OPN mRNA, but the level expressed by iDCs was exceeded by
differentiation stage OC8 (Fig. 1B). To characterize the OPN-
producing cells further, we performed immunofluorescence staining
on samples of each cell population (monocytes, iDCs, 0C4, 0C8, and
0C12). Monocytes and iDC were attached to slide glass by cytospin.
0C4, 0C8, and 0C12 were cultured on glass coverslips. In accordance
with the increase in OPN mRNA expression found over the course of
culture, production of OPN increased with differentiation: monocytes
did not produce OPN, iDCs started to produce relatively small
amounts, and 0C12 produced the highest levels of OPN (Fig. 1C). The
concentration of both the full-length and the cleaved forms of OPN in
the cell supernatant steadily increased during the course of 0C-like
MGC formation (Fig. 1D).
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EXPRESSION OF OPN RECEPTORS DURING THE COURSE OF OC-LIKE
MGC GENERATION FROM iDCs

Next, we investigated the expression of receptors for OPN, specifically
avp3 integrin, CD44v6, and 9B 1 integrin, during the course of OC-
like MGC formation. The mRNA levels of avB3 integrin, CD44v6, and
a9B1 integrin increased and peaked at OC8 or 0C12 (Fig. 2A),
following a similar pattern to OPN production. CD44v6 mRNA was
highly expressed by monocytes; however, its expression by iDCs was
low. To characterize OPN receptor-expressing cells further we
examined avp3-, CD44v6-, and a9 1-expressing 0C12 for TRAP
and OPN expression using immunofluorescence staining. Further-
more, to know whether iDCs remain at the end of culture, 0C12, and
whether the remaining iDCs are involved in the formation of OC-like

merge

Fig. 2. OPN receptor expression during the course of OC-like MGC formation from iDCs and characterization of avp3-, CD44v6-, and «9B 1-expressing cells. A: Expression of
integrin av mRNA (receptor for full-length OPN), CD44v6 mRNA (receptor for full-length OPN), and integrin a9 mRNA (receptor for cleaved OPN) measured by relative
quantitative RT-PCR (data shown are the mean of experiments with cells from five donors). Error bars represent mean & SEM. B: Detection of avp3, CD44v6 (receptors for full-
length OPN), and 981 (receptor for cleaved OPN) by immunofluorescence staining (green) of 0C12. Nuclei were stained with DAPI (blue). TRAP activity was assessed on the same

glass coverslips. Bars: 20 ;um. Data shown are representative of ten experiments. C: Detection of OPN (green) and its receptor (red) by double immunofluorescence staining. Nuclei
were stained with DAPI (blue). Bars: 20 wm. Data shown are representative of 10 experiments. DAPI, 4',6~diamidino-2-phenylindole; TRAP, tartrate-resistant acid phosphatase.
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MGCs, we stained iDC marker, CD1a. Cells expressing av33 were both
TRAP- and OPN-positive but CDla-negative, and some were
multinucleated but with no more than four nuclei (Figs. 2B,C
and 3A), suggesting that they were not fully mature OC-like MGCs.
CD44vé6-expressing cells were also TRAP-positive, and most were
typical MGCs (Fig. 2B), suggesting that they were mature OC-like
MGCs. On the other hand, a9 1-expressing cells were both OPN- and
CD1a-positive but TRAP-negative with a single nucleus, and some
were spindle shaped with processes characteristic of iDCs (Figs. 2B,C
and 3A). Using fluorescence intensity scoring, we showed that cells
expressing 9B 1 existed before the start of OC differentiation and
some iDCs expressed a9B1 integrin weakly but, while its expression
became stronger during the course of OC-like MGC formation (Fig. 3B,
Supplementary Fig. S1). The number of «9B1- and CD 1a-positive cells
did not increase (Fig. 3C,D). These data indicate that some remaining
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iDCs express a9B1 integrin strongly instead of the increased number
of 9B 1-positive cells. This suggests that 9B 1- and CD1a-positive
cells might have some role in OC-like MGCs formation.

OC-LIKE MGC FORMATION IS SUPPRESSED BY DOWN-REGULATION
OF OPN

To study the role of OPN in OC-like MGC formation, we down-
regulated the expression of OPN by transfection with OPN siRNA at
the initial monocyte stage, or at the iDC stage (Fig. 4A). First, we
generated iDCs from monocytes that had been transfected with either
OPN siRNA or control siRNA. There was no difference in efficacy of
differentiation of monocytes into iDCs between monocytes trans-
fected with OPN siRNA or control siRNA, as judged by the expression
of CD1a (Supplementary Fig. S2). Next, we prepared two types of
iDCs, one derived from monocytes that had been treated with OPN

iy
<D
s

CD1a* cell counts / 10° cells
hn

<
i

Mo iDC 0OC4 OC80CI12 .

Fig.3. The relationship between OPN receptors and CD1a. A: Detection of CD1a (green) and OPN receptors (red) by double immunoflucrescence staining, Nuclei were stained with
DAPI (blue). Bars: 20 um. Data shown are representative of 10 experiments. B: Immunofluorescence data providing the IS of a9p1 expressed. The mean staining intensity was
calculated as follows: IS, mean of brightness of selected cells’ red channel score (in arbitrary units, AU) using Adobe Photoshop Elements, version 11. Data shown are the mean of
experiments with cells from three donors. Error bars represent mean == SEM. C: Number of 98 1-positive cells per 1 x 10° cells (data shown are the mean of experiments with cells
from three donors). D: Number of CD1a-positive cells per 1 x 10° cells (data shown are the mean of experiments with cells from three donors). IS, intensity score.
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Fig. 4. The effect on MGC formation from iDC of down-regulating OPN with siRNA and inhibiting OPN binding. A: To study the role of OPN on OC-like MGC generation, OPN

expression was down-regulated by transfection of OPN siRNA into monocytes or iDCs derived from non-treated monocytes. B: To identify the type of OPN receptor involved in MGC

generation, two different synthetic peptides, RGD or SWWYGLR, were included in the culture medium during the differentiation of iDCs into OC-like MGCs. C, D: OPN mRNA levels
measured by relative quantitative RT-PCR in OC-like MGC generated from (C) siRNA-transfected monocytes (data shown are the mean of experiments with cells from ten donors) or
(D) siRNA-transfected iDCs (data shown are the mean of experiments with cells from ten donors). E, F: Number of MGCs differentiated from (E) iDCs generated from siRNA-
transfected monocytes (data shown are the mean of experiments with cells from ten donors) or (F) siRNA-transfected iDCs (data shown are the mean of experiments with cells from
ten donors). The number of MGCs was counted at OC7. G: Number of MGCs differentiated from iDCs in the presence of 10 .g/m! RGE (control) or RGD peptides (data shown are the
mean of experiments with cells from five donors). H: Number of MGCs differentiated from iDCs in the presence of 1 .g/ml GRVLYSV (control) or SWYGLR peptides (data shown are
the mean of experiments with cells from six donors). MGCs were counted at OC7. Error bars represent mean = SEM. OC1, OC-like MGCs on day 1; 0C3, OC-like MGCs on day 3; 0C7,

OC-like MGCs on day 7; sup, supernatants.

siRNA (Fig. 4C,E), and the other derived from non-treated monocytes,
which were treated with OPN siRNA at the iDC stage (Fig. 4D,F).
Subsequently both types of iDCs were cultured for a further 7 days.
Cells and supernatants were recovered at day 1, 3, and 7 and thus
these cells were referred to as 0C1, OC3, and 0C7, respectively. The
numbers of 0C-like MGCs were counted on day 7 (0C7). With the
exception of OC1, the concentration of full-length and cleaved forms
of OPN in the supernatant of cells differentiated from both types of
iDCs was reduced in OPN siRNA-transfected cells compared to cells
transfected with control siRNA (Supplementary Fig. S3). Neverthe-
less, OPN mRNA expression was efficiently reduced by OPN siRNA

treatment (Fig. 4C,D). By the end of culture on day 7, there was a
significant reduction in MGC formation by iDCs derived from
monocytes treated with OPN siRNA (Fig. 4E), while OPN siRNA-
treated iDCs derived from non-treated monocytes were able to
generate MGCs (Fig. 4F). These data suggest that OPN plays a role in
the early phase of OC and/or MGC differentiation, specifically during
the differentiation of monocytes to iDCs.

MGC FORMATION IS REDUCED BY SVVYGLR PEPTIDES
To investigate the type of OPN receptor involved in MGC formation,
we used two different synthetic peptides, corresponding to internal
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sequences of OPN, namely RGD, which binds RGD-recognizing
integrins including avB3 and «5B1, and SVVYGLR, which is
recognized by a4fB1 and «9B1. These peptides were added to the
culture medium during the differentiation of iDCs into OC-like MGCs
(Fig. 4B). No obvious effect on MGC formation by RGD peptide
compared to the RGE control peptide was observed (Fig. 4G).
However, MGC formation was significantly reduced by SVVYGLR
peptide as compared to the GRVLYSV control peptide (Fig. 4H),
suggesting that a4B1 and/or «9B1 integrin receptors play a pivotal
role in MGC formation.

OPN DID NOT AFFECT VIABILITY AND APOPTOSIS IN OC-LIKE MGC
FORMATION

OPN is known to confer resistance to apoptosis [Tuck et al., 2007;
Yamaguchi et al., 2013]. In inflammatory bone diseases, osteolytic
lesions can be treated with bisphosphonates [Morimoto et al., 2011],
which induce OC apoptosis [Abe et al., 2012]. Based on these reports,
we hypothesized that OPN promote the survival and inhibit the
apoptosis of OC precursor cells or OCs, consequently OC-like MGC
formation is increased. We evaluated whether OPN affects cell
viability and apoptosis in the course of OC-like MGC formation, using
OPN siRNA-transfected or control siRNA-transfected monocyte-
derived iDC. We determined cell viability and apoptosis by flow
cytometry for floating cell and trypan blue stain and TUNEL stain for
tightly adhering cells. Additionally, we performed Caspase-3 activity
assay. Caspase-3 is an active cell-death protease involved in the
execution phase of apoptosis, where cells undergo morphological
changes such as DNA fragmentation, chromatin condensation, and
apoptotic body formation [Porter and Janicke, 1999]. The number of
viable cell and apoptotic cell, and caspase-3 activity were not affected
by down-regulation of OPN (Fig. 5A-C).

OXIDATIVE STRESS IS NOT INVOLVED IN OPN PRODUCTION DURING
THE COURSE OF OC-LIKE MGC FORMATION

In view of previous reports demonstrating that reactive oxygen
species (ROS) may play a significant role as second messengers for
the expression of osteopontin in mice [Umekawa et al., 2009; Lyle
et al., 2012], it is an interesting issue whether ROS is linked to OPN
production in human primary cells. To answer this question, we
examined intracellular ROS activity and OPN production with or
without ROS inhibitor of diphenyleneiodonium chloride (DPI) or N-
acetyl-L-cysteine (NAC) in our culture system. DPI is a competitive
inhibitor of flavin-containing cofactors and a very potent inhibitor
of NADPH oxidase [Hancock and Jones, 1987]. NAC, in contrast,
acts as a scavenger of ROS regardless of the source of production
[Aruoma et al, 1989]. ROS was already generated at the
differentiation into iDCs from monocytes, and came up to the
highest levels at OC7 (Fig. 6A). As previous research has indicated
[Del Prete et al., 2008], iDC differentiation from monocyte was
suppressed when monocytes were pretreated with ROS inhibitor
(Supplementary Fig. S4). We next treated iDCs with a non-cytotoxic
concentration of DPI (100 nM) or NAC (20 mM), and evaluated the
effect of ROS inhibitors on OPN production. Although ROS activity
was significantly suppressed at OC7 (Fig. 6B), OPN production was
not decreased (Fig. 6C,D). Because OPN is also known to reduce
intracellular ROS during hypoxia/reperfusion to protect cells
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Fig. 5. Viability and apoptosis in the course of OC-like MGC differentiation
from iDC of down-regulating OPN with siRNA. A: Number of viable cells. B:
Number of apoptotic cells. C: Quantification of caspase-3 activity. We detected
pNA as cleavage product by caspase-3. Data shown are the mean of experiments
with cells from four donors. Error bars represent mean=SEM. pNA, p-
nitroaniline.

from oxidative injury [Denhardt et al., 1995], we examined
intracellular ROS activity with or without down-regulation of
OPN during the course of OC-like MGC formation. The down-
regulation of OPN did not affect intracellular ROS activity
(Supplementary Fig. S5).
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In this study, we found that during the course of OC-like MGC
formation from iDC, a large amount of OPN (both mRNA and protein)
was produced, the cultured cells expressed OPN receptors, and
inhibiting OPN expression suppressed OC-like MGC formation. These
results indicate that OPN plays an important role in OC-like MGC
formation from iDCs.

All cells expressed OPN during the course of 0C-like MGC
formation from iDCs in vitro. On the other hand, OPN receptors that
recognize full-length OPN were expressed on TRAP-positive and
CDla-negative multinucleated cells, while the «9B1 integrin
receptor, which recognizes the cleaved form of OPN, was expressed
on TRAP-negative and CDla-positive mononuclear cells. This
indicates that full-length OPN stimulates cells that have differentiat-
ed into OC-like MGCs, while the cleaved form of OPN stimulates cells
that have retained the character of iDCs. MGC formation from iDCs
transfected with OPN siRNA was not suppressed, but that from iDCs
generated from OPN-transfected monocytes was significantly sup-
pressed. The differentiation of monocytes into iDCs was not itself
influenced by OPN suppression. This indicates that OPN is crucial for
0C-like MGC formation during the early phase, although OPN levels
in OC1 cell culture supernatants were not significantly different
between OPN siRNA- and control siRNA-transfected cells. There is a
possibility that a critical OPN level for iDC fusion and OC-like MGC

formation exists in the early phase of culture. MGC formation was not
suppressed by the RGD peptide, which interferes with the interaction
of full-length OPN with its receptor, but was significantly suppressed
by SVVYGLR peptide, which interferes with the interaction of the
cleaved form of OPN with its receptor. These findings suggest that
cleaved OPN has a key role in stimulating iDC to differentiate into OC-
like MGCs in an autocrine manner.

OPN has been known as a multi-functional secreted phosphogly-
coprotein, which is involved not only in bone resorption by OCs but
also in the immune defense system and autoimmune disease.
Recently, an increasing number of reports describe the association
between OPN and the inflammatory bone disease of RA and LCH. In
mouse models of collagen-induced arthritis, OPN deficiency prevents
development of the disease [Yumoto et al., 2002] and anti-OPN
antibody, which blocks the interaction of OPN with its integrins,
significantly inhibits disease development [Yamamoto et al., 2007].
Bronchoalveolar lavage cells from patients with pulmonary LCH
spontaneously produce abundant amounts of OPN and OPN over-
expression in rat lungs induces lesions similar to pulmonary LCH,
with marked alveolar and interstitial accumulation of Langerhans
cells [Prasse et al., 2009]. Furthermore, OPN is highly overexpressed in
T cells and LCH cells of the LCH lesion [Allen et al., 2010].

T cells and antigen-presenting cells, such as DCs and macrophages,
secrete OPN causing autocrine or paracrine stimulation that results in
the secretion of other pro-inflammatory cytokines. This pro-
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inflammatory action is more strongly induced by cleaved than full-
length OPN [Uede, 2011]. For example, it was reported that the
production by vascular smooth-muscle cells of free radicals related to
oxidative stress was greater in response to cleaved OPN than in
response to full-length OPN [Lai et al., 2006]. The adhesive ability of
the cleaved OPN is also enhanced in comparison to that of full-length
OPN [Gao et al., 2004]. Cleaved OPN and its receptors (the a481 and
a9B 1 integrins) are involved in the neutrophil infiltration and hepatic
injury in inflammatory liver diseases [Diao et al., 2004]. Additionally,
the cleaved form of OPN plays a critical role in RA [Morimoto
et al., 2010; Uede, 2011], while a role for the cleaved form of OPN in
LCH has not been revealed. In this paper, we demonstrate the role of
cleaved OPN in the formation of OC-like MGCs from iDCs. Cleaved
OPN could therefore plausibly play a role in the pathogenesis of both
RA and LCH in which OCs are intimately involved [Redlich
et al., 2002; da Costa et al., 2005].

OPN did not affect viability and apoptosis in OC-like MGC
formation, suggesting OPN directly acts as a signal mediator for 0C-
like MGC formation. ROS activity increased during OC-like MGC
formation, however, we could not discover any relation between ROS
activity and OPN production.
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