 of 144, 9.0%) was not
significantly different from the control subjects (10 of 100 = 10.0%,
p = 0.83), and its genotype distribution was in Hardy-Weinberg
equilibrium in both populations. Although p.K466K mutation was
not detected in any control subjects, this synonymous mutation was
also excluded for later clinical analyses because it is in a less
important region of the final protein.

Two mutations, p.G64V and p.W393X (Fig. 1), were novel, and
p.[489V was previously reported in SPD patients (Mitsui et al.,
2009). The p.G64V mutation was caused by the substitution of
the first amino acid of exon 4, and it seems to be segregated with PD
(Figs. 1 and 2). In the family with p.W393X, no affected family
member was confirmed for the mutation because of absent
genomic DNA. The sequences around the region of mutation were
interspecifically conserved in both mutations (Fig. 1).

The recombinant allele RecNcil was found in 1 patient and 1
control. p.L444P is more common, and p.R120W is less common in
Japanese patients with GD, although p.R120W was frequently seen
in Japanese FPD patients in the present study (9 of 144 = 6.3%,
Table 3). However, p.L444P was the most frequent mutation seen in
FPD patients (12 of 144 = 8.3%, Table 3).

In total, we found 31 FPD patients with heterozygous mutations
that were reported in GD (p.R120W, p.D409H, p.L444P, c.1447-
1466delTGins, and RecNcil) or unreported in GD (p.G64V,

Table 2

Comparison of clinical symptoms between GBA-positive and GBA-negative patients
Symptom GBA mut (+) GBA mut (-) p value?
N 34 113
Age at onset (mean == SD) 49.1 + 11.7 513 £ 145
Resting tremor (%) 18 (52.9) 77 (68.1) 0.151
Bradykinesia (%) 27 (79.4) 99 (87.6) 0.265
Rigidity (%) 29 (85.3) 99 (87.6) 0.772
Gait disturbance (%) 28 (82.4) 95 (84.1) 0.795
Postural instability (%) 20 (58.8) 72 (63.7) 0.687
Wearing off (%) 20 (58.8) 49 (43.4) 0.112
Asymmetry at onset (%) 25 (73.5) 75 (66.4) 0.531
Orthostatic hypotension (%) 5(14.7) 21(186) 0.798
Incontinence (%) 7 (20.6) 11(8.7) 0.131
Urinary urgency (%) 10 (29.4) 20(17.7) 0.150
L-dopa-induced dyskinesia (%) 10 (29.4) 37(32.7) 0.834
Sleep benefit (%) 3(8.8) 21(18.6) 0.288
Dystonia at onset (%) 4(11.8) 11(9.7) 0.750
Hyperreflexia (%) 5(14.7) 17 (15.0) 1.000
Hallucination (%) 14 (41.2) 20(17.7) 0.009°
Delusion (%) 8(23.5) 6(5.3) 0.004¢
Other psychosis (%) 12 (35.3) 11(9.7) 0.0009¢
Dementia (%) 12 (35.3) 18 (15.9) 0.027°
Gaze palsy (%) 3(8.8) 2(1.8) 0.081

2 Fisher's exact test.
5 p < 0.05.

€ p<001.

¢ p < 0.001.
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Table 3
Frequency of each GBA mutation found in this study
Mutations FPD (n = 144) AD (n = 85) AR (n = 59) Control {n = 100) p Value? (FPD vs. control) OR (95% CI) (FPD vs. Control)
Reported in GD
p.R120W (%) 9(6.3) 9 (10.6) 0(0) 0(0) 0.01 NA
p.D409H (%) 4(2.8) 4(4.7) 0(0) 0(0) 0.14 NA
p.L444P (%) 12(8.3) 7(8.2) 5(8.5) 0(0) 0.002 NA
indel (%) 1(0.7) 1(1.2) 0(0) 0(0) NA NA
RecNcil (%) 1(0.7) 1(1.2) 0 (0) 1(1) NA NA
Unreported in GD
D.G64V (%) 1(0.7) 0 (0) 1(1.7) 0(0) NA NA
p.W393X (%) 1(0.7) 0(0) 1(1.7) 0(0) NA NA
p.1489V (%) 2(14) 1(1.2) 1(1.7) 0(0) 0.51 NA
Total (%) 31(21.5) 23 (27.1) 8(13.6) 1(1) <0.0001 27.2 (3.6—-202.7)

Key: AD, autosomal dominant; AR, autosomal recessive; Cl, confidence interval; FPD, familial PD; GD, Gaucher disease; indel, c.1447-1466delTGins; NA, not applicable; OR,

odds ratio.
2 Fisher's exact test. Italics denote novel mutations found in this study.

p-W393X, and p.I1489V; Table 3). Interestingly, the frequency of GBA
mutations among FPD patients was significantly higher than in the
controls (31 of 144 = 21.5% vs. 1 of 100 = 1.0%, p < 0.0001, odds
ratio = 27.2, 95% confidence interval = 3.6—202.7; Table 3). This
cohort included 23 ADPD and 8 ARPD of a total of 31 FPD patients.
When individual mutations were analyzed, the frequency of the
p-R120W and p.L444P carriers was significantly higher in index PD
patients than in the control subjects (p = 0.01 and p = 0.002,
respectively).

3.2. Mode of inheritance

We compared the differences between groups with AD and AR
modes of inheritance and found that the frequency of mutations
reported in GD was significantly higher in the AD group than in
the AR group (22 of 85 = 25.9% vs. 5 of 59 = 8.5%, p = 0.009). Four
known mutations reported in GD (p.R120W, p.D409H, c.1447-
1466delTGins, and RecNcil) were all found in the AD group. In 1
AR family (p.L444P) with 2 brothers affected with PD/dementia
with Lewy bodies (DLB), the parents had been recorded as
asymptomatic, but they died at relatively young ages during
the war. Thus, the possibility that this family also should be
included in AD family with cosegregation remains (family 28;
Fig. 2).

In 2 families with p.l444P and 1 family with p.G64V, both
affected siblings had the same mutations, suggesting cosegregation
(families 25, 28, and 31; Fig. 2). The present study indicates the
incomplete penetrance of p.R120W (families 7 and 9; Fig. 2), which
is consistent with previous reports suggesting cosegregation
(Mitsui et al., 2009). p.J489V was not considered to show cose-
gregation (family 35; Fig. 2).

p.G64V p.W393X
Mutant NHTGTVILLLTL EGGPNXf~—~~—~
H.sapiens NHTGTGLLLTL EGGP RNEV
C.lupus NHTGTGLLLTL EGGP RNFV
B.taurus NRTGTGLLLTL EGGP RNFV
M.musculus NRTGTGLLLTL EGGP RNEV
D.rerio NSTGAALRITL DGGP KNFV

ATGTCCTCAGGCCTGCTAC TG

p.Ge4av

st

Fig. 1. Novel GBA mutations. Genomic sequence chromatogram and comparison of
interspecific amino acids around the mutated site.

GG A CCAATTGGGTGCGTAAC
p.W393x  {

3.3. Clinical symptoms

In this study, we performed a comparative analysis between 2
groups: GBA mutation—positive (n = 34) and GBA mutation—-
negative patients (n = 113). Clinical and demographic data are listed
in Table 2 and Supplementary Table 1. The mean age at onset (AAO)
was not significantly different (p = 0.437). Statistical analysis of
19 symptoms in PD revealed significant differences in four
indexes of hallucination, delirium, dementia, and other psychosis
(Table 2). Notably, psychiatric symptoms and/or cognitive decline
were more common in GBA mutation—positive patients (see
Supplementary Table 2). Nine patients with GBA mutations un-
derwent cardiac '?I-metaiodobenzylguanidine (MIBG) scintig-
raphy (see Supplementary Table 3), and all patients showed marked
reduction of myocardial MIBG uptake.

4. Discussion

Recently, the largest multicenter analysis of GBA mutations has
proved an association between GBA mutations and PD (Sidransky
et al., 2009). To disclose the role of GBA in FPD, we performed a
GBA mutational analysis for in 147 FPD patients from 144 families.
The frequency of GBA mutations was 21.5% and 25.9% in FPD and
ADPD, respectively, which are higher values than reported previ-
ously, even compared with SPD patients (Lesage et al., 2011; Mitsui
et al., 2009; Sidransky et al., 2009). Therefore, our data suggest that
GBA mutations play an important role in not only SPD but also FPD,
and especially in ADPD. This finding implies that GBA could play a
major role in FPD and ADPD.

Rare GBA mutations have been reported to be a strong risk factor
of PD, with a robust odds ratio of 28.0 (Mitsui et al., 2009). Thus, an
analysis for GBA mutations in FPD was essential to clarify the role of
each GBA mutation in PD patients. Indeed, p.L444P and p.G64V
cosegregated with PD in some families. However, compared with a
previous report (Mitsui et al,, 2009). p.R120W did not cosegregate
in this study. Regarding an association with PD, some mutations
remained controversial because of the small number of patients
with each mutation and restricted genetic testing in the families.
Considering allele frequency, it might be reasonable that GBA mu-
tations are incompletely inherited with PD. The carrier frequency of
GBA mutations was extremely low among the normal Japanese
population in this study and in a previous report (Mitsui et al,,
2009), whereas many controls among the Jewish population have
p.N370S; which is associated with type I GD (Aharon-Peretz et al.,
2004), and many controls among the UK population have
p.E326K, which is a risk factor for PD (Duran et al., 2013). These
racial differences might be derived from the differences of effects of
each mutation and other genetic risk factors, which have different
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Family 7

O

F7-1 _._.D

p-RI20W / wt

F7-2
p.RI20W / wt

Family 25

O

F25-1 ’ F25-2

pLA44P /wt  pLaddP/wt

Family 31

[ O

F3l-l. F31-2

p.G64V / wt

p.G64Y / wt
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Family 9

F9-2 ‘ F9-3

pRI20W / wt pRI20W / wt

Family 28

—0

[
- -

p.L444P / wt p-L444P / wt

Family 35

[

F35-1 F35-2

wt/ wt p.1489V / wt

Fig. 2. Cosegregation study of GBA-positive families. Pedigrees of families with GBA mutations are shown. Affected Parkinson’s disease patients are represented with a black symbol.
The number of each family member represents his or her patient ID in Supplementary Table 1.

distributions due to founder effects (Lesage et al.,, 2011; Nishioka
et al, 2010; Sidransky et al, 2009). Although racial or regional
differences exist for each GBA mutation, our data emphasize that
GBA mutations are more strongly associated with FPD rather than
SPD.

A recent study reported a relatively high estimated penetrance
ratio in GBA carriers, depending on age (7.6%,13.7%, 21.4%, and 29.7%
at 50, 60, 70, and 80 years, respectively). This result should lead to
the consideration of GBA as a dominant causal gene with reduced
penetrance (Anheim et al., 2012). Supporting this consideration, we
detected heterozygous GBA mutations most frequently in ADPD
patients. On the basis of our findings, we conclude that GBA is a
strong and common risk factor but not a definite causal gene for
ADPD and FPD.

In hereditary forms of PD, the frequency of heterozygous GBA
mutations in ADPD (25.9%) was higher than that observed for ARPD
(8.5%). Even allowing for classification bias by definition of ADPD
and ARPD, the data imply that GBA mutations are strongly associ-
ated with ADPD, suggesting that heterozygous GBA mutations have
a role in familial aggregation, especially in ADPD. In addition, het-
erozygous mutations have been identified among ARPD patients,

suggesting the incomplete penetrance of forms even through the
AR mode of inheritance.

Our PD patients with GBA mutations frequently developed psy-
chiatric symptoms and/or cognitive decline. Our data support pre-
vious results in which PD patients with GBA mutations manifest
exacerbated psychiatric symptoms andf/or cognitive decline
compared to those without GBA mutations. (Alcalay et al, 2012;
Sidransky et al,, 2009; Winder-Rhodes et al., 2013). Some previous
studies have reported the association of GBA mutations and DLB
(Clark et al,, 2009; Nalls et al,, 2013; Tsuang et al, 2012). Our data
further suggest that GBA heterozygous mutation carriers can develop
clinical symptoms of PD and DLB. Accordingly, we found decreased
cardiac MIBG uptake associated with GBA mutations. The heart-to-
mediastinum ratio correlated with PD/DLB clinical severity; a
decreasing ratio corresponded to an ascending Hoehn and Yahr stage
(Nagayama et al., 2005). Thus, MIBG scintigraphy could be a useful
biomarker for PD/Lewy body disease in patients with GBA mutations.

Lewy body diseases are alpha-synucleinopathies characterized
by abnormal accumulation of alpha-synuclein in neuronal cyto-
plasm. Recently, biochemical analysis using cell and animal models
demonstrated that some GBA mutations lead to increased alpha-
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synuclein concentration (Cullen et al, 2011). GBA mutation may
promote alpha-synuclein accumulation and Lewy body develop-
ment via the aberrant lysosomal function, resulting in severe
parkinsonism and cognitive decline associated with DLB (Mazzulli
et al, 2011; Tsuang et al., 2012; Yap et al,, 2013).

Collectively, our findings have major implications for the genetic
and pathogenic mechanisms of GBA. GD is an autosomal recessive
disorder caused by mutations in both GBA alleles, which leads to a
loss of function or reduced enzyme activity. In contrast to GD, our
FPD and ADPD patients carried 1 mutant allele and 1 wild-type GBA
allele. Therefore, the pathogenic mechanism may be due to hap-
loinsufficiency, dominant-negative effect, or toxic gain of function
rather than a loss of function.

In conclusion, heterozygous GBA mutations play a greater role in
FPD, especially in ADPD, and are likely to facilitate the development
of PD and Lewy body diseases via different genetic and pathogenic
mechanisms. Our findings suggest that further functional analyses
for GBA should elucidate the pathogenesis of PD and Lewy body
diseases.
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ABSTRACT

Background: Depression, parkinsonhism, and hypoven-
tilation (Perry syndrome) or familial motor neuron dis-
ease have been linked to mutations in dynactin
P150%ed (DCTNT).

Methods: We employed genealogic, clinical, neurologic,
and MRI investigations, as well as analysis of genes
implicated in parkinsonism. Gellular transfection, immu-
nocytochemistry, and immunoprecipitation analysis of
wild-type (WT) and mutant DCTN7 were also performed.
Results: A novel heterozygous mutation, DCTNT
¢.156T>G, encoding p.Pheb2leu, segregates with par-
kinsonism in a Japanese family. The substitution was
not observed in affected probands with familial parkin-
sonism or control subjects and is evolutionarily con-
served. In contrast to Perry syndrome, affected carriers
have late-onset disease and slower progression, with
frontotemporal atrophy revealed by MRIL. In vitro studies
suggest the mutant protein has impaired microtubule
binding, compared to WT dynactin p150%ue9,
Conclusions: DCTNT mutations may contribute to dis-
parate neurodegenerative diagnoses, including familial
motor neuron disease, parkinsonism, and frontotempo-
ral atrophy, and further studies of dynactin-mediated
cargo transport may prove insightful. © 2014 Interna-
tional Parkinson and Movement Disorder Society

Key Words: Parkinson’s disease; genetics; parkin-
sonism; Perry syndrome
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Missense mutations in the pl$ subunit of
dynactin (DCTN1) have been linked to Perry syn-

drome associated with depression, rapidly progressive
parkinsonism, weight loss, sleep difficulties and central
hypoventilation.! Pathogenic p150°™¢  mutations,
including p.Gly71Arg/Ala/Glu, p.Thr72Pro, and
p-GIn74Pro, have been described within, or adjacent
to, the highly conserved N-terminal cytoskeleton-
associated protein, glycine-rich (CAP-Gly) domain.? In
families with Perry syndrome, mean onset is 48 years
(range, 35-61), with a S-year (range, 2-10) duration to
death attributed to respiratory failure or suicide.?
Brain autopsy reveals a pallidonigral TDP-43 protein-
opathy affecting the ventrolateral medulla respiratory
center but sparing the cortex, hippocampus, and
motor neurons.>* Decreased metaiodobenzylguani-
dine (MIBG) cardiac scintigraphy is also observed sug-
gesting that postganglionic sympathetic nerve
degeneration is not specific to Lewy body diseases.®
Hereditary motor neuropathy with a distinct vocal
fold paresis (laryngeal dysfunction) was previously
linked to another p150%"*¢ mutation, p.Gly59Ser”®
with distal spinal and bulbar muscular atrophy and a
mean onset of 34 years (range, 23-39) and 17-year
duration (range, 7-31). Herein, we describe a Japanese
family with later-onset autosomal dominant parkin-
sonism, hypoventilation and frontotemporal atrophy
with a novel heterozygous mutation in DCTNI.

Patients and Methods

Clinical Studies

The Fukuoka University (Fukuoka, Japan) and
National Omuta Hospital (Fukuoka, Japan) Research
Ethics Committee approved this protocol. Family mem-
bers >18 years gave written informed consent. Detailed
medical histories were obtained for patients, nearest
relatives or both; when possible, neurological and neu-
ropsychiatric examinations were performed.
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