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shown in Fig. 2. Most characteristic was the progressive
temporal lobe damage depicted by ADC ;a1 maps (Fig. 2).
g-Space imaging was not able to detect this change. This is
probably due to the already damaged white matter in wide-
spread areas on MD maps, as shown in Fig. 5. This is in
contrast with the ADC map, which still exhibits preserved
regions (e.g., subcortical U-fibers). This, in turn, indicates
that g-space imaging has much higher sensitivity to neuro-
nal damage.

The visual assessment of the created maps indicated that
there was relative sparing of the posterior parts of the brain,
especially the occipital lobes (Fig. 4). Such occipital sparing
has been pointed out in a couple of previous studies. A multi-
institute study using conventional images has shown this trend
[3]. A second, more recent study carried out computerized
cortical thickness measurement on preclinical patients and
found the trend for relative occipital sparing [21]. The results
of these studies were drawn from group analysis, whereas the
present observation of occipital lobe sparing was possible on
an individual case basis, as illustrated in Fig,. 4.

Some technical background of this g-space approach
deserves comments. The effective diffusion time (i.e., A—4/3)
for g-space imaging is set to a much longer value than the
regular clinical DWIDTIL. This leads to longer TE and thus a
reduced SNR. In addition, use of extremely high b values leads
to imaging data that are even more susceptible to noise. Thus,
one has to use higher averaging during image acquisition. This
leads to longer acquisition time, and in the present study, it took
25 min to obtain 12 slices. One can shorten the acquisition by
reducing various factors, including averaging, b value incre-
ments, and gradient directions. One of the most common ways
that has been used to resolve the problem is to reduce the
gradient directions. For instance, a clinical study was carried
out using only three orthogonal directions, which reduced the
data acquisition time to 6.5 min [24]. There is, however, some
criticism in reducing the MPG directions to the level where one
can no longer reconstruct the tensor model.

Another limitation of “clinical” q-space imaging is that one
cannot completely replicate the sequence design used in ex-
perimental conditions [6]. In the g-space formalism, the data
are valid only when the following two conditions are fulfilled.
The first condition is the short pulse gradient (SPG) approx-
imation (i.e., <A and ¢ to be infinitesimally short), and the
second is the long diffusion time (i.e., A>a*/2D, where a is
the size of the compartment, and D is the diffusion coefficient)
[11]. These are not possible using a clinical scanner. There-
fore, some of the clinical studies use much shorter diffusion
time [24]. The advantage of this is the increase in SNR.
However, it is well known that such suboptimal sequence
design will lead to underestimation of compartment size [18,
19]. Our quantitative estimation of normal white matter (rep-
resented by MD ,4a) Was approximately 8.6 yum, which may
thus be an underestimated value.

One of the limitations of this study includes the small
number of patients. Especially, the number of preclinical
patients was small (n=2), which would potentially make it
difficult to assess the progressive nature of the disease.
Despite such limitation, we were able to observe the statis-
tically significant differences at some parts of brain, as
indicated in Fig. 2. Another limitation of this study is the
lack of direct histopathological correlation. The precise
cause of the increased compartment size as measured by
this technique remains unknown. There are a couple of
conceivable causes, which include enlarged extracellular
space due to loss of myelin/neurons and widening of peri-
vascular space, which is known to be a unique microscopic
feature of CADASIL [25]. The precise mechanism may be
elucidated by future histological correlations.

In conclusion, the feasibility of demonstrating the pro-
gressive nature of white matter damage using the g-space
technique in patients with CADASIL was shown. Since this
method appears to be sensitive to the early damage, we
believe it would aid in monitoring patients in the preclinical
stage. Further longitudinal studies will be necessary to eval-
uate the true efficacy of this technique.
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