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FIGURE 1. BiFC analysis of T
of the Venus fragment (VN
tute. C, HEK293T cells expre
Tie2-MycVC expression vec!
fluorescence. Bar indicate
homodimerization in BiFC
or anti-Myc Ab.

mouse anti-Myc Ab and Alexa Fluor 647 (blue)- conjugated
anti-mouse Igs. BiFC fluorescence was detected using a filter
for Alexa Fluor 488 (green). The slides observed under a
Leica TCS SP5 Verl.6 (Leica 1crosy$tems) using HCX PL
APO lambda blue 63 X 1.4°oil: mages were processed using
Adobe Photoshop CS5 Exten

Statistical Analysis—All d
S.D. and were analyzed by tw
ity value of < 0.05 was conside

RESULTS

surface (19) We also detected hgand—mdependent dlmers of
endogenous Tie2 in human umbilical vein endothelial cells
(supplemental-Fig: :S14). To assess Tie2 dimerization in the
absencé of Ang1, we-utilized the BiFC assay (26): First;'we pre-
pared amino. (N)-terminal (1-173: VN173)-and carboxyl (C)-
terminal (155-238: VC155) components of Venus fluorescent
protéin, a modifier of yellow fluorescent protem, fusedwith the
C-terminal domain of wild:type: (\X/T) nitouse Tie2 vnth an HA
or Myc tag: linked to'the molecule:(Fig. 1A4): When Tie2 (Tie2-
HAVN; T1e2-MchC) dimierizes; the fliorescent - complex
should:be rreconstituted - (Fig: :1B):*-As- expected ‘When Tie2-
HAVN and Tie2-MycVC were cotransfected into HEK293T
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tic representa
i g, fluorescence should reconsti-
ransefected with Tie2-HAVN and
rrowhead) develop no Venus
or dimerization as indicated. E, quantltative evaluatlon of Tle2

of Tie2-Tiel using BiFC Assays—
‘mediated by its interaction with

Tiel prote wasdifficult to express inHEK293T cells followmg
transfection of full- -length Tiel cDNA. However, when the orig-
inal native signal sequence of Tiel was excised and replaced
with the Tie2 signal sequence (des1gnated Tlel*) Tiel expres-
sion was easﬂytmduced (Fig. 24). Using this Tiel* construct, we
evaluated . Tie2-Tiel and Tiel-Tiel associations ‘by BiFC.
Although it hastecently-been reported that Tie2 and Tiel'asso-
ciate following Angl stimulation and-on cell-cell contact, we
failed todetect any Tie2-Tiel or Tiel-Tiel associations’ (Fig:2,
B=D).This suggests that a'Tie2and Tiel interaction is requlred
for Angl ‘binding to Tie2 and Tiel and that Tielriever givesrise
toinactive dimers and/or oligomers in thé absence of Angl.
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A - B

PerCP (650nm=)

FITC (515-545nm)

FIGURE 2. BiFC analysis comparing Tie2 and Tie1*. A, signal peptide of Tie1 was replaced with that of Tie2 (Tie1*). All receptors were C- termmallytagged with
Myec. The levels of Tie2, Tiel, and Tie1* protein were analyzed with Myc or 4G10 Ab. B-D, HEK293T cells were transiently transfected in combination with
Tie2-HAVN and Tie2-MycVC, Tie2-HAVN and Tie1*-MycVC, or Tie1*-HAVN and Tie1*-MycVC. B, cells were analyzed by confocal microscopy. Bar indicates 20 um.

C, flow cytometric analysis for evaluation of receptor dimerization as indicated. D, quantitative evaluation of receptor dimerization in BiFC as shownin C(*,p <
0.05; n = 3). Protein expression level of each receptor was assessed by immunoblotting:with anti-HA or.anti-Myc Ab.

Tiez+ Tie2KIR + TieZRIW +
Tie2 TieZKIR TieoRW

v+ RAW

FIGURE 3. BiFC analysis comparing T|e2 and TleZ mutant A detection of Tie2, kinase-dead mutant T1e2K854R (K/R) and constitutively active mutant
Tie2R848W (R/W) phosphorylation. Band C, HEK293T cells were transiently transfected in combination with Tie2-HAVN and Tie2- -MycVC, Tie2K854R-HAVN and
Tie2K854R-MycVC, or Tie2R848W-HAVN and Tie2R848W-MycVC. B, cells were analyzed by confocal microscopy. Bar indicates.20 um. C, quantitative evaluation
of receptor dimerization in BiFC as shown in B.(*, p < 0.05; n = 3). Protein expression level of each receptor was assessed by immunoblotting with anti-HA or
anti-Myc Ab. D, quantitative evaluation of receptordlmenzation in BiFC of Tie2 and Tie2R848W (¥, p < 0.05; n = 3). Protein expression level of each receptor was

assessed by immunoblotting with anti-Tie2. N.S., not significant.

Analysis of the Dimerization of Tie2 Mutants Using BiFC
Assays—Phosphorylation of overexpressed Tiel and Tie2 was
observed; but only Tie2 and not Tiel was autophosphorylated
in the absence of Angl stimulation (Fig. 24). To test whether
phosphorylation of Tie2 affects Tie2-Tie2 dimerization, we
generated a kinase-inactive Tie2 mutant (Tie2K854R) (Fig. 34).
However, loss of phosphorylation did not affect Tie2 dimeriza-
tion (Fig. 3, B and C, and supplemental Fig. S2A). We further
confirmed that it was not until Angl bound Tie2 that dimerized
Tie2 was internalized (supplemental Fig. S2B). Although

12472 JOURNAL OF BIOLOGICAL CHEMISTRY

dimerized WT Tie2 was observed in the cytoplasm, dimerized
kinase-inactivated Tie2 did not internalize from the cell
surface into the cytoplasm (Fig. 3B). Next, we constructed a
constitutively active mutant of Tie2 (Tie2R848W) (Fig. 34)
(29). InHEK293T cells overexpressing Tie2R848W-HAVN and
Tie2R848W-MycVC, more abundant Venus fluorescence was
observed in the cytoplasm than in wt Tie2 or Tie2K854R (Fig. 3,
B and C). Interestingly, Tie2R848W can dimerize with WT
Tie2, resulting in BiFC intensity enhanced compared with
Tie2-Tie2 dimers (Fig. 3D). These results suggest that our BiFC
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TieziTics:

Tie2-Tie2 assoc:atlon y ¢ placmg part of Tie2 with' the Tiel
homologous domain (Fig: 44). We foundthat lack of the extra-
cellular domain 6f Tie2 1d ot affect BlPC (supplemental Fig.
$3),: suggestmg ‘that BiFC caused by Tie2-Tie2 ifitéraction is
mainly induced by the intracellular domain of Tie2 in our

Heérice, we attempted to isolate the Tied llgand—ihdéﬁéﬁdent
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model. Therefore, we focused on the intracellular domain of
Tie2 for dimerization in our next experiments.

We transfected Tie2-HAVN and Tie2/Tiel* chimeric genes
fused with Myc-tagged VC155 into HEK293T cells. When the
C-terminal of Tie2 (from 975 to 1088 aminoacids) was replaced
by the Tiel sequence, BiFC was significantly attenuated (Fig.
4B). There are differences in 13 amino acids between Tie2 and
Tiel (Fig. 4C). Therefore, we mutated Tie2 where its sequence
is different from Tiel domain by domain and observed Tie2-
Tie2/mutant dimerization. We found that a YIA sequence
within Tie2 (975-977) is critical for dimerization (Fig. 4D).
Next, we introduced point mutations into this YIA domain. We
found that no single mutation was respon51ble for reducmg
Tie2 dimerization, but rather the whole YIA tandem sequence
was involved (Fig. 4E). We generated mutant Tie2 (Tie2YIA/
LAS) in which the YIA domain of Tie2 was replaced by LAS.
Tie2-Tie2YIA/LAS and Tie2YIA/LAS-Tie2YIA/LAS dimeriza-
tion was not significantly different, suggesting that both Tie2
YIA domains in the cytoplasmic region are required for
dimerization (Fig. 4F). When phosphorylation of Tie2YIA/LAS
was assessed, it was found that mere overexpression did not
induce it (supplemental Fig. S4).

Tie2YIA/LAS Monomer Mutants Can Be Dimerized and
Phosphorylated by Ligand Binding—Tie2 can form ligand-in-
dependent inactive dimers; it has therefore been suggested that
receptor dimerization and activation are mechanistically dis-
tinct and separable events (19, 30). Next, we analyzed whether
Angl binding to the inactive monomer mutant Tie2YIA/LAS
induced dimerization and activation of Tie2. Phosphorylation
of WT Tie2 by exogenous Angl did not increase the intensity of
BiFC developed by either Tie2-Tie2 (Fig. 54). On the contrary,
Angl stimulation decreased BiFC intensity after 30 min. This
suggests that internalization and degradation of Tie2 was
induced after Tie2 phosphorylation (30). Interestingly, we
found that Tie2YIA/LAS prominently enhanced BiFC intensity
under Angl stimulation for 1 h (Fig. 5B). Microscopy showed
that Tie2 formed ligand-independent dimers and was internal-
ized upon Angl stimulation (Fig. 64). In contrast, Tie2YIA/
LAS dimerization was not detected in the absence of Angl.
However, BiFC signals due to dimerization did occur upon
stimulation with Angl, although to a lesser extent than in WT
Tie2. This suggests that YIA mutations in-Tie2 did not com-
pletely prevent Tie2 dimerization (Fig. 6B).

Finally, we investigated how the lack of Tie2 ligand-indepen-
dent dimerization affected its phosphorylatmn and down-
stream Erk signaling. When the time course of Tie2 phosphor-
ylation was recorded in the presence of a fixed dose of Angl
(200 ng/ml), no significant differences between wild-type Tie2
and Tie2YIA/LAS were observed (Fig. 74). However, when
phosphorylation was measured after stimulation for 10 min
with different doses of Angl, Tie2 and Erk phosphorylation by
Tie2YIA/LAS decreased at a high dose (350~500 ng/ml) of
Angl compared with wild-type Tie2 (Fig. 7, B and C). These
findings suggest that the YIA domain of Tie2 is not indispensa-
ble for dimerization of Tie2 but is used for forming non-ligand-
mediated dimerization of Tie2 to effectively react to a higher
dose of Angl.
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A~ Tie2-HA-VN + Tie2-Mvc-VC

m: Ang‘l (50@ng/ml)
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FIGURE 5. BifC analysis of hgand-dependent dimerization of Tie2. A,

dimerization of Tie2 was ‘observed in Tie2-VN- and Tie2-VC-coexpressing
NIH3T3 cells in the presence or absence of Ang1 stimulation. At each time
point, cell lysates were analyzed for Tie2-HAVN and Tie2-MycVC as well as the
degree of Tie2 phosphorylation (fower panel). Note that Ang1 stimulation did
not enhance BiFC level but rather attenuated it 30 min after stimulation with
Ang1. B, time course of dimerization of Tie2YIA/LAS (Tie2LAS) was observed
in Tie2 YIA/LAS-VN- and Tie2 YIA/LAS -VC-coexpressing HEK293T cells in the
presence or absence of Ang1 stimulation (¥, p < 0.05; n = 3). DMS0, dimethy!
sulfoxide; N.S., not significant.

DISCUSSION

In the present study, we visualized Tie2 dimerization by the
BiFC method and sought ligand-independent dimerization
domains of Tie2. A previous report showed that Tie2 clusters
are expressed on the apical and basolateral plasma membranes
(19). However, it was not clear whether Tie2 phosphorylation
results in dimer formation. Here, we showed that kinase-inac-
tive Tie2 mutants also form dimers in the absence of Angl
Thus, Tie2 can indeed form dimers without Angl. To analyze
the role of ligand-independent dimerization of Tie2, a mutant
that cannot form dimers in the absence of Angl is required.
In the present study, we utxhzed a mutant with no evidénce of
Tiel-Tiel dimerization even when overexpressed. Based on the
amino acid sequence difference between Tie2 and Tiel, we
found that YIA in the Tie2 cytoplasmic domain is important for
ligand-independent Tie2 dimerization.

We show that the YIA domain required to form ligand-inde-
pendent Tie2 dimers is situated between the catalytic and acti-
vation loops in the intracellular region of the molecule. Previ-
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Tie2YIA/LAS (Ti |e2LAS) is: observed in Tie2YIA/LAS-VN=and Tie2YIA/LAS-VC-
coexpressing NIH3T3 cells. In the absence of Ang1, Tie2LAS did-not dimerize
but formed cluster:like aggregatlons upon stimulation with.Ang1. Bar indi-
cates 20 um. . .

ous reports:show that the Tie2 C-terminal tail has a negative
regulatory rolein Tie2 signaling and function (31, 32). To acti-
vate T1e2 conformatlo‘ alf changes 1n the mtracellular loop

trol the movement of se‘,loop and C—termmal talls Further
structural analysis of T1e2 will be necessary to assess how the
YIA domain controls lxgand—mdependent dlmerlzatlon of T1e2
for’ foldmg and Tie2-Tie2 associations.

Unlike Tie2 homaodimer formation, the BiFC method reveals
that Tie2 and Tiel scarcely interact. Recently, it ‘has ‘been
reported. that Tie2-Tiel heterodxmer formation is. induced in
the extracellular domain of Tie2 and Tiel, respectively, and that
this occurs in the'absence of ang10po1etm hgatlon (33) Het—'

In- contrast When ’NIHBTB cells expressmg .'
Tlel*—V "wete stlmulated Wlth Angl, BIFC mtensn'y was: s ot

analy51s (supplemental Fig. S6, B and C). It has been rep ted
that sheddmg of Tiel extracellular-domain itself induces Tie2
activation and:that Ang2 acts asa Tie2 agonist upon Tiel shed-
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ph g/ as quantlf ed. The
ratio of pTie2/Tie2 or pErk/Erk in cells on stimulation with AngT was com-
pared with Ang1-untreated cells ( p <:0.05;n = 3). 3

ding (34-36). This suggests that Tiel ectodomain shedding
plays important roles in promoting Tie2 conformatlon changes
and activation. Therefore, we. cannot completely exclude the

possibility that full-length Tie2-and Tiel may heterodlmerlze
under certain specxﬁc COndItIOI’lS in' ECs ‘

pendent dlmeflzatlon of Tie2 le to. 'attenuatlon of h1ghv dose
Angl medlated actlvatlon of Tie2. This suggests that hgand—

v hgand mdependent
dlmerlzatlon ‘of. T1e2 relates to the extent of Tle ) phosphoryla—

constltutlve act1va_ ion; 1t is assoc1ated with familial venoy
formations-and causes thickness orlack of smooth muscle cells
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in the veins systemically (14, 29, 37). In the present study, we
showed that the intensity of BiFC signals from Tie2R848W-
Tie2R848W was enhanced. Interestingly, Tie2R848W interac-
tions with WT Tie2 were stronger than Tie2- Tie2 interactions.
This suggests that T1e2R848W may heterodlmenze w1th
WT Tie2 and induce ‘ ‘ i
Therefore, analysxs J , ]
pendent dimerization ‘domains may be useful for developmg
therapeutic strategies to inhibit Tie2 activation in patients suf-
fering from venous malformation.
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the choroidal, retinal, and brain vessels to identify the ongm of
angiogenesis in those vessels. .

MaTeRTALs AND METHODS
Mice

The C57BL/6 mice and C57BL/6-Tg (CAG-EGFP) mice (EGFP
mice) that express green fluorescent protein -(GFP) in -all
tissues were purchased from Japan SLC (Shizuoka, Japan). Mice
8 to 12 weeks of age were used for experiments. All animal
experiments were conducted in accordance with the ARVO
Animal Statement for the Use of Animals in Ophthalmic and
Vision Research. '

Cell Preparation

Mice were euthanized and eyes were extracted. Retinal tissue
was removed gently from the RPE-choroid-sclera complex.
Choroidal tissue subsequently was scraped off the sclera. The
whole brain also was extracted from the same mice. Respective
tissue was excised, mmced and dxgested with Dispase II (Godo
Shusei Corp., Chiba, Japan), collagenase (Wako, Osaka, Japan),
and type I collagenase (Worthington Biochemical Corp.,
Lakewood, NJ) at 37°C.}7 The digested tissue was passed
through 40—um filters to yield single cell suspensions.
Erythrocytes were lysed with ACK buffer (0.15 M NH4CI, 10
mM KHCO;, and 0.1 mM NayEDTA).

Flow Cytometry

Hoechst staining was performed as described previously.'
Briefly, cell surface antigen staining was performed, and cell
suspensions were incubated with Hoechst 33342 (5 ug/mL;
Sigma, St. Louis, MO) at 37°C for 90 minutes in Dulbecco’s
modified Eagle’s medium (DMEM, 2% fetal calf serum, 1 mM
HEPES; S1gma) at a concentration of 108 nucleated cells/mL in
the presence or absence of verapamil (50 umol/L Sigma). Cell
surface antigen staining was performed as described previous-
1y.!® The monoclonal antibodies (mAbs) used in immunofluo-
rescence staining were anti-CD45 and anti-CD31 mAbs
(eBiosciences, San Diego, CA). Respective isotype controls
(eBiosciences) were used as negative controls. Propidium
iodide (PI, 2 pg/ml; Sigma) was added before fluorescence-
activated cell somng (FACS) analysis to exclude dead cells. The
stained cells were analyzed and sorted by a SORP FACSAria (BD
Biosciences, San Diego, CA), and data ‘were analyzed using
FlowJo Software CTreestar Softwarc San Carlos, CA).

EC Colony-Forming Assay

The 10% EC-SP or MP cells were seeded on 24-well plates and
cocultured on OP9 stromal cells in RPMI (Sigma), supplement-
ed with 10% fetal calf seram (FCS) and 10~5M 2-ME (Gibco,
Grand Island, NY).'® Cells were cultured for 10 days and the
number of colonies counted after immunostaining.

Immunofluorescetice

The procedure for staining was as reported previously.?® For
immunofluorescence, anti-CD31 mAb (BD Biosciences) was
used for staining, and anti-rat IgG Alexa Fluor 488 (Invitrogen,
Carlsbad, CA) and biotin-conjugated polycional antitat Ig
(Dako, Glostrup, Denmark) were used as the secondary
antibodies. Biotinylated secondary antibodies were developed
using ABC kits (Vector Laboratories, Burlingame, CA). Cell

nuclei were visualized with Hoechst dye (Sigma). Samples
were visualized using an Olympus IX-70 equipped with
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- (Olympus Corporation, Tokyo, Japan). Images were acquired
‘and processed with” Adobe Photoshop cS3 software (Adobe

Systems, Inc., San Jose, CA).
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Quant'itativ'e' RTéPCR (qR’f—i"Cﬁ) VV

RNA was extracted from CD31+CD457 EC cells, CD31CD45
ECSP ‘cells, and CD31+*CD45~ ECMP cells from the brain,
retina, and choroid, respectively, using an RNeasy Mini Kit
Qlagen Hilden, Germany), and cDNA was generated using
reverse transcriptase from the ExScript RT reagent Kit (Takara,
Otsu, Japan) as descnbed prev1ously21, caltime PCR was
performed usmg a Sttatagene Mx3000P_(! _zjatag’en’e, La Jolla,
CA). The polymerase chain reaction was performed on cDNA
using specific primers (Supplementary Table S1). Expression
level of the target gene was normalized to the GAPDH level in
each sample. '

Laser-Induced CNV

The C57BL/6 mice were anesthetized as described previous-
ly.?2 A total of 20 photocoagulation lesions was made with a
diode laser (150 mW, 0.05 seconds, 75 pm; Ultuna 2000 SE;
Lumenis, Santa Clara, CA) between the retinal vessels’ in a
penpapﬂlary dxstnbunon in each fundus. Prodiction of a
subretinal bubble at the time of laser treatment confirfed the
disruption of Bruch’s membrane. The CD31*CD45~ ECs from
the choroid were obtained 6 days after the laser procedure.
Proportions and numbers of EC-SP cells per choroid were
analyzed and calculated. Controls were the choroid from the
untreated eye, or choroid from normal wild-type mice.

Murine BM Transplantation Model

The 8- to 12-week-old C57BL/6 mice underwent BM transplan-
tation from same-aged EGFP donors. Briefly, BM cells were
obtained by flushing the tibias and femurs of age-matched
donor EGFP mice. The transplantation was performed into
C57BL/6 mice lethally irradiated with 10.0 Gy, by intravenous
infusion of approximately 1 X 107 donor whole BM cells. At 24
weeks after transplantation, by which time BM of recipient
mice was reconstituted, the mice were used for the
experiments. The percent reconstitution of the BM was
confirmed in all mice at the time of experiments.

Statistical Analysis

All data are presented as mean * SEM. For statistical analysis,
SigmaStat softwa:e (SPSS, Inc., Chicago, IL) was used. When
tWO groups were compared a 2—sxded Student’s #-test was used.
A probability value of less than 0.05 was considered
statistically significant.

REsuLTS

Identification of Endothelial SP Cells in the
Choroid, Retina, and Brain

We performed Hoechst 33342 staining and flow cytometric
analysis of cells isolated from normal mouse choroid, retina,
and brain to identify EC-SP cells. In the choroid, among cells
positive for the EC marker CD31 and negative for the
hematopoietic cell (HC) marker CD45 (CD3 1+CD45‘ ECs,
Fig. 14), 2.8 * 0.14% showed a typical SP staining pattern (i.c.,

Hoechst 33342 dye efflux properties, lost in the presence of
the drug efflux pump inhibitor, verapamil, Fig. 1B). They were
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Ficure 2. Endothelial SP cells in the choroid have high EC colony-forming ability. (A) EC-SP cells (wpper) and EGMP cells (Jower) in the choroid
were cultured on OP9 feeder cells and stained with anti-CD31 mAb. Arrows on the left image indicate each colony. Images on the right show a
higher magnification of the areas indicated by boxes in the middle image. Note that EC-SP cells generate many CD31-positive EC colonies compared
to EC-MP cells. Endothelial colony formation by EC-SP cells, or EC-MP cells from retina (B) or brain (C). Note that EC-SP cells (upper) in the retina
(B) and brain (C) form many colonies, compared to EC-MP cells (Jower), but the difference is less prominent compared to the choroid. (D)
Quantitative evaluation of the number of CD31-positive ECs in one well of a 24-well culture dish. Error bars are +SEM. **P < 0.01 (n =4). Scale

bars: 500 pm.

structure, and included multiple ECs, as confirmed by CD31
and Hoechst staining. The EC-SP cells isolated from the
retina and brain also formed higher numbers of ECs with a
cord-like structure compared to respective EC-MP cells (Figs.
2B, 2C), but had substaatially lower colony-forming ability
than the EC-SP cells from the choroid (Fig. 2D).

EC-SP Cells Are Not Derived From Bone Marrow,
and Are Distinct From EPCs

To confirm that EC-SP cells are not identical to EPCs, we
transplanted BM cells from GFP mice into irradiated wild-type
mice. Although the average percent reconstitution of the BM
was more than 99% at 24 weeks after transplantation, as
confirmed by flow cytometry (Figs. 3A~C), we could not detect
any GFP-positive EC-SP cells among the CD317CD45~ ECs from
the choroid, retina, or brain of GFP BM-transplanted mice,
suggesting that EC-SP cells do not originate from EPCs derived
from BM (Figs. 3A-C). This indicates that EC-SP cells reside at
the preexisting vessels in each tissue.

ExpreSSion of ABC Transpdrters in Choroidal,
Retinal, and Brain ECs

Because the retinal and brain ECs had high proportions of EC-
SP cells, but less efficient colony-forming capacity compared to
choroidal ECs, we hypothesized that not only the stem cell-like
ECs, but also nonstem cell-like ECs in the retina and brain also
express high levels of ABC transporters constitutively to
maintain the blood-retinal barrier (BRB) or blood~brain barrier
(BBB). Therefore, we compared the ABC transporter gene
family mRNA expression in choroidal, retinal, and brain ECs.
Retinal and brain ECs showed similar expression patterns of
several ABC transporters except for ABCC3 (Fig. 4). The
expression levels of ABCBla (multiple drug resistance la

[MDR1a]), ABCA5, ABCC4, and ABCCG were significantly
higher in retinal and brain ECs compared to choroidal ECs
(Figs. 4B, 4E, 41, 4]). On the other hand, ABCB1b and ABCA9
were lower in retinal and brain ECs (Figs. 4C, 4G), indicating
that they are not associated with an SP phenotype in these ECs.
The relative expression of ABCG2, which is reported to
correlate with the SP phenotype, was found to be high in the
brain ECs (Fig. 4A). ABCG2 also tended to be highly expressed
in the retinal ECs compared to choroidal ECs, but the
difference was not statistically significant (Fig. 4A). These data
suggested that components of the ABC transporters that
maintain the BBB and BRB generally are similar, but different
from the ECs in the choroid, which are distinguished from
those in the brain and retina by the expression pattern of ABC
transporter genes. '

Next, we sorted the EC-SP and EC-MP cells from the brain,
retina, and choroid, and compared the expression levels of
several ABC transporters (Fig. 5). Among the ABC transporters
that were highly expressed in the brain and retinal ECs relative
to choroidal ECs (ABCG2, ABCBla, ABCAS5, ABCC4, and
ABCCG), the expression of ABCBla, ABCC4, and ABCCG was
significantly higher in retinal and brain EC-SP cells compared to
choroidal EC-SP cells. This indicated that approximately 30% of
ECs with the SP phenotype in the brain and retina express
much higher levels of certain ABC transporters than choroidal
stem-like EC-SP cells. Furthermore, the expression of ABCC4
and ABCCG6 was significantly higher even in EC-MP cells in the
retina and brain compared to choroidal EC-SP cells (Figs. 5D,
SE). The high levels of ABC transporters in the retinal and brain
EC-MP cells also may contribute to maintaining the BRB or
BBB. Such a specific role of ECs in the retina and brain may be
the reason why the SP analysis using the Hoechst method does
not work well enough to allow purification of the stem-like
cells with proliferative potential from retinal and brain ECs.
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Figure 3. EC-SP cells are not derived from BM. (A-C) BM cells from GFP tﬁiee were transplanted into lethally- mdlated wild-type mice. At 24

weeks after transplantation, cells from the choroid (A), retina (B), and b
CD31*CD45~ EC-SP fraction (red) and BM (green) obtained from the ch
transplantation. Note that GFP-positive CD31+CD45~ EC-SP cells were prese

to ECSP cells.

EC-SP Cells in the Choroid Are Activated in Laser-
Induced CNV

To study the potential of the ECSP cells in the choroid to
facilitate ‘neovascularization in vivo, we mvesngated their
prohferauon durmg laser-induced 'CNV. A sham, operation did
not have any.effect on the ‘percentage of choroidal EC-SP cells
(Figs. GA; 6B).-However, the percentage and absolute number
of ECSP cells in the choroid increased 6 days after laser
treatment (Figs. 6C-F), while the percentage of brain and
retinal ECSP cells did not differ significantly after laser
treatment (29.7 * .9%, P > 0 5 and_sz 6,,+ 2. 8% P > 0. 05

ve mRNA level

in (C) were analyzed. Hxstogram showmg GFP intensity of the
d, retina, and brain. Almost: ells were GFP-positive after
t <0.01% of the total, sugge: ajor contribution of BM cells

were transplanted into lethally-irradiated wild-type mice, and
CNV was induced by the laser 24 weeks after transplantation.
No GFP-positive cells were present in the CD317CD45~ EC-SP

. population even after, CNV developed, indicating no major

contribution of BM cells to the ECSP cells that proliferated
(Fig. 6G). Thus, EG-SP cells already present at the preexisting
vessels seem to proliferate themselves in laser-induced CNV.

DiscussioN
In our' tudy, we 1dent1ﬁed re51dent EC-SP cellsi m the chor01dal

2.8% of total ECs in the chor01d and had greater colony ~forming
potential than the majority of the EC population. The pattem
of SP phenotype and colony formmg potennal of the chormdal

1solated from hmb niiscle1s Because EC-SP cells in the limb
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Fiure 5. Quantitative RTPCR analysis of mRNA in EC-SP and EC-MP cells from the choroid, retina, and brain. (A-E) Comparison of the expression
levels of five' ABC transporters that were highly expressed in retinal and brain ECs than choroidal ECs, as shown in Figure 4. Results are shown as
fold-increase in comparison with choroidal EC-SP cells. ABCB1a, ABCC4, and ABCCG were significantly higher in the brain and retinal EC-SP cells
compared to choroidal EC-SP cells, potentially reflecting the high proportion of SP cells in the former. The ABCC4 and ABCCG6 expression was
significantly higher even in retinal and brain EC-MP cells compared to choroidal EC-SP cells. Error bars are =SEM. Significantly higher (*P < 0.05)

and lower (**P < 0.05) than choroidal EC-SP cells (zz = 3).

muscle are regarded as colony-forming stem/progenitor-like
ECs and termed “spEC” (to indicate specific ECs consisting of a
hierarchical system of vascular ECs in the blood vessel), EC-SP
cells from the choroid also may act as “spEC” in the choroidal
vasculature.

The EC-SP cells in the choroid formed endothelial colonies
positive for CD31 in culture, but did not give rise to cells other
than ECs, such as hematopoietic or smooth muscle actin
(SMA)-positive mural cells (data not shown). These results
indicated that the EC-SP cells are lineage-committed specific
ECs with high proliferative potential, which can be purified
efficiently using Hoechst 33342 and flow cytometry. Although
we could not investigate the in vivo contribution of EC-SP cells
to choroidal angiogenesis, because of the small number of such
cells that could be isolated, it is possible that ECSP cells also
have the potential to géneratc large number of ECs in vivo.

In contrast to the SP pattern seen in the choroid, the retinal
and brain ECSP cells contained an increased SP population,
indicating that a higher proportion of ECs in those tissues can
carry out ABC transporter-mediated efflux of the Hoechst dye.
According to earlier reports, ABC transporters are physiolog-
ically active in retinal and brain ECs, contributing to the
maintenance of barrier function and preventing cytotoxic
agents from penetrating into the parenchyma.?®-?> Consistent
with these reports, retinal and brain ECs showed significantly
hlgher levels of ABCBla: (MDRla), ABCAS5, ABCC4, and ABCC6
compared to choroidal ECs in our study. Of these transporters,
ABCBla, ABCC4, and ABCCG were expressed especially
strongly in retinal and brain EC-SP cells. Therefore, we
speculated that ABCBla, ABCC4, and ABCCG are responsible
for the increase of the SP phenotype in retina and brain ECs.
Because the expression levels of ABCC4 and ABCCG were high
even in retinal and brain EC-MP cells compared to choroidal

EC-SP cells, ECMP celis in the retina and brain also seemed to
contribute to maintaining the BRB and BBB.

In addition to the different EC-SP pattern, EC-SP cells in the
retina and brain had substantxally less colony-forming potential
compared to those in the choroid. Therefore, EC-SP cells in the
retina and brain seemed to contain cells with as well as those
without stem cell-like proliferative potential, but which still
can efflux dye, leading to a lower proportion of stem cell-like
cells within the EC-SP compartment. Thus, SP analysis does not
work enough to purify the stem-like cells in the retinal and
brain ECs as in the choroidal ECs.

Because the contribution of BM-derived EPCs to the
formation of adult blood vessels in the eye and brain has been
well-documented over the past decade,”-526-2% we investigated
whether EC-SP cells are of BM origin or not. Based on the
analysis of GFP* BM- transplantcd mice, where we saw that EC-
SP cells were completely GFP-negative, we concluded that they
are not BM-derived. This result is consistent with a recent
report showing that the cells involved in angiogenesis are
derived from local, nonhematopoietic, and noncirculating
cells, according to genetic fate mapping analysis.!’? Thus,
blood vessel-residing EC-SP cells may serve as a cellular source
of the new ECs necessary for adult angiogenesis.

Because the choroid supplies oxygen and nourishment
through its network of capillaries to the outer layers of the
retina responsible for vision, it is reasonable that resident stem
cell-like ECs may be present to maintain the integrity of the
physiologic vasculature. However, the choroid also is associ-
ated with serious eye diseases, such as AMD and -myopic
degeneration.?> These diseases are caused by CNV, generating
pathologic new vessels in the choroid that grow beneath the
retina. Because the EC-SPs have the potential to generate large
numbers of ECs, we hypothesized that ECSP cells may
contribute to CNV in vivo. Using a laser-induced experimental
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Ficure 6.  Choroidal EC-SP. cells prohferate in laser mduced CNV (A-D) Flowcytometric analysis of Hoechst 33342 staining of CD31*CD45~ ECs

from the sham—operated ‘choroid (A, B) and the chor01d in which CNV had been induced CD).EP

Quantitative evaluation of the percentage (E)

and absolute number (F) of EC-SP cells from 12 eyes. Error bars are £SEM. *P < 0. 01 (n=3, 12 eyes for each experiment, experiments repeated 3
times): (G) BM cells from GFP mice were transplanted into lethally-irradiated led -type mice and, 24 weeks thereafter, CNV was induced by the
laser. Cells from the choroid were analyzed 6 days after the laser treatment. The hnstogram shows the GFP mtensxty of the. chor01dal CD3 1+CD4S‘
EC-SP fraction (red) and BM (green). Almost all BM cells were GFP-positive after transplantation. The GFP-positive CD31+CD45~ ECSP cells were
present at <0.01% of the total, suggestmg no major contrﬂ:»unon of BM cells to EC-! SP cells

CNV rnoclel,22 we found that the propo'rtion and absolute
number:of EC-SP cells increased-during CNV. The EC-SP.cells
that proliferated did not contain any BM-derived cells. Those
results, combined with in vitro proliferative potential of EC-SP
cells, indicated that EC-SP cells may possess self-renewal ability,
and proliferate upon exposure to-angiogenic stimuli; producea
large. number of ECs, .and .potentially - contribute to .new
choroidal vessels. Further studies are needed to elucidate the
molecular signature of ECSP cells, and to investigate . the
distribution and definitive in situ contribution of EC-SP cells
during CNV formation.

Although retinal and brain vessels also are associated with
angiogenesis-related diseases, such as diabetic retinopathy,
cerebral infarction, and brain tumors, preexisting stem cell-
like ECs must be those that contribute mainly to neovascular-
ization. Because of the high baseline proportion, and less stem
cell-like potential of EC-SP cells in the retina and brain, not
only the SP phenotype, but also more specific molecular
markers still are required for identifying resident stem cell-like
cells and their contribution to angiogenesis. Furthermore the
physiologic role of stem cell-like cells in maintaining blood
vessels remains to be investigated.

The data presented in our study suggested a potential
strategy to treat blood vessel-related diseases in the future.
First, in ischemic diseases, EC-SP cells may be used for
proangiogenic therapy providing large numbers of vascular
ECs and new blood vessels to restore blood flow in the
damaged tissue. Second, in pathologic neovascularization,
limiting the involvement and contribution of EC-SP cells may
be useful for antiangiogenic therapy.

In suminary, we identified SP cells in the CD31+*CD45~ EC
fraction in the eye and brain. In the choroid, EC-SP cells may
represent vesselresiding endothelial stem/progenitor cells
contributing to angiogenesis in vitro and in vivo. Further

studies to identify the molecules responsible for the presence
and proliferative potential of EC-SP cells may ‘offer ‘better
understanding of the mechanism of angiogenesis, and devel-
opment of new strategies for ang:ogencsw—related vascular
diseases. :
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