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Figure 2 Mutations of CDKNIC in BWS and IMAGe syndrome.f7-69 The mutations in BWS are loss-of-function mutations, which are either
amino-acid substitution mutations localized to the cyclin-dependent kinase inhibitory domain or truncating mutations. The mutations in IMAGe syndrome
that lead to growth restriction are missense mutations specific to the PCNA-binding domain, considered a gain-of-function mutation. Blue: amino-acid

substitution mutations; red: truncating mutations.

reported.”? In this family, a SRS child was born from a mother with
BWS phenotypes due to paternal duplication. Representative
phenotypes of BWS due to duplication causes developmental delay
(Table 2).12

So far at least 12 cases harboring translocations or inversions have
been reported, with most break points of the translocations and
inversions falling in the KCNQI locus.”>77 BWS develops when these
are transmitted maternally. Three cases harboring inv(11)(p13;p15.5),
inv(11)(p11.2;p15.5) and t(11;17)(p15.5;q21.3), respectively, have
been seen to exhibit KvDMRI-LOM. However, a fibroblast with
inv(11)(p15.5;q13) and a rhabdoid tumor line with t(11;22) have
shown signs of reduced expression of CDKNIC with normal
methylation at KvDMRI. These are consistent with the enhancer
blocking insulator model mentioned before.”>77 However, the
remaining cases showed mneither KvDMRI-LOM nor reduced
expression of CDKNIC. Therefore, the developmental mechanism
for BWS harboring translocations and inversions is largely unknown.

DIFFERENT RISKS FOR CHILDHOOD TUMORS IN EACH
ALTERATION TYPE

Embryonal malignancies are the tumors most commonly associated
with BWS—for example, Wilms’ tumor, hepatoblastoma, adrenocor-
tical carcinoma, rhabdomyosarcoma and neuroblastoma—but other
malignant or benign tumors are occasionally observed.®” Although
overall tumor risk is ~7.5%, it is different for each causative
alteration (Table 2). HI9DMR-GOM and patUPD show the highest
tumor risk, at >25%, especially for Wilms’ tumor and hepatoblas-
toma. KvDMRI1-LOM has a rate of developing hepatoblastoma,
rhabdomyosarcoma and gonadoblastoma other than Wilms’ tumors
of ~5%.10 The lowest risk is found in CDKNIC mutations with
<5% of cases affected. Only neuroblastomas have been found in
patients with CDKNIC mutations.”®”® Wilms tumors are frequently
seen in patients with HI9DMR-GOM or patUPD, but never seen in
patients with KvDMRI1-LOM or CDKNIC mutations, suggesting a
critical role of IGF2 overexpression in Wilms’ tumor development. In
fact, IGF2 loss of imprinting is found in 60~70% of sporadic Wilms’
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tumors without 11p LOH.8%8! Furthermore, IGF2 loss of imprinting
was also observed in ~21% of sporadic hepatoblastomas without 11p
LOH, and aberrant methylations at HI9DMR, HI19 promoter,
IGF2-DMRO or IGF2-DMR2 were observed in ~55% of sporadic
hepatoblastomas without 11p LOH, suggesting the importance of
IGF2 overexpression for hepatoblastoma development as well
(Rumbajan JM et al, submitted).?? In addition, although many
kinds of adult tumors display reduced CDKNIC expression, of which
certain cases show KvDMRI-LOM, the risk of embryonal
tumorigenesis is low in BWS patients with KvDMRI1-LOM or
CDKNIC mutations, suggesting different contributions of CDKN1C
to tumor development between adulthood and childhood.

ART AND BWS
The worldwide usage of ART has increased. Several reports have
raised concerns that the risk of imprinting disorders, such as BWS
and Angelman syndrome, are increased in children conceived by ART,
especially through in vitro fertilization and intracytoplasmic sperm
injection, as the first reported associations in 2002 and 2003 between
Angelman syndrome and BWS, respectively, with ART.#3-8> The risk
of BWS is estimated to be six to nine times higher in children
conceived by ART than in children conceived naturally.®® The
causative alteration for most of ART-related BWS is KvDMRI-
LOM. The cause of Angelman syndrome is also LOM at SNRPN.
Animal studies have suggested that ovarian stimulation and culture
medium for the embryo can affect DNA methylation and the
expression of several imprinted genes.8~0 In fact, large offspring
syndrome’ has been described as caused by LOM of the maternal Igf2r
after sheep embryo culture.’! However, in humans, although ovarian
stimulation may predispose to aberrant methylation at imprinted
loci,? it is still unclear whether the procedure of ART affects
methylation at imprinted loci because ART populations are
different from naturally conceived populations having low fertility
rates, increased frequency of reproductive loss and advanced age.”
Indeed, male infertility is strongly associated with aberrant
methylation at both maternal and paternal alleles.”#% It has been



reported that there are no phenotypic differences between
ART-related BWS and naturally conceived BWS.”® However, Lim
et al”” provided evidence that ART-related BWS had a significantly
lower frequency of exomphalos and higher risk of tumor development
than Wilms' tumor. Larger size studies are needed to Dbetter
understand the correlation between ART and BWS.

MULTILOCUS HYPOMETHYLATION DISORDERS
Hypomethylations at several other imprinted loci have been
reported to occur in BWS patients with K"DMRI-LOM. 474997 As
this phenomenon was also seen in patients with transient neonatal
diabetes mellitus type 1 and SRS, a new entity of imprinting disorders
such as MHD has been proposed.®>*3-101 The literature indicates an
overall frequency of multilocus hypomethylation in BWS patients
with KvDMRI-LOM of 20% (49/244).4%°8-101 [GF2R-DMR2, GNAS,
NESPAS, PEGI and PLAGLI are frequently hypomethylated DMRs.
In BWS patients, only maternally methylated DMRs displayed
hypomethylation; however, several SRS patients with HI9DMR-
LOM showed hypomethylation at DLKI/GTL2 IG-DMR, another
paternally methylated DMR, indicating involvement of both
maternally and paternally methylated DMRs. In addition, a certain
SRS showed hypomethylation at both HI9DMR and KvDMRI,4%100
As these hypomethylations were mosaic, they were presumed to be
due to a post-fertilization event.

Lim et al?” reported that ART-related BWS show multilocus
hypomethylation more frequently than naturally conceived BWS;
however, no such difference was observed by Rossignol et al.*’” One
study reported that BWS with multilocus hypomethylation displayed
characteristics not usually associated with BWS, such as speech
retardation, peri/postnatal apnea, feeding difficulties and hearing
problems; additionally, nevus flammeus and hemihypertrophy were
significantly lower in patients with multilocus hypomethylation.*
However, three other studies reported no difference in clinical
features between MHDs and monolocus hypomethylation
disorders.#7#897 As the studies so far have analyzed only limited
numbers of DMRs, further investigation of all known DMRs are
needed.

The involvement of trans-acting factors in these MHD has been
suggested. In fact, in one study, homozygous and compound
heterozygous mutations of ZFP57, which encodes a KRAB zinc-finger
protein and is required for the post-fertilization maintenance of
maternal and paternal methylation imprinting at multiple loci, were
found in transient neonatal diabetes mellitus type 1 patients with
multilocus hypomethylation.!? However, no mutations were found
in 27 BWS patients with KvDMR1-LOM probably without multilocus
hypomethylation.!% KAP1, a protein associated with ZFP57, interacts
with DNMT!1 and binds to many ICRs in embryonic stem cells to
maintain DNA and histone methylation.!%1% Mice with maternal
deletions of Trim28, a homolog of human KAPI, show aberrant DNA
demethylation at a few ICRs.!% Mutation searches of KAPI in MHD
patients have not been reported to date.

Other candidates for trans-acting factors are NLRP2 and NLRP?7,
which are members of the Nod-like receptor protein (NLRP) family.
Some NLRPs are components of the inflammasome, an assembly that
is implicated in the sensing of, and inflammatory reaction to,
extracellular pathogens and intracellular noxious compounds.'?”
Mutations of NLRP2 were identified in a familial case of BWS with
KvDMRI1-LOM and PEG1-LOM, suggesting a role of NLRP2 in the
establishment or maintenance of ICRs.!% However, the mutation has
not been corroborated by other studies yet. Mutations of NLRP7 and
C60RF221 account for familial biparental hydatidiform mole, which
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is a maternal effect recessive disorder resulting from failure of
maternal imprints.!%»11% Mutation searches of NLRP7 were
performed on the mother of a patient showing both transient
neonatal diabetes mellitus type 1 and BWS features with multilocus
hypomethylation, but they were unsuccessful”® In addition,
DNMTS3L, which is required for establishing maternal imprints, was
not mutated in two BWS patients with severe multilocus
hypomethylation.** Mutation searching of all candidate trans-acting
factors should be performed over a large number of MHD patients to
explore this matter further.

In addition, one circular chromosome conformation capture (4C)
study revealed that maternal HI9DMR interacts with the autosomal
region, and imprinting domains were strongly overrepresented in the
4C library, suggesting the involvement of higher order chromatin
interaction in the regulation of imprinting.!!! The involvement of
physical chromosome interactions in MHD should also be further
elucidated.

CONCLUSIONS

Although HI9DMR-GOM, KvDMRI-LOM, patUPD and CDKNIC
mutations, and chromosomal rearrangements account for ~80% of
BWS phenotypes, several questions about these alterations still remain
to be clarified. In addition, at least 20% of patients do not have these
associated alterations, suggesting the existence of other, unknown
epigenetic/genetic defects. Furthermore, other issues, such as the effect
of ART on imprinting disorders and the mechanism of multilocus
imprinting establishment/maintenance, should be clarified. Further
investigations of all of these issues must be elucidated in order to
understand the molecular basis of BWS and related imprinting
disorders.
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Figure 2. Dermoscopic images presented at a conference. A, At a recent
dermoscopy conference with more than 200 participants, over 50% thought
that the pictured lesion was a melanocytic tumor. B, After the ink test, over
90% of participants diagnosed this fesion as a sebarrheic keratosis.

ings or crypts, gyri and sulci creating networklike struc-
tures, moth-eaten borders, hairpin blood vessels, and sharp
demarcation. Of the SK features, comedolike openings
and gyri and sulci are examples of 3-dimensional struc-
tures that may prove difficult to identify under 2-dimen-
sional dermoscopy, especially in early macular lesions and
in lesions that are less heavily pigmented. Dermoscopic
networklike and globulelike structures present in SKs are
quite common with gyri and sulci present in 52% to 61%
of lesions and comedolike openings present in 71% to
80%.%* These structures may be missed entirely or else
confused for a pigment network or globules, which may
lead to diagnostic uncertainty or misclassification as a me-
lanocytic lesion.

However, with use of the ink test, these features can
be highlighted and clarified. The procedure that we have
used to successfully and reliably identify these 2 ele-
ments is as follows: First, mark the lesion thoroughly with
a felt-tipped surgical marking pen. Next, remove the ink
from the surface of the lesion with an alcohol wipe. Fi-
nally, view the lesion under dermoscopy; the ink will re-
main within the sulci and comedolike openings. The im-
age may be viewed side-by-side with an image taken from
before the ink test to confirm that the inked areas align
with previously classified areas of globules and/or net-
work (Figure 2).

The same process has been applied reliably to high-
light the cornoid lamella in porokeratosis or in acral
melanocytic lesions to distinguish the furrows of the
skin from the ridges.*> With the expanded application
of the ink test for the visualization of features of SKs,
we hope to limit the misdiagnosis of SKs as melano-
cytic lesions.
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The Possibility That Multiple
Mucocutaneous (Palisaded Encapsulated
and Nonencapsulated) Nevromas

May Be a Distinct Entity

arly childhood-onset mucosal neuromas of the
lips, tongue, and eyelids are pathognomonic for
multiple endocrine neoplasia (MEN) 2b syn-
drome, which is also associated with medullary thyroid
carcinoma and pheochromocytoma. It has recently been
suggested that multiple mucocutaneous neuromas may
also represent an early manifestation of PTEN hamartoma-
tumor syndrome (PHTS), including Cowden syndrome
and others."? Mucocutaneous neuromas in PHTS ap-
pear in early childhood and characteristically involve ac-
ral sites.'?
MEN 2b syndrome is caused by germline mutations
in the RET proto-oncogene (usually in exons 15 and 16),
while PHTS is associated with PTEN germline muta-
tions. We herein report a case of adult-onset multiple mu-
cocutaneous (palisaded encapsulated and nonencapsu-
lated) neuromas without any features of either MEN 2b
syndrome or PHTS.

Report of a Case. A 50-year-old man presented with a
15-year history of multiple, occasionally painful, pap-
ules and nodules that had increased in number and
were distributed all over the body. A physical exami-
nation revealed approximately 100 skin-colored,
translucent or brownish papules and nodules measur-
ing 2 to 10 mm in diameter with a predilection for the
upper and lower lips (Figure 1A) and bilateral acral
sites (the back and palmar sides of the hands and fin-
gers) (Figure 1B and C); they were also spread
throughout the periorificial area, trunk (Figure 1D),
and extremities. No other abnormal findings, includ-
ing corneal nerve hypertrophy, were seen. Forty-eight
lesions were surgically removed from various sites and
histopathologically showed features of either palisaded
encapsulated neuroma (Figure 2A and B), neuroma
(resembling the features of mucosal neuroma in MEN
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Figure 1. Skin-colored, translucent, or brownish papules and nodules. Lesion appear on the upper and lower lips (A), back side of the left hand and middle and

index fingers (B), palmar side of the right hand and fingers (C), and lower back (D).

2b syndrome) (Figure 2C and D), or combined fea-
tures of these 2 neoplasms.

The patient’s medical and family histories were
unremarkable. An intensive workup, including labora-
tory investigations and magnetic resonance imaging
studies, revealed no abnormalities, and there were no
findings indicative of either MEN 2b syndrome or
PHTS. A DNA analysis of the RET proto-oncogene
(exons 13, 15, and 16) and PTEN gene (exons 1-9)
showed no mutations. His two daughters (ages 24 and
22 years) and son (age 20 years) had no similar pap-
ules or nodules.

Comment. The present case of multiple mucocutane-
ous (palisaded encapsulated and nonencapsulated) neu-
romas involved the following characteristics: (1) adult
onset; (2) whole-body involvement with a predilection
for the lips and acral sites; (3) isolated clinical features
without any other abnormalities; and (4) the absence of
germline mutations in either the RET proto-oncogene or
PTEN gene.

A few cases of multiple mucocutaneous neuromas as
an isolated clinical feature without germline mutations
of the RET proto-oncogene have been reported.>* How-
ever, no analyses of the PTEN gene were performed in
these cases,”” thus suggesting the possibility of PHTS.!
Based on no mutations either in the RET proto-
oncogene or the PTEN gene, the present case is the first
to demonstrate that this rare clinical presentation may
truly be a distinct entity.

The relationship between palisaded encapsulated
neuroma and neuroma in MEN 2b syndrome has been
noted.!” The present case is the first demonstration
that the 2 neoplasms lie within a spectrum of the same
neoplastic entity, as they simultaneously occurred in
the same patient.
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Figure 2. Hematoxylin-eosin—stained specimens of the palisaded encapsulated neuroma (A and B) and neuroma lesions (C and D). A, Large neoplastic
aggregation with a smaller adjacent aggregation in the dermis, both of which are composed of intersecting fascicles separated by clefts (original magnification
x10). B, Close-up view of the intersecting fascicles with vertical and cross-sections (original magnification x100). C, Several neighboring or scattered, thick and
proliferated nerve bundles in the dermis (original magnification x25). D, A close-up view of the proliferated nerve bundles with vertical and cross-sections
associated with mucinous stroma (original magnification x100).
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Nevuropsychiatric Symptoms Associated
With Topical Imiquimod Therapy:
Report of 2 Cases

miquimod is an immune response modulator

approved for topical treatment of actinic kerato-

ses, basal cell carcinomas, and genital and peri-
anal warts. Although the most common adverse effects
are cutaneous reactions, systemic reactions—notably
flulike symptoms—have been described.! Official pre-
scribing information also lists “neuropsychiatric”
symptoms among adverse reactions in postmarketing
experience, but no details are provided.! We describe
2 patients who experienced acute neuropsychiatric

symptoms—delirium in one case and mania in the
other—during overuse of imiquimod. To our knowl-
edge, these specific reactions have not been described
previously.

Reports of Cases. Case 1. A dermatologist prescribed
thrice-weekly application of imiquimod cream for a 91-
year-old woman with a forehead basal cell carcinoma. She
returned 2 weeks later with a vigorous inflammatory re-
action covering much of her face. She admitted to using
the cream more frequently—and over a much broader
area—than prescribed; whether she washed her face af-
ter overnight use was unclear. During the ensuing weeks,
she developed progressive insomnia, agitation, diffi-
culty concentrating, and cognitive impairment. Results
of laboratory testing and brain magnetic resonance
imaging were unremarkable.

The patient was previously in excellent health. She took
no medications, lived independently, drove a car, and so-
cialized with friends. However, during the year follow-
ing this episode, she required substantial help from fam-
ily members and met criteria for mild dementia. Her
physicians concluded that imiquimod triggered de-
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Homozygous deletion of

L

DIS3L2 exon 9 due to

non-allelic homologous recombination between
LINE-1s in a Japanese patient with PerIman syndrome

Ken Higashimotol’7, Toshiyuki Maeda!”’, Junichiro Okada?’, Yasufumi Ohtsukal, Kensaku Sasaki3,
Akiko Hirose?, Makoto Nomiyama®, Toshimitsu Takayanagi’, Ryuji Fukuzawa®, Hitomi Yatsuki',
Kayoko Koide!, Kenichi Nishioka!, Keiichiro Joh!, Yoriko Watanabe?, Koh-ichiro Yoshiura® and

Hidenobu Soejima*'!

Perlman syndrome is a rare, autosomal recessive overgrowth disorder. Recently, the deletion of exon 9 and other mutations of
the DIS3L2 gene have been reported in patients; however, the mechanism behind this deletion is still unknown. We report the
homozygous deletion of exon 9 of DIS3L2 in a Japanese patient with Periman syndrome. We identified the deletion junction,
and implicate a non-allelic homologous recombination (NAHR) between two LINE-1 (L1) elements as the causative mechanism.
Furthermore, the deletion junctions were different between the paternal and maternal mutant alleles, suggesting the occurrence
of two independent NAHR events in the ancestors of each parent. The data suggest that the region around exon 9 might be a

hot spot of L1-mediated NAHR.
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INTRODUCTION

Perlman syndrome (OMIM #267000) is a rare, autosomal recessive
overgrowth disorder characterized by polyhydramnios with neonatal
macrosomia, nephromegaly, distinctive facies, renal dysplasia, nephro-
blastomatosis and a predisposition to Wilms tumor. The clinical
features are reminiscent of Beckwith—Wiedemann syndrome; however,
genetic and epigenetic alterations at 11p15.5 have been excluded from
the etiology.! Recently, DIS3L2 at 2q37.1 was reported as a causative
gene, showing homozygous deletions of exon 6 or exon 9 (82.8 and
~ 22 kb, respectively) and compound heterozygous mutations in such
patients.” However, the mechanisms behind these deletions are still
unknown. In this report, we explore a parentally transmitted
homozygous deletion of exon 9 in DIS3L2 responsible for Perlman
syndrome in a Japanese patient. We detected the sequence of the
deletion junction and found that a rare, non-allelic homologous
recombination (NAHR) between two collinear LINE-1 (L1) elements
was the causative mechanism of the deletion. To our knowledge, this
is the fourth NAHR event to be documented as causing a human
disease. Furthermore, the deletion junctions were different between
the paternal and maternal mutant alleles, suggesting the occurrence of
two independent NAHR events in the ancestors of each parent. Our
data suggest that the region around exon 9 of DIS3L2 is a hot spot of
L1-mediated NAHR.

MATERIALS AND METHODS

Patient

The male infant was the first child of non-consanguineous, healthy, Japanese
parents. Prenatal ultrasound examination showed polyhydramnios and bilat-
eral nephromegaly. He was delivered at 29 weeks and 4 days of gestation. He
weighed 2267 g (+ 6.4 SD) and measured 45.5cm (+ 4.3 SD) in length. Low-
set ears, large fontanels, micrognathia, a depressed nasal bridge, an everted
upper lip, prominent forehead, flexed digits, a micropenis and cryptorchidism
were observed. He suffered from cholestasis with coagulation disorder and
recurrent adrenal crisis, and died at 175 days of life due to a sepsis. Autopsy
revealed visceromegaly and nephroblastomatosis, and he was diagnosed with
Perlman syndrome. His karyotype was normal (46,XY). Causative alterations
of Beckwith—-Wiedemann syndrome, such as loss of methylation at KvDMR1,
gain of methylation at HI9DMR, paternal uniparental disomy of chromosome
11 and CDKNIC mutations, were ruled out (data not shown). This study was
approved by the ethics committee for Human Genome and Gene Analyses of
the Faculty of Medicine, Saga University, Japan.

Polymerase chain reaction and sequencing

Genomic DNA was extracted from cord blood, placenta and amniotic fluid of
the patient and peripheral blood of his parents. All coding exons, from exon 2
to exon 21, of DIS3L2 were amplified by PCR using primer pairs described
previously.? The copy number of DIS3L2 exon 9 was analyzed by quantitative
real-time PCR (qPCR) based on SYBR-Green I. Normalization was performed
against GAPDH and TAT>*
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L1-A and L1-B, which were located collinearly upstream and downstream of
exon 9, were amplified with primer pairs 1a/2, and 3/4 and 5/6, respectively
(Figure 1d). The paternal and maternal mutant alleles containing the deletion
junctions were amplified with primer pair 1b/6. All PCR products were directly
sequenced.

Total RNA was also extracted from placenta and amniotic fluid and ¢cDNA
was synthesized with random primers. RT-PCR was performed with a forward
primer in exon 8 and a reverse primer in exon 11. The RT-PCR product was
sequenced directly. The novel primers used in this study are shown in Table 1.

RESULTS

We first examined whether all coding exons of DIS3L2 were amplified
by PCR for the patient. In all patient samples, exon 9 could not be
amplified whereas all exons were amplified in the patient’s parents
and normal control individuals (Figure la, data not shown). This
result indicated a homozygous deletion of exon 9 in the patient, one
that has been previously reported.? qPCR showed that the copy
number of exon 9 in the parents was approximately half that of
controls, indicating heterozygosity for the deletion (Figure 1b). No

L1-mediated NAHR in Perlman syndrome
K Higashimoto et al

e

homozygosity for the deletion. Therefore, the parents were carriers of
the deletion and one deleted allele was transmitted to the patient by
each parent.

Next, the expression of the mutant allele was investigated by RT-
PCR using primers on exons 8 and 11 (Figure Ic). In normal
placentas, RT-PCR products matched the estimated normal size and
contained the 174-bp exon 9 sequence. In contrast, the product size of
the patient’s placenta and amniotic fluid was smaller than normal.
Sequencing revealed a missing exon 9 sequence and the existence of a
junction at exons 8 and 10, indicating the expression of the mutant
allele (Figure 1c). The expressed mutant allele would be translated to a
mutant protein harboring an in-frame deletion of 58 amino acids,
resulting in an abolished RNA-binding domain. Wild-type DIS3L2
has ribonuclease activity, but the mutant lacking exon 9 loses it.
Accordingly, it has been speculated that alterations in mRNA turnover
might be responsible for the phenotypes of Perlman syndrome.?

Finally, we tried to identify the deletion junction to clarify the
deletion mechanism. Two L1 sequences, L1-A and L1-B, were located
directly upstream and downstream of exon 9. The directions of the

1317

PCR amplification was observed in the patient’s samples, supporting two L1 sequences were opposite to DIS3L2 (Figure 1d). L1-A and
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Figure 1 Homozygous deletion of D/S3L2 exon 9 in a patient with Perlman syndrome. (a) Homozygous deletion of D/S3L2 exon 9. Duplex PCR of exons 6
and 9 showed no amplification of exon 9 in any patient sample, whereas both exons were amplified in the parents and normal controls. Mkl, 100-bp
ladders; N, negative control; C1, unrelated normal control #1; C2, unrelated normal control #2; Fa, father of the patient; Mo, mother of the patient; CB,
cord blood of the patient; Pla, placenta of the patient; AF, amniotic fluid of the patient. (b) Copy number analysis of exon 9. qPCR of DIS3L2 exon 9
normalized with GAPDH or TAT showed that the copy number of exon 9 in the parents was approximately half that of controls. No PCR product was
amplified in any patient sample. The y axis displays arbitrary units. (c) RT-PCR of DIS3L2. RT-PCR was performed with a forward primer in exon 8 and a
reverse primer in exon 11. The exon 9 deleted products were seen in the patient samples. Sequencing of the PCR products showed a lack of the exon 9
sequence, which was supposed to be 174 bp in length, in the patient’'s placenta, whereas the exon 9 sequence existed in normal placentas. P1, normal
placenta #1; P2, normal placenta #2; P3, normal placenta #3. (d) Map of exon 9. Two L1 sequences, L1-A and L1-B, were located collinearly upstream
and downstream of exon 9. The L1s were in the opposite direction to the DIS3L2 gene. L1-A was full-length, corresponding to nucleotides 1 to 6036 of the
reference sequence of L1Hs from Repbase on the GIR| website.> L1-B was a & truncated form, corresponding to nucleotides 1233 to 6042 of the
reference. Primers for PCR amplification are depicted as blue arrows. () PCR products containing the deletion junction. Approximately 5.5-kb products
were amplified by PCR with primer pair 1b/6 in the patient and the parents, whereas no product was seen in normal controls. Mk2, lambda DNA digested
with Styl. (f) The deletion junction. Comparing the sequences among L1-A, L1-B and the PCR products revealed that the deletion junctions of each
parental allele were different. Vertical blue or red bars showed the positions of nuclectide differences between L1-A and L1-B. As the patient had two
parental mutant alleles, a nucleotide at position 4955 was heterozygous (T/C) in the patient. The deletion junction is shown as a green box.
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Table 1 Original primers used in this study

Analyzed region

& -Forward primer-3' 5 -Reverse primer-3'

DIS3L2 exon 9
Between exons 8 and 11
Deletion junction

gPCR for copy number analysis
RT-PCR
Identification of deletion junction

GGCGTGGATTTCTCTGATTT
TTTATGTGCCTCTCAAGGAC

la: ACTGATTGAAGCAGCCAACT
1b: TGAAGCAGCCAACTCCAAAT
3: CCTCTTACCTCAGCCTACCA
5: TATTCCCCTTCCTGTGTCCA

AAGCCTAGCCCCTAGGAAAG
AGCAATGTGAACTCCCACTT
2: AGGACAAAAGGAAGCAAGTG

4: GAAGTCAGTGTGGCGATTCC
6: GGTGACATGATGAAACCTCACTT

All coding exons, from exon 2 to exon 21, of DIS3L2 were amplified using primer pairs described previously.?2 Primer sequences for GAPDH and TAT, which were used as internal controls for

qPCR, were the same as described in previous reports.3#

L1-B in the parents were amplified and sequenced directly. L1-A
sequences were full-length and identical between father and mother
with 99.2% similarity to the L1Hs reference sequence obtained from
Repbase on the Genetic Information Research Institute (GIRI)
website.” L1-B sequences, which produced a 5’ truncated form with
98.6% similarity to the reference, were also identical between father
and mother. The sequence similarity was 99.0% between L1-A and
L1-B; however, nucleotide differences were found at 45 positions
(Figures 1d and f). In addition, the mutant alleles in both father and
mother were successfully amplified by PCR from the parents and the
patient (Figure le). A sequence comparison among L1-A, L1-B and
the mutant alleles revealed that the deletion junctions of each parental
allele were different. The paternal deletion junction lay within an
interval of 1578 nt corresponding to nucleotides 3377 to 4954 of the
reference, whereas the maternal junction lay within an interval of
565nt corresponding to nucleotides 4956 to 5520 of the reference
(Figure 1f, Supplementary Figure S1). Furthermore, a nucleotide
difference at position 4955 was heterozygous (T/C) in the patient,
supporiing the existence of both mutant alleles in the patient
(Figure 1f). The results indicated that the deletion was caused by
NAHR between the two L1 elements and strongly suggested that the
two NAHR events occurred independently in the ancestors of each
parent.

DISCUSSION

In this study, we found NAHR between the two L1 elements as the
causative mechanism of DIS3L2 exon 9 deletion. We also found that
the deletion junctions of each parental allele were different, suggesting
the occurrence of two independent NAHRs in the ancestors of each
parent.

L1s account for 17% of the human genome.® A full-length L1 is
~6kb and encodes two ORFs (ORF1 and ORF2), which are required
for retrotransposition. Mobilization of L1s created several hundred
species-specific insertions in humans and chimpanzees, and Lls are
still actively expanding in humans, resulting in polymorphisms of L1
elements among individuals.”® L1s are mutagenic agents capable of
causing human disease as a result of insertion mutations or insertion-
mediated deletions by retrotransposition and NAHR between L1
elements. Twenty-five L1 retrotransposition events have been reported
to result in single-gene diseases to date.’ Although Alu-mediated
NAHR contributes to a large variety of genetic disorders, L1-mediated
NAHR and human endogenous retrovirus-mediated NAHR are very
rare causes of human diseases.”!> Only three human diseases —
glycogen storage disease type IXb, Alport syndrome-diffuse
leiomyomatosis, and Ellis-van Creveld syndrome — have been
reported to be caused by Ll-mediated NAHR.*-® To our
knowledge, this is the fourth NAHR event to cause human disease,
in this case Perlman syndrome. Several possible explanations for the
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rareness of L1-mediated NAHR have been posed: (1) Lls locate in
gene-poor regions, such that recombination events are clinically silent;
(2) frequent and extensive mutations over evolutionary time have
limited the homology among elements; (3) Lls occur at longer
intervals, rendering recombinations involving collinear elements
unlikely.!*> The NAHR found in this study occurred in a gene,
DIS3L2. The similarity between L1-A and L1-B was high (99.0%), and
the interval was shorter than that of the human lineage-specific L1
recombination-associated deletion (~450kb).!® These conditions
might enable the L1-mediated NAHR to cause disease, although the
possibility of microhomology-mediated replication-dependent
recombination models, such as fork stalling and template switching,
microhomology-mediated break-induced replication and serial
replication slippage, could not be ruled out.!” The deletion size of
exon 9 in the patients reported by Astuti et a?, found in two Dutch
pedigrees and one cell line established from a Caucasian patient,
strongly suggests the same mechanism at work, although this was not
mentioned. In our study, we suggest that two independent NAHRs in
ancestors of a Japanese patient occurred. Taken together, this suggests
that the region including exon 9 of DIS3L2 might be a hot spot of
Ll-mediated NAHR. Other disease-causing Ll-mediated NAHRs
should be studied and analyzed to clarify the precise mechanism,

Perlman syndrome predisposes to Wilms tumor, the most common
childhood malignancy, whereas the other three diseases caused by
L1-mediated NAHR are not associated with malignancy. The differ-
ence in a predisposition to malignancy would depend on the function
of the causative genes, not on the genomic instability because of
NAHR, because unlike the other genes, DIS3L2 shows tumor-
suppressor activity.?
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Abstract Beckwith-Wiedemann syndrome (BWS) is an
imprinting-related human disease that is characterized by
macrosomia, macroglossia, abdominal wall defects, and var-
iable minor features. BWS is caused by several genetic/epi-
genetic alterations, such as loss of methylation at KvDMR1,
gain of methylation at H19-DMR, paternal uniparental dis-
omy of chromosome 11, CDKNIC mutations, and structural
abnormalities of chromosome 11. CDKNIC is an imprinted
gene with maternal preferential expression, encoding for a
cyclin-dependent kinase (CDK) inhibitor. Mutations in
CDKNIC are found in 40 % of familial BWS cases with
dominant maternal transmission and in ~5 % of sporadic
cases. In this study, we searched for CDKNIC mutations in 37
BWS cases that had no evidence for other alterations. We
found five mutations—four novel and one known—from a
total of six patients. Four were maternally inherited and one
was a de novo mutation. Two frame-shift mutations and one
nonsense mutation abolished the QT domain, containing a
PCNA-binding domain and a nuclear localization signal. Two
missense mutations occurred in the CDK inhibitory domain,
diminishing its inhibitory function. The above-mentioned
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mutations were predicted by in silico analysis to lead to loss of
function; therefore, we strongly suspect that such anomalies
are causative in the etiology of BWS.

Keywords Beckwith-Wiedemann syndrome - CDKNIC -
Gene mutation - Genomic imprinting

Introduction

Beckwith-Wiedemann syndrome (BWS) (OMIM #130650)
is an imprinting-related human disease that is characterized
by the peculiar traits of prenatal and postnatal macrosomia,
macroglossia, abdominal wall defects, and variable minor
features. Genomic imprinting, an epigenetic phenomenon,
is responsible for parent-of-origin-specific gene expression.
The relevant imprinted chromosomal region in BWS,
11p15.5, consists of two independent imprinted domains,
IGF2/HI19 and CDKNIC/KCNQIOTI. Imprinted genes
within each domain are regulated by two imprinting control
regions (ICR): the differentially methylated region associ-
ated with H19 (H19-DMR) or KvDMR1 (Weksberg et al.
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2010; Choufani et al. 2010). Approximately 85 % of BWS
cases are sporadic; the other 15 % are familial. Several
causative alterations have been identified for sporadic cases
of BWS: loss of methylation (LOM) at KvDMRI1
(~50 %), gain of methylation (GOM) at H19-DMR
(2-7 %), mosaic paternal uniparental disomy (UPD;
~20 %), CDKNIC mutations (~5 %), duplications of
11p15 (<1 %), and inversions or translocations involving
11p15 (<1 %) (Weksberg et al. 2010; Choufani et al. 2010;
Sasaki et al. 2007). However, for approximately 15 % of
all BWS cases, no alteration of 11p15.5 has been found.

CDKNIC is an imprinted gene with maternal preferential
expression and contains three exons divided by two introns.
The first two exons encode a 316 amino acid protein, a cyclin-
dependent kinase (CDK) inhibitor, which is a strong inhibitor
of several G1 cyclin/Cdk complexes and a negative regulator
of cell proliferation (Lee et al. 1995; Matsuoka et al. 1995).
The CDKNIC protein consists of three distinct domains,
including a CDK inhibitory (CKI) domain, a proline and
alanine (PAPA) repeat domain, and a QT domain. The CKI
domain contains a cyclin-binding region, a CDK-binding
region, and a 3¢ helix, which is both necessary and sufficient
to bind and inhibit CDK activity (Lee et al. 1995; Matsuoka
et al. 1995; Borriello et al. 201 1). PAPA repeats interact with
the LIM domain kinase 1 (LIMK-1) and regulates actin
dynamics (Yokoo et al. 2003; Vlachos and Joseph 2009;
Borriello et al. 2011). The QT domain contains a PCNA-
binding domain, which can prevent DNA replication in vitro
and S phase entry in vivo, and a nuclear localization signal
(NLS) (Lee et al. 1995; Watanabe et al. 1998; Borriello et al.
2011). Dominant maternal transmission of germline
CDKNIC mutations causes 40 % of familial BWS cases, and
the mutation is found in ~5 % of sporadic cases as mentioned
above (Weksberg et al., 2010; Choufani etal. 2010). Since itis
located within the CDKNIC/KCNQIOTI domain and is
regulated by KvDMRI1, LOM at KvDMR1 induces suppres-
sion of its transcription, leading to BWS phenotypes
(Diaz-Meyer et al. 2003; Higashimoto et al. 2003; Soejima
et al. 2004). Therefore, a loss of CDKN1C function due to
either genetic or epigenetic alterations causes BWS, indicat-
ing its importance in the pathogenesis of this disease.

In this study, we searched for CDKNIC mutations in 37
BWS cases that did not show any alterations like LOM at

KvDMRI1, GOM at H19-DMR, paternal UPD, and chro-
mosomal abnormalities. We found four novel mutations
and one known mutation in six patients.

Materials and methods
Patients

Thirty-seven patients who were clinically diagnosed with
BWS, but who did not display causative alterations like
LOM at KvDMR1, GOM at H19-DMR, paternal UPD of
chromosome 11, and structural chromosomal abnormalities
(data not shown), were subjected to a CDKNIC mutation
search. We used three criteria for clinical diagnosis (Elliott
etal. 1994; DeBaun and Tucker 1998; Weksberg et al. 2001),
and all patients met at least one of them. Patients 2 and 3 were
siblings. Patient 5 was also diagnosed as along QT syndrome
type 3 case (OMIM #603830) with confirmed mutation of
SCN5A (data not shown). Patient 6 was clinically diagnosed
as a tuberous sclerosis case (OMIM #191100) based on
medical criteria. This study was approved by the Ethics
Committee for Human Genome and Gene Analyses of the
Faculty of Medicine, Saga University, Japan.

Mutation search of CDKNIC

Genomic DNA was extracted from the peripheral blood of
patients and their family members. Five regions covering
coding sequences and all exon—intron borders were
amplified by polymerase chain reaction (PCR) and directly
sequenced with Applied Biosystems 3130 Genetic
Analyzer (New York, USA) as previously described
(Hatada et al. 1996; Hatada et al. 1997). The primers used
in this study are shown in Table i. The mutations in
Patients 1, 2, 3, 4, and 5 were confirmed by digestion at
restriction sites, which were affected by the mutations, with
appropriate restriction enzymes. The mutation in Patient 6
was confirmed by sequencing of the plural clones into
which PCR fragments were cloned. Genomic DNA from
100 volunteer individuals was collected with written
informed consent and used to search the prevalence of non-
synonymous substitutions.

Table 1 Primers used for

mutation search of CDKNIC Analyzed region

Forward primer

Reverse primer

A 5'-CGTTCCACAGGCCAAGTGCG-3’ 5'-GCTGGTGCGCACTAGTACTG-3

B 5'-CGTCCCTCCGCAGCACATCC-3’ 5-CCTGCACCGTCTCGCGGTAG-3'

C 5-TGGACCGAAGTGGACAGCGA-3 5'-AGTGCAGCTGGTCAGCGAGA-3'
F 5'-CCGGAGCAGCTGCCTAGTGTC-3'  5'-CTTTAATGCCACGGGAGGAGG-3’/
H 5'-CGGCGACGTAAACAAAGCTG-3 5'-GGTTGCTGCTACATGAACGG-3/
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