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Supplementary Figure S5. Foxol and Foxo3 expression in thymocytes and splenic T
cells. (a) Expression of Foxol, Mst1 and a-tubulin in CD4SP thymocytes or splenic CD4
T cells from 2-3 month old MstI** and MstI”" mice. The numbers indicate approximate
molecular size of Foxo, Foxo3, Mstl, and a-~tubulin. Relative intensities of Foxol to
o-tubulin (the average + range, n = 2) are also shown in the bar graphs (low panels). (b)
Expression of Foxo3, Mstl and a-tubulin in whole thymocytes from 2-3 month old
MstI*"* and MstI”” mice. Relative intensity of Foxo3 to a-tubulin (the average + range, n

= 2) are also shown in the bar graphs (Iow panels, n = 2).
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Supplementary Figure S6. Leukocyte infiltration in one-year-old
Mstl-deficient mice. (a) H&E staining of tissue sections of the kidney and
pancreas from one-year-old Mst1” , CAG-Cre;Mst]f/f, Ick-Cre;Mstl™” or
mb-1-Cre;Mst1" mice (scale bar 400 pm). (b) Cells infiltrating the liver were
examined by immunostaining with anti-CD3, anti-B220, anti-CD11b and
anti-Igk antibodies (scale bar 200 um). (c¢) T cell-specific and B cell—specific
Mstl deletions were confirmed by immunoblotting.
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Genetics of rheumatoid arthritis contributes to
biology and drug discovery

A list of authors and their affiliations appears at the end of the paper

A major challenge in human genetics is to devise a systematic strat-
egy to integrate disease-associated variants with diverse genomic
and biological data sets to provide insight into disease pathogenesis
and guide drug discovery for complex traits such as rheumatoid arth-
ritis (RA)'. Here we performed a genome-wide association study
meta-analysis in a total of >100,000 subjects of European and Asian
ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10
million single-nucleotide polymorphisms. We discovered 42 novel
RA riskloci at a genome-wide level of significance, bringing the total
to 101 (refs 2-4). We devised an in silico pipeline using established
bioinformatics methods based on functional annotation®, cis-acting
expression quantitative trait loci® and pathway analyses’*—as well
as novel methods based on genetic overlap with human primary immuno-
deficiency, haematological cancer somatic mutations and knockout
mouse phenotypes—to identify 98 biological candidate genes at these
101 risk loci. We demonstrate that these genes are the targets of approved
therapies for RA, and further suggest that drugs approved for other
indications may be repurposed for the treatment of RA. Together,
this comprehensive genetic study sheds light on fundamental genes,
pathways and cell types that contribute to RA pathogenesis, and
provides empirical evidence that the genetics of RA can provide
important information for drug discovery.

We conducted a three-stage trans-ethnic meta-analysis (Extended
Data Fig. 1). On the basis of the polygenic architecture of RA' and
shared genetic risk among different ancestry>*, we proposed that com-
bining a genome-wide association study (GWAS) of European and
Asian ancestry would increase power to detect novel risk loci. In stage 1,
we combined 22 GWAS for 19,234 cases and 61,565 controls of European
and Asian ancestry”™. We performed trans-ethnic, European-specific
and Asian-specific GWAS meta-analysis by evaluating ~10 million
single-nucleotide polymorphisms (SNPs)"'. Characteristics of the cohorts,
genotyping platforms and quality control criteria are described in Extended
Data Table 1 (overall genomic control inflation factor Agc < 1.075).

Stage 1 meta-analysis identified 57 loci that satisfied a genome-wide
significance threshold of P << 5.0 X 10~%, including 17 novel loci (Extended
Data Fig. 2). We then conducted a two-step replication study (stage 2
for in silico and stage 3 for de novo) in 10,646 RA cases and 12,193
controls for the loci with P<5.0 X 107° in stage 1. In 2 combined ana-
lysis of stages 1-3, we identified 42 novel loci with P<5.0 X 10”2 in
any of the trans-ethnic, European or Asian meta-analyses. This increases
the total number of RA risk loci to 101 (Table 1 and Supplementary
Table 1).

Comparison of 101 RA risk loci revealed significant correlations of
risk allele frequencies (RAFs) and odds ratios (ORs) between Europeans
and Asians (Extended Data Fig. 3a-c; Spearman’s p = 0.67 for RAF
and 0.76 for OR; P<1.0 X 10~ %), although five loci demonstrated
population-specific associations (P << 5.0 X 10™® in one population but
P > 0.05 in the other population without overlap of the 95% confidence
intervals (95% Cls) of the ORs). In the population-specific genetic risk
model, the 100 RA risk loci outside of the major histocompatibility com-
plex (MHC) region'* explained 5.5% and 4.7% of heritability in Europeans
and Asians, respectively, with 1.6% of the heritability explained by the
novel loci. The trans-ethnic genetic risk model, based on the RAF from

one population but the OR from the other population, could explain
the majority (>80%) of the known heritability in each population
(4.7% for Europeans and 3.8% for Asians). These observations support
our hypothesis that the genetic risk of RA is shared, in general, among
Asians and Europeans.

We assessed enrichment of 100 non-MHC RA risk loci in epigenetic
chromatin marks'? (Extended Data Fig. 3d). Of 34 cell types investigated,
we observed significant enrichment of RA risk alleles with trimethylation
of histone H3 at lysine 4 (H3K4me3) peaks in primary CD4 " regulatory
T cells (Tyeg cells; P << 1.0 X 107>). For the RA risk loci enriched with Treg
H3K4me3 peaks, we incorporated the epigenetic annotations along with
trans-ethnic differences in patterns of linkage disequilibrium to fine-map
putative causal risk alleles (Extended Data Fig. 3e, f).

We found that approximately two-thirds of RA risk loci demon-
strated pleiotropy with other human phenotypes (Extended Data Fig. 4),
including immune-related diseases (for example, vitiligo, primary bili-
ary cirrhosis), inflammation-related or haematological biomarkers (for
example, fibrinogen, neutrophil counts) and other complex traits (for
example, cardiovascular diseases).

Each of 100 non-MHC RA risk loci contains on average ~4 genes in
the region of linkage disequilibrium (in total 377 genes). To prioritize
systematically the most likely biological candidate gene, we devised an
in silico bioinformatics pipeline. In addition to the published methods
that integrate data across associated loci’®, we evaluated several bio-
logical data sets to test for enrichment of RA risk genes, which helps to
pinpoint a specific gene in each loci (Extended Data Figs 5, 6 and
Supplementary Tables 2-4).

We first conducted functional annotation of RA risk SNPs. Sixteen
per cent of SNPs were in linkage disequilibrium with missense SNPs
(¥ > 0.80; Extended Data Fig. 5a, b). The proportion of missense RA
risk SNPs was higher compared with a set of genome-wide common
SNPs (8.0%), and relatively much higher in the explained heritability
(~26.8%). Using cis-acting expression quantitative trait loci (cis-eQTL)
data obtained from peripheral blood mononuclear cells (5,311 indivi-
duals)® and from CD4" T cells and CD147CD16~ monocytes (212
individuals), we found that RA risk SNPs in 44 loci showed cis-eQTL
effects (false discovery rate (FDR) g or permutation P < 0.05; Extended
Data Table 2).

Second, we evaluated whether genes from RA risk loci overlapped
with human primary immunodeficiency (PID) genes'*, and observed
significant overlap (14/194 = 7.2%, P = 1.2 X 10~ % Fig. laand Extended
Data Fig. 5¢). Classification categories of PID genes showed different
patterns of overlap: the highest proportion of overlap was in ‘immune
dysregulation’ (4/21 = 19.0%, P = 0.0033) but there was no overlap in
‘innate immunity’.

Third, we evaluated overlap with cancer somatic mutation genes'®,
under the hypothesis that genes with cell growth advantages may contri-
bute to RA development. Among 444 genes with registered cancer somatic
mutations'®, we observed significant overlap with genes implicated in
haematological cancers (17/251 = 6.8%, P=1.2 X 10~% Fig. 1b and
Extended Data Fig. 5d), but not with genes implicated in non-haema-
tological cancers (6/221 = 2.7%, P = 0.56).
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Table 1 | Novel rheumatoid arthritis risk loci identified by trans-ethnic GWAS meta-analysis in >100,000 subjects

SNP Chr Genes Al/A2 Trans-ethnic European Asian
+) OR (95% Cly OR (95% Cl) P OR (95% Cl) P
rs227163 1 TNFRSF9 C/T  1.04(1.02-1.06) 39x107* 1.00(0.97-1.03) 93 x107!  1.11(1.08-1.16)* 3.1 X 107+
rs28411352 1 MTF1-INPP5B T/C 1.11(1.08-1.14)* 28 x107'%* 110(1.07-1.14)* 59x107%  1.12(1.06-1.19) 7.8x107°
rs2105325 1 LOC100506023 C/A 1.12(1.08-1.15)* 69 x107%%* 1.12(1.08-1.15)* 33 x10"'* 1.13(1.04-1.23) 52 x107°
rs10175798 2 LBH A/G  1.08(1.06-1.11)* 1.1 x107%  109(1.06-1.12)* 42 x1078*  107(1.02-1.13) 64 x1073
rs6732565 2 ACOXL A/G  1.07(1.05-1.10)* 27 x107%%  1.10(1.07-1.14)* 94 x107%  1.04(1.00-1.08) 4.0x1072
rs6715284 2 CFLAR-CASP8 G/C  1.15(1.10-1.20)* 1.8 x107%*  1.15(1.10-1.20)* 2.5 x107%* - -
rs4452313 3 PLCL2 T/A 109 (1.06-1.12)* 1.6x1071%  1.11(1.08-1.15)* 52 x107!*  1.04(0.99-1.09) 9.2 x 1072
rs3806624 3 FOMES G/A 1.08(1.05-1.11)* 86 x107%  1.08(1.05-1.12)* 28x107%  1.06(0.99-1.14) 10x107}
rs9826828 3 IL20RB A/G 144 (1.28-1.61)* 86 x1071% 144 (1.28-1.61)* 87 x 107 1% - -
rs13142500 4 CLNK C/T 1.10(1.07-1.13)* 30x107%  110(1.06-1.15) 24x107®  1.10(1.04-1.15) 28x107*
rs2664035 4 TEC A/G 107 (1.04-1.10) 95x107%  1.08(1.05-1.11)* 33 x107%  1.03(0.97-1.08) 33 x107}
rs9378815 6 IRF4 C/G  1.09(1.06-1.12)* 1.7 x1071% 109 (1.05-1.12) 1.4x107 1.10(1.04-1.15) 23 x107*
rs2234067 6 ETV7 C/A  1.15(1.10-1.20)* 1.6 x107%  1.14(1.09-1.19)* 4.1 x107%  1.22(1.06-141) 7.0x1073
rs9373594 6 PPIL4 T/C  1.09(1.06-1.12)* 3.0x107%* 1.07 (1.02-1.12) 65x107%  1.11 (1.07-1.15)* 4.8 x 1078+
rs67250450 7 JAZF1 T/C 1.10(1.07-1.14* 37 x107%  1.11(1.07-1.14)* 26x107%*  1.02(0.84-1.23) 85 x 107!}
rs4272 7 CDK6 G/A  1.10(1.06-1.13)* 50x107%  1.10(1.07-1.14)* 12x107%  1.06(0.98-1.15) 13 x107!
rs998731 8 TPD52 T/C 1.08(1.05-1.11)* 19 x107%  1.09(1.06-1.12)* 66 x107%  1.02(0.96-1.10) 49 %107}
rs678347 8 GRHL2 G/A  1.08(1.05-1.11)* 1.6x1078  1.10(1.06-1.13)* 73 x107%*  103(0.98-1.10) 26 x 107!
rs1516971 8 PVT1 T/C  1.15(1.10-1.20)* 1.3 x107%%  116(1.11-1.21)* 3.2 x 107 !!* - -
rs12413578 10 10p14 C/T 1.20(1.13-1.29)* 48 %1078  120(1.12-1.29) 75x1078 - -
rs793108 10 ZNF438 T/C 1.08(1.05-1.10)* 13 x107°*  1.07(1.04-1.10) 6.1 x1077 1.09 (1.04-1.14) 44 x107*
rs2671692 10 WDFY4 A/G  1.07(1.05-1.10)* 28 x107°*  106(1.03-1.09) 26x10"°  1.10(1.05-1.14) 99 x10°°
rs726288 10 SFTPD T/C  114(1.07-1.20) 1.6x107° 096 (0.86-1.06) 4.1 x107!  1.22(1.14-1.31)* 88 x 107 %
rs968567 11 FADSI-FADS2-FADS3 C/T 1.12(1.07-1.16)* 1.8 x107%  1.12(1.07-1.16)* 1.8 x107%* - -
rs4409785 11 CEP57 C/T 1.12(1.09-1.16)* 12 x107%  1.12(1.08-1.16)* 3.6 x107%*  1.16(1.07-1.27) 43 x107%
chr11:107967350 11 ATM A/G  1.21(1.13-129)* 1.4 x107%  121(1.13-1.29)* 1.1 x107%* - -
rs73013527 11 ETS1 C/T 1.09(1.06-1.12)* 12x1071%%  108(1.05-1.11) 1.0x107° 1.14 (1.08-1.21) 4.1 x10°°
rs773125 12 CDK2 A/G 1.09(1.06-1.12)* 1.1 x1071%  109(1.06-1.12)* 2.1 x107%  1.10(1.04-1.17) 1.1 x1073
rs10774624 12 SH2B3-PTPNI11 G/A  1.09 (1.06-1.13)* 68 x107%*  1.09(1.06-1.13)* 6.9 x 107%* - -
rs9603616 13 COG6 C/T 1.10(1.07-1.13)* 1.6 x107*2*  1.11(1.07-1.14)* 28x107*  108(1.02-1.14) 10x1072
153783782 14 PRKCH AG 114 (1.09-1.18) 22x10™%  1.12(096-1.31) 14x107!  1.14(1.09-1.19)* 4.4 x 107%*
rs1950897 14 RAD51B T/C 1.10(1.07-1.13)* 82 x1071*  109(1.06-1.12)* 50 x107%  1.16(1.08-1.25) 1.1 x1074
rs4780401 16 TXNDC11 T/G  1.07 (1.05-1.10)* 4.1 x1078  1.09(1.06-1.13)* 87 x107%  1.03(0.98-1.08) 25x107*
rs72634030 17 C1Q0BP A/C 1.12(1.08-1.17)* 15x107%*  1.12(1.06-1.19) 29x107° 1.12(1.07-1.18) 9.6 x 107
rs1877030 17 MED1 C/T 1.09(1.06-1.12)* 19 x107%* 1.09(1.05-1.13) 1.3 x107° 1.09 (1.04-1.14) 32x1074
rs2469434 18 CD226 C/T 1.07(1.05-1.10)* 89 x107'%  105(1.02-1.08) 6.7 x107%  1.11(1.07-1.15)* 1.2 x 1078
chr19:10771941 19 ILF3 C/T 147 (1.30-1.67)* 86 x1071% 147 (1.30-1.67)* 88 x 10710+ - -
rs73194058 21 IFNGR2 C/A 108(1.05-1.12) 12x107%  1.13(1.08-1.18)* 26x107%  103(0.98-1.08) 29 x107!
rs1893592 21 UBASH3A A/C 1.11(1.08-1.14y* 7.2x107'%*  1.11(1.07-1.15)* 98x107%*  1.11(1.05-1.18) 1.3 x107*
rs11089637 22 UBE2L.3-YDJC C/T 1.08(1.05-1.11)* 2.1 x107°% 1.10(1.06-1.15) 20x1077 1.06 (1.02-1.10) 89 x 1074
rs909685 22 SYNGR1 AT 1.13(1.10-1.16)* 14 %107 111(1.08-1.15)* 64 x107*2*  1.23(1.14-1.33) 20x1077
chrX:78464616 X P2RY10 A/C 111(1.07-1.15)* 35 x107%  1.16(0.78-1.75) 4.6x10"!'  1.11(1.07-1.15)* 3.6 x 1078

SNPs newly associated with P< 5.0 x 10~8in the combined study of the stage 1 GWAS meta-analysis and the stages 2 and 3 replication studies of trans-ethnic (Europeans and Asians), European or Asian ancestry
are indicated. SNPs, positions and alleles are based on the positive (+) strand of NCBI build 37. Al represents an RArisk allele. Chr, chromosome; OR, odds ratio; 95% Cl, 95% confidence interval. Full results of the
studies are available in Supplementary Table 1. Hyphens between gene names indicate that several candidate RA risk genes were included in the region.

*Association results with P< 5,0 x 1078,

Fourth, we evaluated overlap with genes implicated in knockout mouse
phenotypes'®. Among the 30 categories of phenotypes'®, we observed 3
categories significantly enriched with RA risk genes (P < 0.05/30 = 0.0017):
‘haematopoietic system phenotype’, ‘immune system phenotype’, and
‘cellular phenotype’ (Extended Data Fig. 5e).

Last, we conducted molecular pathway enrichment analysis (Fig. 1¢
and Extended Data Fig. 5f). We observed enrichment (FDR g < 0.05)
for T-cell-related pathways, consistent with cell-specific epigenetic marks,
as well as enrichment for B-cell and cytokine signalling pathways (for
example, interleukin (IL)- 10, interferon, granulocyte-macrophage colony-
stimulating factor (GM-CSF)). For comparison, our previous RA GWAS
meta-analysis® did not identify the B-cell and cytokine signalling path-
ways, thereby indicating that as more loci are discovered, further bio-
logical pathways are identified.

On the basis of these new findings, we adopted the following 8 criteria
to prioritize each of the 377 genes from the 100 non-MHC RA risk loci
(Fig. 2 and Extended Data Fig. 6a—c): (1) genes with RA risk missense
variant (n = 19); (2) cis-eQTL genes (n = 51); (3) genes prioritized by
PubMed text mining’ (n = 90); (4) genes prioritized by protein—protein
interaction (PPI)® (n = 63); (5) PID genes (n = 15); (6) haematological
cancer somatic mutation genes (n = 17); (7) genes prioritized by associated
knockout mouse phenotypes (n = 86); and (8) genes prioritized by
molecular pathway analysis® (n = 35).
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Ninety-eight genes (26.0%) had a score =2, which we defined as ‘can-
didate biological RA risk genes’. Nineteen loci included multiple bio-
logical RA risk genes (for example, IL3 and CSE2 at chromosome 5q31),
whereas no biological gene was selected from 40 loci (Supplementary
Table 5).

To provide empirical evidence of the pipeline, we evaluated relation-
ships of the gene scores to independent genomic or epigenetic informa-
tion. Genes with higher biological scores were more likely to be the
nearest gene to the risk SNP (18.6% for gene score <2 and 49.0% for
gene score =2; P = 2.1 X 10™%), and also to be included in the region
where RA risk SNPs were overlapping with H3K4me3 T peaks (41.9%
for gene score <2 and 57.1% for gene score =2; P = 0.034). Further,
Teq cells demonstrated the largest increase in overlapping proportions
with H3K4me3 peaks for increase of biological gene scores compared
with other cell types (Extended Data Fig. 6d).

Finally, we evaluated the potential role of RA genetics in drug dis-
covery. We proposed that if human genetics is useful for drug target
validation, then it should identify existing approved drugs for RA. To
test this ‘therapeutic hypothesis™, we obtained 871 drug target genes
corresponding to approved, in clinical trials or experimental drugs for
human diseases’”'® (Supplementary Table 6). We evaluated whether
any of the protein products from the identified biological RA risk genes,
or any genes from a direct PPI network with such protein products
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Figure 1| Overlap of RA risk loci with PID genes, haematological cancer
somatic mutations and molecular pathways. a, Overlap of RA risk genes with
PID genes, subdivided by PID categories (I-VIII). b, Examples of overlap

of haematological cancer somatic mutation genes with RA risk genes.
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Figure 2 | Prioritized biological RA risk genes. Representative biological RA
risk genes. We list the summary gene score derived from individual criteria

(filled red box indicates criterion satisfied; 98 genes with a score =2 out of 377
genes included in the RA risk loci were defined as ‘biological candidate genes’;

see Extended Data Fig. 6). Filled blue boxes indicate the nearest gene to the RA
risk SNP. Filled green boxes indicate overlap with H3K4me3 peaks in immune-
related cells. Filled purple boxes indicate overlap with drug target genes. For full
results, see Supplementary Table 5.
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Figure 3 | Connection of biological RA risk genes to drug targets. a, PPI
network of biological RA risk genes and drug target genes. b, Overlap and
relative enrichment of 98 biological RA risk genes with targets of approved RA
drugs and with all drug target genes. Enrichment was more apparent than that

In support for repurposing, one CDK6/CDK4 inhibitor, flavopiridol,
has been shown to ameliorate disease activity in animal models of
RA?. Further, the biology is plausible, as several approved RA drugs
were initially developed for cancer treatment and then repurposed for
RA (for example, rituximab). Although further investigations are neces-
sary, we propose that target genes/drugs selected by this approach could
represent promising candidates for novel drug discovery for RA treatment.

We note that a non-random distribution of drug-to-disease indications
in the databases could potentially bias our results. Namely, because RA
risk genes are enriched for genes with immune function, spurious
enrichment with drug targets could occur if the majority of drug indi-
cations in databases were for immune-mediated diseases or immune-
related target genes. However, such enrichment was not evident in our
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from all 377 RA risk genes (Extended Data Fig. 7c). ¢, Connections between RA
risk SNPs (blue), biological genes (purple), genes from PPI (green) and
approved RA drugs (orange). For full results, see Extended Data Fig. 8.

d, Connections between RA genes and drugs indicated for other diseases.

analysis (~11% for drug indications and ~9% for target genes; Extended
Data Fig. 7b).

Through a comprehensive genetic study with >100,000 subjects, we
identified 42 novel RA risk loci and provided novel insight into RA
pathogenesis. We particularly highlight the role of genetics for drug
discovery. Although there have been anecdotal examples of this"?, our
study provides a systematic approach by which human genetic data
can be efficiently integrated with other biological information to derive
biological insights and drive drug discovery.

METHODS SUMMARY

Details can be found in Methods, Extended Data Fig. 1, Extended Data Table 1 and
Supplementary Information, including (1) information about the patient collections;
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(2) genotyping, quality control and genotype imputation of GWAS data; (3) genome-
wide meta-analysis (stage 1); (4) in silico and de novo replication studies (stages 2
and 3); (5) trans-ethnic and functional annotations of RA risk SNPs; (6) prioritiza-
tion of biological candidate genes; and (7) drug target gene enrichment analysis.

Online Content Any additional Methods, Extended Data display items and Source
Data are available in the online version of the paper; references unique to these
sections appear only in the online paper.
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METHODS

Subjects. Our study included 29,880 RA cases (88.1% seropositive and 9.3%
seronegative for anti-citrullinated peptide antibody (ACPA) or rheumatoid factor
(RF), and 2.6% who had unknown autoantibody status) and 73,758 controls. All
RA cases fulfilled the 1987 criteria of the American College of Rheumatology for
RA diagnosis*, or were diagnosed with RA by a professional rheumatologist. The
19,234 RA cases and 61,565 controls enrolled in the stage 1 trans-ethnic GWAS
meta-analysis were obtained from 22 studies on people with European and Asian
ancestries (14,361 RA cases and 43,923 controls from 18 studies of Europeans and
4,873 RA cases and 17,642 controls from 4 studies of Asians): BRASS?, CANADA?,
EIRA? NARACI? NARAC?2?, WTCCC?, Rheumatoid Arthritis Consortium Inter-
national for Immunochip (RACI)-UK*, RACI-US’, RACI-SE-E*, RACI-SE-U",
RACI-NL*, RACI-ES*, RACI-i2b2, ReAct, Dutch (including AMC, BeSt, LUMC
and DREAM), anti-TNF response to therapy collection (ACR-REF: BRAGGSS,
BRAGGSS2, ERA, KT and TEAR), CORRONA, Vanderbilt, three studies from the
GARNET consortium (BioBank Japan Project?, Kyoto University’ and IORRA?),
and Korea. Of these, GWAS data of 4,309 RA cases and 8,700 controls from six
studies (RACI-i2b2, ReAct, Dutch, ACR-REF, CORRONA and Vanderbilt) have
not been previously published.

The 3,708 RA cases and 5,535 controls enrolled in the stage 2 in silico replication
study were obtained from two studies of Europeans (2,780 RA cases and 4,700
controls from Genentech and SLEGEN) and Asians (928 RA cases and 835 con-
trols from China) (H.X. ef al., manuscript submitted). The 6,938 RA cases and
6,658 controls enrolled in the stage 3 de novo replication study were obtained from
two studies of Europeans (995 RA cases and 1,101 controls from CANADAIP)
and Asians (5,943 RA cases and 5,557 controls from BioBank Japan Project, Kyoto
University and IORRA®).

All subjects in the stage 1, stage 2 and stage 3 studies were confirmed to be inde-
pendent through analysis of overlapping SNP markers. Any duplicate subjects were
removed from the stage 2 and stage 3 replication studies, leading to slightly different
sample sizes compared with previous studies that used these same collections™.

All participants provided written informed consent for participation in the study
as approved by the ethical committees of each of the institutional review boards.
Detailed descriptions of the study design, participating cohorts and the clinical
characteristics of the RA cases are provided in detail in Extended Data Fig. 1 and
Extended Data Table 1a, as well as in previous reports*™.

Genotyping, quality control and genotype imputation of GWAS data. Genotyping
platforms and quality control criteria of GWAS, including cut-off values for sam-
ple call rate, SNP call rate, minor allele frequency (MAF), and Hardy-Weinberg
equilibrium (HWE) P value, covariates in the analysis, and imputation reference
panel information are provided for each study in Extended Data Table 1b. All
studies were analysed based on the same analytical protocol, including exclusion of
closely related subjects and outliers in terms of ancestries, as described elsewhere®,
After applying quality control criteria, whole-genome genotype imputation was
performed using 1000 Genomes Project Phase I () European (n = 381) and Asian
(n = 286) data as references''. We excluded monomorphic or singleton SNPs or
SNPs with deviation of HWE (P < 1.0 X 10”7) from each of the reference panels.
GWAS data were split into ~300 chunks that evenly covered whole-genome regions
and additionally included 300 kb of duplicated regions between neighbouring chunks.
Immunochip data were split into ~2,000 chunks that included each of the targeted
regions or SNPs on the array. Each chunk was pre-phased and imputed by using
minimac (release stamp 2011-10-27). SNPs in the X chromosome were imputed
for males and females separately. We excluded imputed SNPs that were duplicated
between chunks, SNPs with MAF < 0.005 in RA cases or controls, or with low
imputation score (Rsq < 0.5 for genome-wide array and < 0.7 for Immunochip)
from each study. We found that imputation of Immunochip effectively increased
the number of the available SNPs by 7.0 fold (from ~129,000 SNPs to ~924,000
SNPs) to cover ~12% of common SNPs (MAF > 0.05) included in the 1000 Genomes
Project reference panel for European ancestry'’.

Stage 1 trans-ethnic genome-wide meta-analysis. Associations of SNPs with RA
were evaluated by logistic regression models assuming additive effects of the allele
dosages including top 5 or 10 principal components as covariates (if available)
using mach2dat v.1.0.16 (Extended Data Table 1b). Allele dosages of the SNPsin X
chromosome were assigned as 0/1/2 for females and 0/2 for males and analysed
separately. Meta-analysis was performed for the trans-ethnic study (both Europeans
and Asians), European study, and Asian study separately. The SNPs available in =3
studies were evaluated in each GWAS meta-analysis, which yielded ~10 million
autosomal and X-chromosomal SNPs. Information about the SNPs, including the
coded alleles, was oriented to the forward strand of the NCBI build 37 reference
sequence. Meta-analysis was conducted by an inverse-variance method assuming a
fixed-effects model on the effect estimates (f§) and the standard errors of the allele
dosages using the Java source code implemented by the authors®. Double GC cor-
rection was carried out using the inflation factor (Agc) obtained from the results of
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each GWAS and the GWAS meta-analysis™ after removing the SNPs located = 1 Mb
from known RA loci or in the MHC region (chromosome 6, 25-35 Mb). Although
there is not yet uniform consensus on the application of double GC correction, we
note that potential effects of double GC correction would not be substantial in our
study because of the small values of the inflation factors in the GWAS meta-
analysis (Agc<1.075 and Agc adjusted for 1,000 cases and 1,000 controls
(Agc_1,000) < 1.005; Extended Data Table 1b).

As for the definition of known RA risk loci in this study, we included the loci that

showed significant associations in one of the previous studies (P < 5.0 X 10™%) or
that had been replicated in independent cohorts. We consider the locus including
multiple independent signals of associations as a single locus, such as the MHC
locus'> and TNFAIP3 (ref. 4). Although 6 of these 59 loci previously identified
as known RA risk loci did not reach a suggestive level of association (defined
as P<5.0 X 107°) in our stage 1 meta-analysis, previous studies have gone on to
replicate most of these associations in additional samples (Supplementary Table 1)>.
Thus, the number of confirmed RA risk loci is 101 (including the MHC regjon).
Stage 2 and stage 3 replication studies. In silico (stage 2) and de novo (stage 3)
replication studies were conducted using independent European and Asian sub-
jects (Extended Data Table 1). The 146 loci that satisfied P < 5.0 X 10~ in the
stage 1 trans-ethnic, European or Asian GWAS meta-analysis were selected for the
stage 2 in silico replication study. The SNPs that demonstrated the most significant
associations were selected from each of the loci. When the SNP was not available in
replication data sets, a proxy SNP with the highest linkage disequilibrium (% > 0.80)
was alternatively assessed. GWAS quality control, genotype imputation and asso-
ciation analysis were assessed in the same manner as in the stage 1 GWAS. For the
60 loci that demonstrated suggestive associations in the combined results of the
stage 1 GWAS meta-analysis and the stage 2 in silico replication study but were not
included as a known RA risk locus, we calculated statistical power to newly achieve
a genome-wide significance threshold of P < 5.0 X 10~® for Europeans and Asians
separately, which were estimated based on the allele frequencies, ORs and de novo
replication sample sizes of the populations. We then selected the top 20 SNPs with
the highest statistical power for Europeans and Asians separately (in total 32
SNPs), and conducted the stage 3 de novo replication study. Genotyping methods,
quality control and confirmation of subject independence in the stage 3 de novo
replication study were described previously”. The combined study of the stage 1
GW AS meta-analysis and the stages 2 and 3 replication studies was conducted by
an inverse-variance method assuming a fixed-effects model®.
Trans-ethnic and functional annotations of RA risk SNPs. Trans-ethnic com-
parisons of RAF (in the reference panels), ORs and explained heritability were
conducted using the results of the stage 1 GWAS meta-analysis of Europeans and
Asians. Correlations of RAF and OR were evaluated using Spearman’s correlation
test. ORs were defined based on minor alleles in Europeans. Explained heritability
was estimated by applying a liability-threshold model assuming disease prevalence
0f 0.5% (ref. 10) and using the RAF and OR of the population(s) according to the
genetic risk model. For the population-specific genetic risk model, the RAF and
OR of the same population was used. For the trans-ethnic genetic risk model, the
RAF of the population but the OR of the other population was used.

Details of the overlap enrichment analysis of RA risk SNPs with H3K4me3

peaks have been described elsewhere'®. Briefly, we evaluated whether the RA risk
SNPs (outside of the MHC region) and SNPs in linkage disequilibrium (r* > 0.80)
with them were enriched in overlap with H3K4me3 chromatin immunoprecipita-
tion followed by sequencing (ChIP-seq) assay peaks of 34 cell types obtained from
the National Institutes of Health Roadmap Epigenomics Mapping Consortium, by
a permutation procedure with X 10° iterations.
Fine mapping of causal risk alleles. For fine mapping of the causal risk alleles, we
selected the 31 RA risk loci where the risk SNPs yielded P < 1.0 X 102 in the stage
1 GWAS meta-analysis of both Europeans and Asians with the same directional
effects of alleles (outside of the MHC region). For fine mapping using linkage-
disequilibrium structure differences between the populations, we calculated aver-
age numbers of the SNPs in linkage disequilbrium (> > 0.80) in Europeans,
Asians, and in both Europeans and Asians, separately.

For fine mapping using H3K4me3 peaks of T, primary cells, we first evaluated
H3K4me3 peak overlap enrichment of the SNPs in linkage disequilbrium (in
Europeans and Asians) compared with the neighbouring SNPs (2 Mb). We fixed
the SNP positions but physically slid H3K4me3 peak positions by 1kb bins
within £2 Mb regions of the risk SNPs, and calculated overlap of the SNPs in
linkage disequilibrium with H3K4me3 peaks for each sliding step, and evaluated
the significance of overlap in the original peak positions by a one-sided exact test
assuming enrichment of overlap. For the 10 loci that demonstrated significant
overlap (P < 0.05), we calculated the average number of the SNPs that were in linkage
disequilibrium in both Europeans and Asians and also included in H3K4me3
peaks.
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Pleiotropy analysis. We downloaded phenotype-associated SNPs and phenotype
information from the National Human Genome Research Institute (NHGRI)
GWAS catalogue database® on 31 January, 2013. We selected 4,676 significantly
associated SNPs (P < 5.0 X 10~%) corresponding to 311 phenotypes (other than RA).
We manually curated the phenotypes by combining the same but differently
named phenotypes into a single phenotype (for example, from ‘urate levels’, ‘uric
acid levels’ and ‘renal function-related traits (urea)’ to ‘urate levels’), or splitting
merged phenotypes into sub-categorical phenotypes (for example, from ‘white
blood cell types’ into ‘neutrophil counts’, Tymphocyte counts’, ‘monocyte counts’,
‘eosinophil counts’ or ‘basophil counts’). Lists of curated phenotypes and SNPs are
available at http://plaza.umin.ac.jp/~yokada/datasource/software.htm.

For each of the selected NHGRI GWAS catalogue SNPs and the RA risk SNPs
identified by our study (located outside of the MHC region), we defined the genetic
region based on #25kb of the SNP or the neighbouring SNP positions in mod-
erate linkage disequilibrium with it in Europeans or Asians (* > 0.50). If multiple
different SNPs with overlapping regions were registered for the same phenotype,
they were merged into a single region. We defined ‘region-based pleiotropy’ as two
phenotype-associated SNPs sharing part of their genetic regions or sharing any
UCSC hgl9 reference gene(s) that partly overlapped each of the regions (Extended
Data Fig. 4a). We defined ‘allele-based pleiotropy’ as two phenotype-associated
SNPs that were in linkage disequilibrium in Europeans or Asians (r* > 0.80). We
defined the direction of an effect as ‘concordant’ with RA risk if the RA risk allele
also leads to increased risk of the disease or increased dosage of the quantitative
trait; similarly, we defined relationships as ‘discordant’ if the RA risk allele is assoc-
iated with decreased risk of the disease phenotype (or if the RA risk allele leads to
decreased dosage of the quantitative trait).

We evaluated statistical significance of region-based pleiotropy of the registered

phenotypes with RA by a permutation procedure with X 10” iterations. When one
phenotype had n loci of which m loci were in region-based pleiotropy with RA, we
obtained a null distribution of m by randomly selecting n SNPs from obtained
NHGRI GW AS catalogue data and calculating the number of the observed region-
based pleiotropy with RA for each of the iteration steps. For estimation of the null
distribution, we did not include the SNPs associated with several autoimmune
diseases that were previously reported to share pleiotropic associations with RA
(Crohn’s disease, type 1 diabetes, multiple sclerosis, coeliac disease, systemic lupus
erythematosus, ulcerative colitis and psoriasis)®.
Prioritization of biological candidate genes from RA risk loci. For RA risk
SNPs outside of the MHC region, functional annotations were conducted by Annovar
(hg19). RA risk SNPs were classified if any of the SNPs in linkage disequilibrium
(r* > 0.80) in Europeans or Asians were annotated in order of priority of missense
(or nonsense), synonymous or non-coding (with or without cis-eQTL) SNPs. We
also applied this SNP annotation scheme to 10,000 randomly selected genome-
wide common SNPs (MAF > 0.05 in Europeans or Asians).

We then assessed cis-eQTL effects by referring two eQTL data sets: the study for
peripheral blood mononuclear cells (PBMCs) obtained from 5,311 European
subjects® and newly generated cell-specific eQTL analysis for CD4" T cells and
CD14*CD16™ monocytes from 212 European subjects (ImmVar project; T.R. et al,
manuscript submitted). When the RA risk SNP was not available in eQTL data sets,
we alternatively used the results of best proxy SNPs in linkage disequilibrium with
the highest 12 value (>0.80). We applied the significance thresholds defined in the
original studies (FDR g << 0.05 for PBMC eQTL and gene-based permutation
P < 0.05 for cell-specific eQTL).

We obtained PID genes and their classification categories as defined by the
International Union of Immunological Societies Expert Committee'’, downloaded
cancer somatic mutation genes from the Catalogue of Somatic Mutations in
Cancer (COSMIC) database’®, and downloaded knockout mouse phenotype labels
and gene information from the Mouse Genome Informatics (MGI) database'® on
31 January, 2013 (Supplementary Tables 2-5). We defined 377 RA risk genes included
in the 100 RA risk loci (outside of the MHC region) according to the criteria described
in the previous section (=25kb or *>0.50), and evaluated overlap with PID cat-
egories, cancer phenotypes with registered somatic mutations, and phenotype
labels of knockout mouse genes with human orthologues. Statistical significance
of enrichment in gene overlap was assessed by a permutation procedure with X 10°
iterations. For each iteration step, we randomly selected 100 genetic loci matched
for number of nearby genes with those in non-MHC 100 RA risk loci. When one
gene category had m genes overlapping with RA risk genes, we obtained a null
distribution of m by calculating the number of genes in the selected loci overlap-
ping with RA risk genes for each iteration step.

We conducted molecular pathway enrichment analysis using MAGENTA soft-
ware® and adopting Ingenuity and BIOCARTA databases as pathway information
resources. We conducted two patterns of analyses by inputting genome-wide SNP
Pvalues of the current trans-ethnic meta-analysis (stage 1) and the previous meta-
analysis of RA* separately. As the previous meta-analysis was conducted using

imputed data based on HapMap Phase II panels, we re-performed the meta-
analysis using the same subjects but with newly imputed genotype data based on
the 1000 Genomes Project reference panel'' to make SNP coverage conditions ident-
ical between the meta-analyses. Significance of the molecular pathway was evalu-
ated by FDR g values obtained from X10° iterations of permutations.

We scored each of the genes included in the RA risk loci (outside of the MHC
region) by adopting the following eight selection criteria and calculating the num-
ber of the satisfied criteria: (1) genes for which RA risk SNPs or any of the SNPs in
linkage disequilibrium (#* > 0.80) with them were annotated as missense variants;
(2) genes for which significant cis-eQTL of any of PBMCs, T cells or monocytes
were observed for RA risk SNPs (FDR ¢ <0.05 for PBMCs and permutation
P <0.05 for T cells and monocytes); (3) genes prioritized by PubMed text mining
using GRAIL” with gene-based P < 0.05; (4) genes prioritized by PPI network using
DAPPLE?® with gene-based P < 0.05; (5) PID genes'’; (6) haematological cancer
somatic mutation genes'?; (7) genes for which =2 of associated phenotype labels
(‘haematopoietic system phenotype’, ‘immune system phenotype’ and ‘cellular
phenotype’; P < 1.0 X 10™*) were observed for knockout mouse'®; and (8) genes
prioritized by molecular pathway analysis using MAGENTA?®, which were included
in the significantly enriched pathways (FDR g < 0.05) with gene-based P << 0.05.
Because these criteria showed weak correlations with each other (R? < 0.26; Extended
Data Fig. 6¢), each gene was given a score based on the number of criteria that were
met (scores ranging from 0-8 for each gene). We defined the genes with a score =2
as ‘biological RA risk genes’.

For each gene in RA risk loci, we evaluated whether the gene was the nearest

gene to the RA risk SNP within the risk locus, or whether the RA risk SNP (or SNPs
in linkage disequilibrium with it) of the gene overlapped with H3K4me3 histone
peaks of cell types. The difference in proportions of genes that were the nearest
gene to biological RA risk genes (score =2) and non-biological genes (score <2)
was evaluated by using Fisher’s exact test implemented in R statistical software
(v.2.15.2). The difference in the proportions of genes overlapping with T,.g prim-
ary cell H3K4me3 peaks between biological and non-biological genes was assessed
by a permutation procedure by shuffling the overlapping status of RA risk SNPs/
loci with X 10 iterations.
Drug target gene enrichment analysis. We obtained drug target genes and cor-
responding drug information from DrugBank'” and the Therapeutic Targets Database
(TTD)* on 31 January, 2013, as well as additional literature searches. We selected
drug target genes that had pharmacological activities (for the genes from DrugBank)
and human orthologues, and that were annotated to any of the approved, clinical
trial or experimental drugs (Supplementary Table 6). We manually extracted drug
target genes annotated to approved RA drugs on the basis of discussions with
professional rheumatologists (Extended Data Fig. 7a). We extracted genes in direct
PPI with biological RA risk genes by using the InWeb database?”. To take account
of potential dependence between PPI genes and drug target genes, overlap of
biological RA risk genes and genes in direct PPI with them with drug target genes
was assessed by a permutation procedure with X 10° iterations.

Let x be the set of the biological RA risk genes and genes in direct PPI with them
(. genes), y be the set of genes with protein products that are the direct target of
approved RA drugs (, genes), and z be the set of genes with protein products that
are the direct target of all approved drugs (n, genes). We defined n,~, and n1,. as
the numbers of genes overlapping between x and y and between x and z, respectively.
For each of 10,000 iteration steps, we randomly selected a gene set of x” including
n, genes from the entire PPI network (12,735 genes). We defined n,," and n,'
as the numbers of genes overlapping between x' and y, and between x" and z,
respectively. The distributions of 1., 1y, and n.ny' /M, obtained from the
total iterations were defined as the null distributions of 71,y 71z and eny/Mixn
respectively. Fold enrichment of overlap with approved RA drug target genes was
defined as 11,,/m(nyn,"), where m(t) represents the mean value of the distribution
of . Fold enrichment of overlap with approved all drug target genes was defined as
Nened M, ). Relative fold enrichment of overlap with RA drug target genes and
with all drug target genes was defined as (11,n,/1xn2)/M(1eny /1, ). Significance
of the enrichment was evaluated by one-sided permutation tests examining 1.,
Ty and 1y /My in their null distributions.

Web resources. The following websites provide valuable additional resources.
Summary statistics from the GWAS meta-analysis, source codes, and data sources
have been deposited at http://plaza.umin.ac.jp/~yokada/datasource/software.htm;
GARNET consortium, http://www.twmu.ac,jp/IOR/garnet/home.html; i2b2, https://
www.i2b2.org/index.html; SLEGEN, http://www.lupusresearch.org/lupus-research/
slegen.html; 1000 Genomes Project, http://www.1000genomes.org/; minimac, http://
genome.sph.umich.edu/wiki/Minimac; mach2dat, http://www.sph.umich.edu/csg/
abecasis/MACH/index.html; Annovar, http://www.openbioinformatics.org/annovary/;
ImmVar, http://www.immuvar.org/; NIH Roadmap Epigenomics Mapping Consortium,
hitp://www.roadmapepigenomics.org/; NHGRI GWAS catalogue, http://www.genome.
gov/GWAStudies/; COSMIC, http://cancer.sanger.ac.uk/cancergenome/projects/
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cosmic/; MG, http://www.informatics.jax.org/; MAGENTA, http://www.broadinstitute.
org/mpg/magenta/; Ingenuity, http://www.ingenuity.com/; BIOCARTA, http://www.
biocarta.com/; GRAIL, http://www.broadinstitute.org/mpg/grail/; DAPPLE, http://
www.broadinstitute.org/mpg/dapple/dapple.php; R statistical software, http://www.
r-project.org/; DrugBank, http://www.drugbank.ca/; TTD, http://bidd.nus.edu.sg/
group/ttd/ttd.asp.
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Stage 1 : Trans-ethnic GWAS meta-analysis

19,234 RA cases and 61,565 controls
(EUR : 14,361 RA cases and 43,823 controls)
(ASN : 4,873 RA cases and 17,642 controls)

] 146 loci with P< 5.0x 108 in
g trans-ethnic/EUR/ASN study

Stage 2 : In silico replication study

3,708 RA cases and 5,535 controls
(EUR : 2,780 RA cases and 4,700 controls)
(ASN : 928 RA cases and 835 controls)

20 loci with the highest statistical power
for EUR and ASN separately (in total 32)

Stage 3 : De novo replication study

6,938 RA cases and 6,658 controls
{EUR : 995 RA cases and 1,101 controls)
(ASN : 5,943 RA cases and 5,557 controls)

42 novel loci with P < 5x 108

100 RA risk loci including 377 genes
(outside of the MHC region)

Trans-ethnic and functional annotation of SNPs
Trans-ethnic comparisons of RA risk SNPs
H3K4me3 histone peak overlap
Trans-ethnic and functional fine-mapping

Region-based / allele-based pleiotropy

In silico pipeline to prioritize
biological candidate genes (n = 98)

(1) RA risk missense variant

(2) Cis-eQTL in PBMC /T cell /monocyte
(3) PubMed text-mining

(4) Protein-protein interaction

(5) Primary immunodeficiency

(6) Hematological cancer somatic mutation
(7) Knockout mouse phenotype

(8) Molecular pathway

Overlap analysis with drug target genes

Extended Data Figure 1| An overview of the study design. a, We conducted
a three-stage trans-ethnic meta-analysis in total of 29,880 RA cases and 73,758
controls of European (EUR) and Asian (ASN) ancestry. The stage 1 GWAS
meta-analysis included 19,234 RA cases and 61,565 controls from 22 studies,
which was followed by the stage 2 in silico replication study (3,708 RA cases
and 5,535 controls) and stage 3 de novo replication study (6,938 RA cases
and 6,658 controls). In the combined study of stages 1-3, we identified 42 novel
RA risk loci, which increased the total number of RA risk loci to 101. b, Using
the 100 RA risk loci (outside of the MHC region), we conducted trans-ethnic
and functional annotation of the RA risk SNPs. We constructed an in silico
bioinformatics pipeline to prioritize biological candidate genes. We adopted
eight criteria to score each of 377 genes in the RA risk loci: (1) RA risk
missense variant; (2) cis-eQTL; (3) PubMed text mining; (4) PP; (5) PID;

(6) haematological cancer somatic mutation; (7) knockout mouse phenotype;
and (8) molecular pathway. Our study also demonstrated that these biological
candidate genes in RA risk loci are significantly enriched in overlap with target
genes for approved RA drugs.

©2013 Macmillan Publishers Limited. All rights reserved

—460—



a Trans-ethnic GWAS meta-analysis

European GWAS meta-analysis

LN RESEARCH

Asian GWAS meta-analysis

0
20

15

hs = 1.072

15

10

Observed -log,, (P-value)
10

Observed -log,, (P-value)
5

10 15 20

Observed -log,, (P-value)

5

[ 2 3 4 5 6 7 o 1 2
Expected -log,, (P-value)

= All SNPs

Expected -log,, (P-value)

3 " 5 . 5 G P S
Expected -log,, {P-value)

———— SNPs outside of the MHC region and PTPN22 locus
e SNPs oUtside of the known RA risk loci

Trans-ethnic GWAS meta-analysis of RA

0
(2]
2
[
c
@
g
£
Q
s
E1
¢
1o
c
g
£
£
o
L
o 20 .
2
©
=
@
% 15
£
c
3
2 10
e
3
w
£
g 5
&
o
T oo
20 N
.
2 N
B N
2>
] H
& 15
&
g H
< i i
g 10 ' *
[ N
< o ; N
= H H
T 5 gy
@
=)
L
0

Asian GWAS meta-analysis of RA

& 9 10 11 12 13 14 1516 171819202122 X

Chromosomal position

Extended Data Figure 2 | Quantile-quantile plots and Manhattan plots of
P values in the GWAS meta-analysis. a, Quantile-quantile plots of P values
in the stage 1 GWAS meta-analysis for trans-ethnic, European and Asian
ancestries. The x-axis indicates the expected —log,q (P values). The y-axis
indicates the observed —log;o (P values) after the application of double GC
correction. The SNPs for which observed P values were less than 1.0 X 1072°
are indicated at the upper limit of each plot. Black, blue and red dots represent
the association results of all SNPs, SNPs outside of the MHC region and
PTPN22 locus, and SNPs outside of the known RA risk loci, respectively.

Double GC correction was applied based on the inflation factor, Agc, which was
estimated from the SNPs outside of the known RA loci and indicated in each
plot. b, Manhattan plots of P values in the stage 1 GWAS meta-analysis for
trans-ethnic, European and Asian ancestries. The y-axis indicates the —log;o
(P values) of genome-wide SNPs in each GWAS meta-analysis. The horizontal
grey line represents the genome-wide significance threshold of P= 5.0 X 105,
The SNPs for which P values were less than 1.0 X 107° are indicated at the
upper limit of each plot.
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Extended Data Figure 3 | Trans-ethnic and functional annotation of RA
risk SNPs. a, b, Comparisons of RAF and OR values between individuals of
European (EUR) and Asian (ASN) ancestry from the stage 1 GWAS meta-
analysis. ORs were defined based on minor alleles in Europeans. SNPs with
Fsr>0.10 or SNPs in which the 95% CI of the OR did not overlap between
Europeans and Asians are coloured. OR of the SNP in the HLA-DRBI locus
(=1.5) is plotted at the upper limits of the x- and J-axes. Five loci demonstrated
population-specific associations (P<<5.0 X 10™" in one population but

P> 0.05 in the other population without overlap of the 95% CI of the OR)
are highlighted by red labels (15227163 at TNFRSF9, rs624988 at CD2, rs726288
at SFTPD, rs10790268 at CXCR5 and rs73194058 at IFNGR2). ¢, Cumulative
curve of explained heritability in each population. d, Enrichment analysis

for overlap of RA risk SNPs with H3K4me3 peaks in cell types. The most
significant cell type is Tyeg primary cells. e, Number of SNPs in the process
of trans-ethnic and functional fine mapping. For 31 loci in which the risk SNPs
yielded P < 1.0 X 1072 in both populations (stage 1 GWAS), the number of
candidate causal variants was reduced by 40-70% when confined by SNPs in
linkage disequilibrium with the RA risk SNPs (+* > 0.80) in both populations
(on average, from 21.9 or 37.3 SNPs in linkage disequiliberium in Europeans

38130 RESEARCH

or Asians, to 15.0 SNPs in linkage disequilibrium in both populations). Further,
for 10 loci in which candidate causal variants significantly overlapped with
H3K4me3 peaks in Ty, cells (P < 0.05), the average number of SNPs was
further reduced by half again, from 10.4 to 5.9. f, Fine mapping in the
CTLA4 locus, where the functional non-coding variant of CT60 (rs3087243)*
showed the most significant association with RA. The top three panels indicate
regional SNP associations of the locus in the stage 1 GWAS meta-analysis for
trans-ethnic, European and Asian ancestries, respectively. The bottom panel
indicates the change in the number of the candidate causal variants in each
process of fine mapping. Trans-ethnic fine mapping of candidate causal
variants decreased the number of candidate variants from 44 (linkage
disequilibrium in Asians) and 27 (linkage disequilibrium in Europeans)

to 21 (linkage disequilibrium in both populations). As these SNPs were
significantly enriched in overlap with H3K4me3 peaks in T, cells compared
with the surrounding SNPs (P = 0.037), we confined the candidate variants
into nine by additionally selecting the SNPs included in H3K4me3 peaks.
CT60 was included in these finally selected nine SNPs, and also located at
the vicinity of a H3K4me3 peak summit (indicated by a red arrow).
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Soluble [CAM-1 2 1 0.039 ]
d
All phenotypes
Systemic lupus Alopecia

Crohn's disease Asthma

erythematosus areata

Neutrophil
count

C-reactive
protein

Eosinophil

count HDL cholesterol

Region- and Allele-based pleiotropy (concordant direction)
Region- and Allele-based pleiotropy (discordant direction)
Region-based pleiotropy only

c

SNP Chr. _Position (bp) A1/A2 Gene Phenotype Direction
chr1:2523811 1 2523811 G/A  TNFRSF14-MMELT Multiple sclerosis Congcordant
Concordant
52476601 1 114,377,568 AIG PTPN22 3
r$2228145 1 154426970 A/C IL6R
1523172301 157,674,997 TG FCRL3
rs34695944 2 61124850 CIT REL
scler
rs11889341 2 191,943,742 T/IC STAT4 Systemic lupus ery tosus Concordant
2 204738919 GA CTLA4 Type 1 diabetes Congordant
..4..26120001  CIT Cdorf52 Type 1 diabetes Concordant
Celiac disease Concordant
6 138005515 GA TNFAIP3 Ulcerative colfis  Goncordant
) k 6 138227364 GIT TNFAIP3 Concord
chr7:128580042 7 128,580,042 G/A IRF5 Systemic lupus erythematosus Concordant
Kawasaki disease Concerdant
rs2736337 § 1a4re0 o7 BLK Systemic lupus erythematosus Caoncordant
Ovarian cancer Concordant
151516971 8 120542100 TC PYT1 Crahirs dissase Concordant
rs947474 10 6390450 A/G PRKCQ Type 1 diabetes Concordant
152671692 10 50,097,818 A/G WDFY4 Systemic lupus erythematosus Concordant
15726288 10 81,706,973 SFTPD Serum SP-D levels Concordant
rs4409785 195,311,422 CEP57 Vitiligo Concordant
.1810790268 | 11 118729391 CXCRS Primary biliary cirr Congordant
1861432431 11 128322622 C ETST stermic lupus et
o b S
1s773125 12 56,394,954 CDK2
pl
Hypothyroidism Concordant
Plateiet-related traits Concordant
Type 1 diabetes Concordant
1510774624 12 111,833,788 G/A SH2B3-PTPN11  Blood pressure and hypertension Concordant
Vitiligo Concordant
Retinal vascular caliber Concordant
CKD Concordant
X . i Concordant
...181950897 14 68,760,141 TC RADSIB. ...
rs13330176 16 88019087 AT IRF8 A ¢
Primary biliary cirrhosis Concordant
Uleerative colifis Concordant
chr17:38031857 17 38,031857 G/T IKZF3-CSF3 Crohn's disease Concordant
o e e
Sthiy ‘Discordant -
s . . Type 1 tes. . ..Concordant.
rs4239702 20 44749251  C/T CD40 Kawasaki disease Concordant
rs2236668 21 45650,009 C/T ICOSLG-AIRE _ Celiac disease Concordant
Crohn's disease Concordant
11089637 22 21979086 CM UBE2L3-YDJC Mo o]
€
Rheumatoid
arthritis
C-reactive t Coronary heart
protein disease” Increase
% & = risk/dose
IL6R
Fibrinogen @ Bty o :n;(rzlc‘i‘;ilt?s% = Decrease
& ‘Y P risk/dose
siL-6R Asthma
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Extended Data Figure 4 | Pleiotropy of RA risk SNPs. a, Definition of
region-based and allele-based pleiotropy. For each of the RA risk SNPs and
SNPs registered in the NHGRI GWAS catalogue (outside of the MHC region),
we defined the region on the basis of £25kb of the SNP or the neighbouring
SNP positions in moderate linkage disequilibrium with it in Europeans or
Asians (7* > 0.50). We defined ‘region-based pleiotropy’ as two phenotype-
associated SNPs sharing part of their genetic regions or any UCSC hg19
reference gene(s) partly overlapping with each of the regions. We defined
‘allele-based pleiotropy’ as two phenotype-associated SNPs in linkage
disequilibrium in Europeans or Asians (r* > 0.80). b, Region-based pleiotropy
of the RA risk loci. We found two-thirds of RA risk loci (n = 66) demonstrated
region-based pleiotropy with other human phenotypes. Phenotypes which
showed region-based pleiotropy with RA risk loci are indicated (P < 0.05).

¢, Allele-based pleiotropy of the RA risk loci. Allele-based pleiotropy with

T3] RESEARCH

discordant directional effects to RA risk SNPs are indicated in grey. d, Relative
proportions of pleiotropic effects (that is, regions and alleles that influence
multiple phenotypes) between RA risk loci and 311 phenotypes from the
NHGRI GWAS catalogue. Representative examples of disease and biomarker
phenotypes are shown. One-quarter of the observed region-based pleiotropic
associations (26% = 54/207) were also annotated as having allele-based
pleiotropy, although their proportions and directional effects varied among
phenotypes. e, Allele-based pleiotropy of IL6R 358Asp (152228145 (A))®

on multiple disease phenotypes, including increased risk of RA, ankylosing
spondylitis and coronary heart disease (asterisks indicate associations obtained
from the literature®*°) and protection from asthma, as well as levels of
biomarkers (increased C-reactive protein (CRP) and fibrinogen but
decreased soluble interleukin-6 receptor (sIL6R)).
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a b 100 non-MHC RA risk loci
RA sk SNP 2 Gene Missense variants
rs2301888  0.95 PADI4 Glyg5Ser, ValB2Ala, Gly112Ala Missense
152476601 1.00 PTPN22  Arg620Trp
2228145 1.00 IL6R Asp358Ala Synonymous
59826828 0.92 NCK1 Ala116Val Non-coding {(cis-sQTL)
1.00 NFKBIE  Val184Ala, Pro175Leu )
r$2233424 094 TCTE1  Argb9His Non-coding {others)
0.88 AARSZ  Val730Met 46% 35%
7752903 1.00 TNFAIP3 Phel27Cys
152671692 0.84 WDFY4  Arg1816Gin R o
1SB479800  0.88 RTKNZ  Ala288Thr Explained heritability
rs508970 0.80 CD5 Alad71Val .
1s10774624  0.86 SH2B3  Trp262Arg European (5.5%) Asian (4.7%)
rs3783782 1.00 PRKCH  Val374lle .
1s2582532 1.0 AMNAKZ Gy1901Ser 26.8% o, 2oy 23.4%
Chr17:38031857 0.99 ZPBP2 Seri51lle 42.1% ‘
’ 0.99 GSDMB  Pro298Ser, Gly291Arg o 3.8%
1634536443 0.67 TYK2  Pro1104Aa 34%
12236668 0.84 JCOSLG  Trp353Arg -
7 .96 h . Serd )
rs5987194 0.96 IRAK1 Phe196Ser, Ser453Leu 27 79> 28,194
c d
PID classification N‘;"ZISD M;O‘R‘}fr:;‘;s Overlep genes P-value Cancer type No';wc;;zzr s;:r;&c M%O'R:w?nis Overlap genes P-value
ALPID genes 194 14 - 1240 Al cancers 444 23 - 47010
1 Combined immunodeficiencies 43 3 PTPRC, RAG1/2, CD40 0.046 Hematological cancers 251 17 - 1.2x10%
11 Well-defined syndromes 25 2 ATM, TYK2 0.12 Non-hematological cancers 221 6 . 056
i Primary antibody deficiencies 21 2 CD40, UNG 0.030 Hodgkin lymphorma 10 2 REL, TNFAIP3 0.010
IV Immune dysregulaton 21 4 CASP8, CASP10, AIRE, L2RA 0.0033 B cell non-Hodgkin lymphoma 8 2 DDX6, FCRL4 0.015
V' Phagocyte defects 33 2 IFNGR2, IRF8 0.16 Non-Hodgkin lymphoma 21 2 FGFR10P, HSPBOABT  0.067
Vi Innate immunity 19 0 - 1.0 Acute lymphocytic leukemia 28 3 FCGR2B, AFF3, CDK6  0.079
Vi Autoinflammatory 13 1 MVK 0.186 Acute myelogenous leukemia €8 2 ACSLS, PTPNTT 047
Vil Complement deficiencies 27 1 o] 0.33
e f
Konckout mouse No. kockout mouse genes  No. owerlap Pathway enrichment (FOR g)
phenotype category with hurman ortholog with RA genes Prvalue Database Molecular pathway Current study _Previous study
k ic system ph yp 2,159 86 7.0040° BIOCARTA B Lymphocyle Cell Surface Molecules 2.0x10% 0.26
Immune system phenotype 2,622 94 1.2x10°° BIOCARTA T Cytotoxic Cell Surface Molecules 3.3x10 0.032
Celiular phenotype 2,961 97 0.0015 BIOCARTA T Helper Cell Surface Molecules 4.0x90* 0.030
Liver/biliary system phenotype 982 35 0.0084 BIOCARTA Th1/Th2 Differenfation 0.0025 0.0083
Renallurinary system phenotype 1,028 35 0.011 Ingenuity  1L-10.Signaling D.0026 0.46
i ine gland 1,453 45 0.020 Ingenuity  Interferon.Signaling 0.0028 0.13
Respiratory system phenotype 1,097 31 0,028 Ingenuity GM-CSF.Signaling 0.0031 043
Turmorigenesis 807 30 0.049 Ingenuity  T.Cell.Receptor,Signaling 0.0034 0,029
Normal phenotype 1,598 42 0.18 BIOCARTA NO2-dependent IL 12 Pathway in NK cells 0.0044 0.06
Homeostasis/metabolism phenotype 3,356 88 020 BIOCARTA IL-22 Soluble Receptor Signaling 0.0046 0.39
{ntegument phenotype 1,455 35 0.27 BIOCARTA The Co-Stimulatory Signal During T-cell Activation 0.0046 0.08
Pigmentation phenotype 355 9 0.31 BIOCARTA Selective ion of i pors during T-cell polari 0.0048 021
Cardiovascular system phenotype 1,987 42 0.51 Ingenuity Hepatic.Fibrosis.Hepatic.Stellate. Cell Activation 0.0073 0.0060
Skeleton phenotyps 1,435 34 0.57 Ingenuity  p38.MAPK Signaling 0.0076 019
Other phenotype 258 6 0.57 Ingenuity Neuregulin Signaling 0.0079 0.51
No phenotypic analysis 1.083 21 0.59 Ingenuity  1L-6.Signaling 0.0082 o1
Mortality/aging 3,952 923 075 Ingenuity Glucocorticoid. Receplor, Signating 0.0080 0.18
Adipose tissue phenotype 617 12 0.78 BIOCARTA IL-6 signaling 0.0091 0.50
Growth/size phenotype 3,081 67 0.79 BIOCARTA Influence of Ras and Rho proteins on G1 to S Transition 0.016 0.38
Digestivefalimentary phenotype 1,128 22 0.80 BIOCARTA 1L-3 signaling 0.018 0.64
Reproductive system phenofype 1,730 37 0.81 BIOCARTA Adhesion and Diapedesis of Granubdytes 0.018 015
Limbs/digits/tail phenotype 748 13 0.82 BIOCARTA RB Tumor Supp! kpoint Signaling in o DNA damage 0.018 0.15
Taste/offaction phenotype 123 1 0.85 Ingenuity  Fe.Epsilon.RI.Signaling 0.022 0.19
Hearing/vestibular/ear phenotype 557 8 0.88 Ingenuity  JAK.StatSignaling 0.023 0.48
Embryogenesis phenotype 1,535 30 0.92 Ingenuity  1L-2.Signaling 0.026 017
Behavior/neurological phenotype 2,465 45 0.94 Ingenuity PPAR Signaling 0.026 0.24
Nervous system phenotype 2,805 83 095 BIOCARTA 1L-2 Receptor Beta Chain in T cell Activation 0.027 0.39
Craniofacial phenotype 951 15 0.96 BIOCARTA Cyclins and Cell Cycle Regulation 0,028 0.16
Muscle phenotype 1,198 21 .86 Ingenuity  Leukocyte.Extravasation Signafing 0.028 0.45
Vision/eye phenotype 1,214 21 0.98 BIOCARTA p53 Signaling Pathway 0.028 0.40
BIOCARTA Role of ERBB2 in Signal Transduction and Oncology 0.028 0.51
fngenuity B.Cell Receptor.Signaling 0.028 045
BIOCARTA CD40L Signaling 0.029 0.16
BIOCARTA Cells and Molecules inwolved in local acute inflammatory response 8.034 0,40
BIOCARTA Antigen Dependent B Cell Activation 0.036 0.068
BIOCARTA Adhesion and Diapedesis of Lymphocyles 0.043 0.80
BIOCARTA MAPKinase Signaling 0.044 0.76
BIOCARTA Phosphorylation of MEK1 by cdk5/p35 down regulates the MAP kinase 0.044 0.59
Ingenuity NFKB.Signaling 0.045 0.05
fngenuity  Aryl.Hydrocarbon.Receptor. Signaling 0.048 0.33
Ingenuity PDGF Signaling 0.049 0.30
Extended Data Figure 5 | Overlap of RA risk SNPs with biological d, Overlap of RA risk genes with cancer somatic mutation genes. In addition to
resources. a, Missense variants in linkage disequilibrium (+* > 0.80 in the categories of all cancers, haematological cancers and non-haematological
Europeans or Asians) with RA risk SNPs. When multiple missense variants cancers, cancer types that showed overlap with =2 of RA risk genes are
are in linkage disequilibrium with the RA risk SNP, the highest r* value is indicated. e, Overlap of RA risk genes with knockout mouse phenotypes.

indicated. b, Functional annotation of the SNPs in 100 non-MHC RA riskloci,  Knockout mouse phenotypes that satisfied significant enrichment with RA risk
including the relative proportion of heritability explained by SNP annotations.  genes are indicated in bold (P << 0.05/30 = 0.0017). f, Molecular pathway
Although 44% of all RA risk SNPs had cis-eQTL, 9 of them overlapped with  analysis of RA GWAS results. Molecular pathways that showed significant
missense or synonymous variants but 35 of them did not overlap asindicated by~ enrichment in either the current stage 1 trans-ethnic GWAS meta-analysis or
asterisks. A list of cis-eQTL SNPs and genes can be found in Extended Data the previous GWAS meta-analysis of RA? are indicated in bold (FDR g < 0.05).
Table 2. ¢, Overlap of RA risk genes with human PID and defined categories.
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a b g
Biological RA risk gene ™
prioritization criteria g
® o
[
(1) RA risk missense variant (1 = 19) §) 2
(2) Cis-eQTL (n = 51) x T
(3) PubMed text-mining (n = 90) =
(4) Protein-protein interaction (n = 63) é §
(5) Primary immunodeficiency (n = 15) g
{6) Hematological cancer (n = 17) o
(7) Knockout mouse phenotype (n = 88) o
(8) Molecular pathway (n = 35)
o

Biological gene score

C
= 5 @ g
I b+ [} 2
3 o & & B B .
Correlation of prioritization ° £ 2 K £ o g
criteria of biclogical genes £ £E ¢ £ ° 8 £
from RA risk loci @ + ® g 8 g =
2 g 3 2 E =] &
(R%) E 2 £ &8 = 9 5 3
x & fad Q o =3
2 4 2 B & ® X o
= ; 3 £ £ g 2
§ 0 5 [ = ) & =]
&) % o o T pva =
RA risk missense variant - 001 003 002 000 000 002 001
Cis-eQTL 001 - 005 001 001 000 002 001
PubMed text-mining 0.03 0.05 - 0.10 0.06 0.03 026 0.14
Protein-protein interaction 0.02 0.01 010 - 004 001 007 006
Primary immunodeficiency 0.00 0.01 0.08 0.04 - 000 0.08 007
Hematological cancer 0.00 000 003 001 000 - 0.03 004
Knockout mouse phenotype  0.02 0.02 026 007 008 003 - 021
Molecular pathway Q.01 001 014 006 007 004 021 -
d
5 e T, primary cells
‘é o e CD3* primary cells
8 _;4"’“ < wss  CD8 naive primary cells
; 2 wemos - CD34* cultured cells
5957 e CD4* naive primary cells
gE wseee CD34* primary cells
g 3 ol wase  CD19* primary cells
= i e CD4* memory primary cells
o S w— CD8" memory primary cells
§ S === Morbilized CD34* primary cells
5 ! : s Non-immune cells

20 2 2 23 24
Biological gene score

Extended Data Figure 6 | Prioritization of biological candidate genes from  proportions of genes with H3K4me3 peaks by cell type according to score

RA risk loci. a, Prioritization criteria of biological candidate genes from increases. When RA risk SNP of the locus (or SNP in linkage disequilibrium)

RA risk loci. b, Histogram distribution of gene scores. The 98 genes with overlapped with H3K4me3 peaks, genes in the locus were defined as

score =2 (orange) were defined as ‘biological RA risk genes’. ¢, Correlations overlapping.

of biological candidate gene prioritization criteria. d, Change in the overlapping
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RA drug category Generic name Target gene
Etanercept
inflidmab
Adalimumab TNF
Golimumab
Biologics Certolizumab pegol
Abatacept CD80, CD86
Anakinra JL1IR1
Rituximab MS4A1
Tocilizurnab ILER
Auranofin PRDX5, IKBKB
Azathioprine HPRT1
Cyclophosphamide -
Cyclosporine CAMLG, PPP3R2
Iguratimod (T-814) ELANE, PTGS2
DMARDs Leflunomide DHODH
Methotrexate DHFR
Sulfasalazine ALOXS, PTGS1. PTGS2, PPARG
Tacrolimus FKBP1A
Temsirolimus MTOR
Tofacitinib (CP-690,550) JAK1, JAK2, JAK3
Prednisolone NR3C1
Steroids Methylprednisolone NR3C1
Desoxycorticosterone Pivalate  NR3C2
Others Hydroxychloroquine TLR7, TLR9
b SR
98 biological i
RArisk genes E
2,332 genes in ;
direct PP ;
I
2.4-fold
enrichment
1.3-fold
enrichment
18 overlapping genes 42 overlapping genes 205 overlapping genes
3.7-fold enrichment 2.9-fold enrichment 1.5-fold enrichment
27 drug target genes 80 immune-related 791 non-immune-related
1 of RAdreatment drugs drug target genes drug target genes
e
[
{
§ 377 genes in 100 |
I non-MHGC RA risk loci 3
| + |
i
{ 8,776 genes in §
i direct PRI |
| o ;
18 overlapping genes 329 overlapping genes

2.3-fold enrichment

““““““““ )

27 deug forget genes
of RA trestment drugs

H
:
i
N i

Extended Data Figure 7 | Overlap of all genes in the RA risk loci with drug
target genes. a, Approved RA drugs and target genes. DMARDs, disease-
modifying antirheumatic drugs. b, Overlap analysis stratified by immune-
related and non-immune-related drug target genes. We made a list of 583
immune-related genes based on Gene Ontology (GO) pathways named
‘immune-” or ‘immuno-’ and found that the majority of drug target genes
(791/871 = 91%) were not immune-related. ¢, Overlap of all 377 genes included
in 100 RA risk loci (outside of the MHC region) plus 3,776 genes in direct PPI

1.7-fold enrichment
P=59x10?

1.3-fold enrichment

BY1 drug targel genes
frorm drug databases

o —

with them and drug target genes. We found overlap of 19 genes from the 27
drug target genes of approved RA drugs (2.3-fold enrichment, P < 1.0 X 107°).
All 871 drug target genes (regardless of disease indication) overlap with 329
genes from the PPI network, which is 1.3-fold more enrichment than expected
by chance alone (P <1.0 X 107%), but less than 1.7-fold enrichment compared
with RA drugs (P = 0.0059). We note that this enrichment of drug-gene
pairs was less apparent compared with that obtained from the expanded

PPI network generated from 98 biological candidate genes (Fig. 3b).
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