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Figure 1| Computed tomography showing right renal
hypoplasia.

A 21-year-old woman was referred to our hospital because of
proteinuria and mild renal dysfunction. Her serum creatinine
concentration was 1.10mg/dl and estimated glomerular
filtration rate was 53.9ml/min per 1.73m?” The urinary
analysis revealed 2+ protein. Abdominal computerized
tomography (CT) showed right renal hypoplasia (Figure 1).
In addition, she had mixed hearing disturbance and a history
of surgeries for correction of left cervical branchial fistulae
and bilateral preauricular pits (Figure 2, left ear). Her
temporal bone CT presented bilateral inner ear malforma-
tion. On the basis of these findings, she was suspected to have
branchio-oto-renal (BOR) syndrome, although she has no
family history on renal dysfunction and hearing disturbance.
The BOR syndrome is an autosomal dominant disorder,
which is characterized by the association of branchial

Kidney International (2012) 82, 1037
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Figure 2| A preauricular pit (left ear, arrowhead).

anomalies (preauricular pits and branchial fistulae or cysts),
otic anomalies affecting the outer, middle, and/or inner ear,
which frequently lead to hearing disturbance (sensorineural,
conductive, or mixed), and a wide spectrum of renal
anomalies ranging from mild hypoplasia to lethal bilateral
renal aplasia. The prevalence is approximately 1 in 40,000.
The BOR syndrome is associated with several genetic
mutations in EYAI, SIXI, SALLI, and SIX5. Because of
disagreement towards conducting gene analysis from the
patient’s family, we performed gene analysis of only the
patient with informed consent. DNA sequencing analysis
revealed a heterozygous mutation, ¢.880 C>T, p.R294X, in
exon 10 of the EYAI gene. The BOR syndrome should be
taken into consideration on the differential diagnosis in young
adult patients with renal dysfunction and hearing disturbance.
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The renal prognosis of patients with Wilms’ tumor, aniridia, genito-
urinary anomalies, and mental retardation syndrome (WAGR) is poor.
However, the renal histology and its mechanisms are not well un-
derstood. We performed renal biopsies in 3 patients with WAGR syn-
drome who had heavy proteinuria. The complete deletion of one WT7
allele was detected in each patient by constitutional chromosomal
deletion at 11p13 using G-banding, high-resolution G-banding, and
fluorescence in situ hybridization. The patients exhibited proteinuria
at the ages of 6, 10, and 6 years and were diagnosed as having focal
segmental glomerulosclerosis (FSGS) at the ages of 7, 16 and 19
years, respectively. They exhibited normal or mildly declined renal
function at the time of biopsy. Re-examination of a nephrectomized
kidney from 1 patient revealed that some glomeruli showed segmen-
tal sclerosis, although he did not have proteinuria at the time of
nephrectomy. The other 2 patients did not develop Wilms' tumor
and thus did not undergo nephrectomy, chemotherapy, or radiother-
apy, thereby eliminating any effect of these therapies on the renal
histology. In conclusion, complete deletion of one WT7 allele may in-
duce the development of FSGS. Our findings suggest that haploinsuf-
ficiency of the WT7 could be responsible for the development of FSGS.
Pediatrics 2012;129:1621-e1625
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Miller et al' first described WAGR syn-
drome (Wilms’ tumor, aniridia, genitouri-
nary anomalies, and mental retardation).
Children with WAGR syndrome invari-
ably have a constitutional chromosomal
deletion at 11p13, the region where the
WT1 gene is located. Patients with
Denys-Drash syndrome (DDS) usually
have a germline missense mutation,
which is predicted to result in an amino
acid substitution in the eighth or ninth
exon of WT7. Little et al2 suggested that
the severe nephropathy associated with
DDS, which frequently leads to early
renal failure, might result from the
dominant-negative action of altered
WT1. By contrast, because of the less
severe genital anomalies and apparent
lack of nephropathy associated with
WAGR, a reduced WT7 dosage during
embryogenesis is thought to have a less
pronounced effect on development, es-
pecially on renal system development3
Breslow et al* reviewed nearly 6000
patients enrolled in 4 clinical trials
administered by the US National Wilms
Tumor Study Group between 1969 and
1995. Of 22 patients with DDS, 13 (59%)
developed renal failure; of 46 patients
with WAGR, 10 (22%) developed renal
failure. The cumulative risks of renal
failure at 20 years were 62% and 38%,
respectively. These findings suggest that
nephropathy is not uniguely associated
with missense mutations in W77 and that
patients with the WAGR syndrome should
be followed up closely throughout life for
signs of nephropathy.

The renal prognosis of patients with
WAGR is poor. However, the renal his-
tology and its mechanisms are not well
understood. We therefore performed
renal biopsies to reveal the renal pa-
thology in 3 patients with WAGR syn-
drome who had heavy proteinuria.

GASE REPORTS
Patient 1

Patient 1 was a male diagnosed with
bilateral microphthalmos at 1 month of
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age. Wilms’ tumor developed bilaterally
at 3 years of age. He also had unde-
scended testes and mental retardation.
Previous analysis of G-banded meta-
phase chromosomes revealed a dele-
tion of chromosome 11p13-15.1 in one
allele’; the diagnosis of atypical WAGR
syndrome was therefore madef Be-
cause of a large tumor in the right
kidney after the first chemotherapy
treatment, the right kidney was nephrec-
tomized. A diagnosis of nephroblastoma
(nephroblastic type) was made. At the
same time, the contralateral left kidney
was biopsied, but no tumor was detec-
ted. The nephrectomized kidney re-
vealed that there were no immature
glomeruli, and a few glomeruli showed
segmental sclerosis (Fig 1 A and B). The
patient did not have proteinuria at the
time of nephrectomy although micro-
albuminuria could have been detected.

The patient then underwent a second
session of chemotherapy and radio-
therapy treatment with left kidney pro-
tection. He developed heavy proteinuria
at 6 years of age. The left kidney was
biopsied (open biopsy) at age 7 years.
Renal biopsy findings were consistent
with focal segmental glomerulosclerosis
(FSGS) (Fig 1 C and D). At the time of
biopsy, the patient’s height was 107.3 cm
(—2.9 SD), weight was 21.7 kg (-0.7 SD),
and blood pressure was 120/80 mm Hg.
Biochemical data were as follows: total
protein, 65 g¢/dL; albumin, 3.3 g/dL;
blood urea nitrogen (BUN), 12.9 mg/dL;
creatinine, 0.43 mg/dL; 24-hour creati-
nine clearance (CrCl), 72.2 mL/min/1.73
m? early morning urinary protein, 3+
(as measured by using a dipstick test);
urinary protein to urinary creatinine
ratio, 3.6 (milligram/milligram); and uri-
nary B-2 microglobulin, 044 mg/dL
(normal range: <<0.23 mg/dL). His renal
function gradually deteriorated despite
angiotensin-converting enzyme inhibitor
(AGEI) treatment. At 14 years of age, he
underwent a preemptive living-related
renal transplantation from his father.

Patient 2

Patient 2 was a male with aniridia, bila-
teral undescended testes, hypospadias,
grade 1l to IV bilateral vesicoureteral
reflux, and mental retardation. High-
resolution G-banding revealed dele-
tion of chromosome 11p13-p14.2 inone
allele (Fig 2A), and fluorescence in situ
hybridization showed heterozygous
deletions of PAX6, D1152163, PER, and
WT1 (Fig 2B), indicating WAGR syn-
drome. He had a single febrile urinary
tract infection at 2 years of age and
underwent an antireflux operation at 4
years of age, which resolved his ves-
icoureteral reflux. A dimercaptosuccinic
acid radionuclide scan showed several
defects in his right kidney. His pro-
teinuria was detected at 10 years of age
by the school urinary screening pro-
gram. His proteinuria gradually in-
creased, and he underwent renal biopsy
(right kidney) at age 16 years. Renal
biopsy findings were consistent with
FSGS (Fig 1 E and F). At the time of bi-
opsy, the patient’s height was 169.2 cm,
weight was 67.4 kg, and blood pressure
was 128/78 mm Hg. Biochemical data
were as follows: total protein, 6.8 g/dL;
albumin, 4.3 g/dL; BUN, 25.0 mg/dL;
creatinine, 1.20 mg/dL; 24-hour CrCl,
91.0 ml/min/1.73 m% early morning
urinary protein, 3+ (as measured by
using a dipstick test); urinary protein to
urinary creatinine ratio, 2.7 (milligram/
milligram); daily urinary protein, 3.1 g;
and urinary -2 microglobulin, 0.064
mg/dL. At the latest follow-up (24 years
of age), his renal function was stable
(BUN: 25.0 mg/dL; creatinine: 1.20 mg/
dL) with ACEl treatment, and he had not
developed Wilms’ tumor.

Patient 3

Patient 3was a female with aniridia and
mental retardation. G-banding revealed
deletion of chromosome 11p13-p14 in
one allele (Fig 20), and she was there-
fore diagnosed with WAGR syndrome.
The patient developed proteinuria at

Downloaded from pediatrics‘aappu%ﬁgations.org at N/A on May 18,2012



FIGURE 1

Renal histology.A, G, E, and G, Low magnification. B, D, F and H, High magnification. Arrows show glomeruli
with segmental glomerulosclerosis. Aand B, Nephrectomized right kidney from patient 1. Patient 1had no
proteinuria at the time of nephrectomy. However, a few glomeruli exhibited segmental glomerulo-
sclerosis although there were no immature glomeruli. C and D, Renal biopsy of left kidney from patient 1.
Twenty-eight of 50 glomeruli showed segmental glomerulosclerosis. There were no tubulointerstitial
lesions. E and F, Renal biopsy from patient 2. Two of eight glomeruli showed segmental glomerulo-
sclerosis with interstitial fibrosis. G and H, Renal biopsy from patient 3. Ten of 30 glomeruli showed
segmental glomerulosclerosis with interstitial fibrosis. All 3 patients exhibited FSGS (not otherwise

specified).

the age of 6 years and nephrotic syn-
drome with normal renal function at
age 15 years (urinary protein to uri-
nary creatinine ratio, 10.6 [milligram/
milligram]; total protein, 5.6 g/dL; al-
bumin, 2.3 g/dL; BUN, 15.0 mg/dL;
creatinine, 0.65 mg/dL; estimated glo-
merular filtration rate, 100.7 mL/min/

PEDIATRICS Volume 129, Number 6, June 2012
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1.73m?). We were unable to obtain her
parents’ consent for renal biopsy, and
they chose to start drug treatment.
However, treatment with prednisolone
and ACEl was not effective, and her
renal function gradually deteriorated.
Therefore, she underwent renal bi-
opsy at age 19 years. At the time of
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biopsy, her height was 144.5 cm, weight
was 72.5 kg, and blood pressure was
130/83 mm Hg. Biochemical data were
as follows: total protein, 55 g/dL;
albumin, 2.5 g/dL; BUN, 30.0 mg/dL;
creatinine, 1.40 mg/dL; 24-hour CrCl,
44.65 mL/min/1.73 m? early morning
urinary protein, 3+ (as measured hy
using a dipstick test); daily urinary
protein, 5.89 g; and urinary 8-2 micro-
globulin, 0495 mg/dL. Renal biopsy
findings were consistent with FSGS (Fig
1 G and H). To date, she has not deve-
loped Wilms’ tumor.

DISCUSSION

The current study demonstrated that 3
patients with atypical WAGR syndrome
developed heavy proteinuria with FSGS,
suggesting that the nephropathy seen
in this syndrome is responsible for the
FSGS lesion.

Patient 1 had possible bilateral Wilms’
tumor and underwent unilateral ne-
phrectomy, chemotherapy, and radio-
therapy. Therefore, it is possible that
the treatment of the remaining kidney
for bilateral tumor or nephrogenic rest
might account for the development of
FSGS. However, the kidney nephrec-
tomized after the first chemotherapy
session but before radiotherapy treat-
ment already showed segmental scle-
rosis in a few glomeruli, suggesting
that radiotherapy was not the main
cause of FSGS. Chemotherapeutic drugs
such as adriamycin may induce FSGS as
well as tubulointerstitial inflammation
and fibrosis.” However, there were no
tubulointerstitial lesions, suggesting
that chemotherapy might not have been
the main cause of FSGS. Nevertheless, it
is possible that surgical renal ablation
caused FSGS in patient 1.

Patients 2 and 3 did not develop Wilms’
tumor during the course of clinical
observation, and thus they did not un-
dergo nephrectomy, chemotherapy,
or radiotherapy, thereby eliminating
any effect of these therapies on renal

e1623



Normal 11p(del)

FIGURE 2

Normal 11p(del)

D1152163

High-resolution G-banding of chromosome 11 and fluorescence in situ hybridization (FISH) in patient 2
and G-banding of chromosome 11 inpatient 3. A, Patient 2 had deletion of chromosome 11p13-p14.2inone
allele. B, FISH using P1-derived artificial chromosome clones (1083G3 for PAX6, 85P5 for D1152163; 685F3
for PER. and 104M13 for WT7) as probes was performed for patient 2, as previously reported.® Each
FISH signal for PAX6, D1152163, PER, and WT1 was observed in only one chromosome 11 homolog,
indicating heterozygous deletion of the WAGR region of 11p. C, Patient 3 had deletion of chromosome

11p13-p14 in one allele.

histology. The possibility of reflux ne-
phropathy, however, could not be ruled
out in patient 2. The perihilar variant
with glomerular hypertrophy is partic-
ularly common in the secondary FSGS
such as reduced renal mass—induced
FSGS 8 However, all 3 patients exhibited
FSGS (not otherwise specified) without
glomerular hypertrophy, suggesting
that surgical renal ablation (patient 1)
and reflux nephropathy (patient 2) may
not have been the main cause of FSGS in
these 2 patients. These findings suggest
that the complete deletion of one W77
allele might have a pathogenetic role in
the development of nephropathy.
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Abstract

Background Autosomal dominant mutations in paired box
gene 2 (PAX2), on chromosome 10g24, are responsible for
renal coloboma syndrome (RCS). The role of PAX2 in
glomerular basement membrane (GBM) formation and
maintenance remains unknown.

Case-diagnosis We report a case of a 13-year-old Japanese
girl who had both optic disk coloboma and renal insuffi-
ciency. Her father and sister also had both coloboma and
renal dysfunction. Renal pathological findings revealed a
basket-weave pattern of the GBM, which was compatible
with Alport syndrome, but type IV collagen oS staining was
normal. The patient’s findings of coloboma and renal dys-
function suggested that she had RCS, and genetic analysis
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revealed a PAX2 heterozygous mutation in exon 2 (c.76dup,
p.Val26Glyfsx27) without any mutations of COL4A43,
COL4A44, and COL4A45, which are responsible for autoso-
mal and X-linked Alport syndrome.

Conclusions PAX2 mutations may result in abnormal GBM
structure.

Keywords Renal-colombia syndrome - PAX2 - Glomerular
basement membrane - Type IV collagen - Podocyte

Introduction

Renal-coloboma syndrome (RCS, OMIM 120330) is a rare
autosomal dominant disorder associated with paired box
gene 2 (PAX2, 10q24) heterozygous mutations [1]. PAX2
is a nuclear transcriptional factor and is highly conserved
among species [2]. In the fetal period, PAX2 is expressed in
the otic and optic vesicles, spinal cord, hindbrain, meso-
nephros, and metanephros in the embryonic kidney. PAX?2 is
one of the central regulators for early-stage kidney develop-
ment, but the precise mechanisms of PAX2 for kidney
development have not been fully clarified. RCS is charac-
terized by ocular and renal abnormalities. Renal malforma-
tions include hypoplasia, dysplasia, vesicoureteral reflux
(VUR), multicystic dysplastic kidney, and horseshoe kidney
[3]. Renal histopathological findings in RCS have been
reported, including oligomeganephronia that is induced by
a reduction in nephron number in the RCS kidney. However,
there are no previous reports of obvious glomerular base-
ment membrane (GBM) changes as evaluated by electron
microscopy. We report here for the first time remarkable
GBM changes with RCS due to PAX2 mutation, which are
similar to those found in Alport syndrome.

@ Springer



1190

Pediatr Nephrol (2012) 27:1189-1192

Case report
Patient 1

A 6-year-old Japanese girl visited our hospital because of
mild proteinuria. We found that she also had bilateral optic
disk coloboma (Fig. 1a). At the age of 13 years, laboratory
findings showed that her blood urea nitrogen (BUN) level

Fig. 1 Fundus photographs
from patient 1 (a): bilateral
optic discs are enlarged. Renal
pathological findings in patient
1 (b—c¢): Light microscopy
shows that the number of
glomeruli is small (b), periodic
acid-methenamine-silver
(PAM) staining, original
magnification x100, scale
bar=100 pm), but hypertrophy
or proliferative lesions cannot
be seen in the glomeruli (¢),
periodic acid-Schiff (PAS)
staining, original magnification
%400, scale bar=30 pm).
Electron microscopy shows
thickening, which is compatible
with a basket-weave appearance
in the glomerular basement
membrane (GBM) in patient 1
(d) and patient 2 (e). GBM
findings are similar to a
genetically confirmed case of
Alport syndrome by COL4A3
homozygous mutation (f)
(original magnification x5,000,
scale bar=2 pumy). Genetic
analysis (g) shows that both
patients have a PAX2 mutation
(c.76dup)
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was 26 mg/dl, serum creatinine (SCr) level was 0.97 mg/dl,
and creatinine clearance (CrCl) was decreased to 59.1 ml/
min/1.73 m?. Urinary protein was slightly increased (0.3 g/
day), especially urinary 32 microglobulin (1,000 ug/l, nor-
mal range <230 pg/l), but she had no hematuria. Ultraso-
nography revealed left renal atrophy (kidney size 64x
35 mm), but the right kidney size was normal (81x
37 mm). Her eye and renal abnormalities were compatible
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with RCS, but the precise cause of her renal insufficiency
was unknown.

Patient 2

Patient 2 is patient 1’s elder sister, and she had left renal
atrophy detected soon after birth. At the age of 4 months,
eye abnormalities including optic disk coloboma and mac-
ular hypoplasia were found. At the age of 10 months, mild
proteinuria (0.4 g/day) and VUR were detected, and at the
age of 5 years, she received a surgery for VUR. However,
her proteinuria did not disappear and her renal function
deteriorated. She had a renal biopsy performed at the age
of 6 years, and electron microscopy showed that the glo-
meruli had diffuse thickening accompanied by a basket-
weave formation of the GBM, which was compatible with
Alport syndrome. She was diagnosed with Alport syndrome
on the basis of renal histological findings; however, hema-
turia never appeared during her course, and genetic analysis
was not performed at that time.

Family history

The patients’ father also had coloboma and renal failure, but
his funduscopic findings and cause of his renal dysfunction
were unknown because he died after receiving four renal
transplantations. The paternal grandfather had left renal
atrophy, but his renal function was preserved and he did
not have coloboma. Others in the family showed no renal
disorder. None of their relatives had hearing loss.

Renal histology and genetic analysis

To confirm the cause of renal insufficiency, we performed
renal biopsy in patient 1. Light microscopy findings showed
that the kidney was oligonephronic but not enlarged
(Fig. 1b, ¢). Immunofluorescent staining showed no signif-
icant abnormalities. Electron microscopy showed thickening
and thinning of the GBM (Fig. 1d), similar to patient 2
(Fig. le). The patients’ GBM findings are similar to a
genetically confirmed case of Alport syndrome (Fig. 1f).
The eye abnormality, oligonephronic kidney, and family
history indicated that patient 1 suffered from RCS. To con-
firm this diagnosis, we performed genetic analysis of P4X2
for both patients and their paternal grandfather after obtain-
ing informed consent. We detected a c.76dup heterozygous
mutation in exon 2 of PAX2 (Fig. 1g) in the siblings but not
the grandfather. This frameshift mutation induces an amino
acid change from valine to glycine and introduces a prema-
ture stop codon (p.Val26Glyfsx27). To exclude the possibil-
ity of complicating Alport syndrome, we performed type IV
collagen staining of glomeruli for patient 1 and observed
that the o5 chain [x5 (IV)] staining pattern was normal.
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Furthermore, we sequenced the genes COL4A44 (2q35-q37),
COL4A3 (2q36-q37), and COL4A45 (Xq22), which are re-
sponsible for autosomal recessive, dominant, and X-linked
Alport syndrome. No mutations or significant variants were
detected in either patient. Based on the presence of a het-
erozygous PAX2 mutation in both patients with normal
immunohistochemistry for &5 (IV) and the absence of sig-
nificant sequence variation in any of the genes encoding
type IV collagen proteins found in the GBM, we concluded
that the GBM changes resulted from P4X2 haploinsuffi-
ciency in our patients.

Discussion

We identified that our patients had a PAX2 heterozygous
mutation in exon 2 (¢.76dup, p.Val26Gly fsx27). Although
there is no genotype-phenotype correlation in RCS, this is
the most frequent mutation of PAX2 [4]. This frameshift
mutation leads to haploinsufficiency of the PAX2 protein.
The Pax2'™" "~ mutant mouse is a model of RCS that has a
heterozygote 1-bp insertion in PAX2 [5], [6], and it has been
reported that heterozygous mutations of PAX2 induce apo-
ptotic cells in the fetal kidney and reduce branching of the
ureteric bud. As a result, PAX2 heterozygous mutations
induce renal hypoplasia [7]. Oligomeganephronia is induced
by renal hypoplasia and P4X2 mutation [§8], and there are
few reports regarding the association with oligomeganeph-
ronia and GBM changes [9]. Although the number of glo-
meruli in patient 1 was decreased, glomerular enlargement
was not observed. The causes of our patients’ renal insuffi-
ciency are unknown, but reducing renal mass may induce
this condition.

Laminin, type IV collagen &3 («3 [IV]) chain, o4 (o4
[IV]) chain, and «5 (IV) are major components of the GBM.
Laminin is produced by both podocytes and endothelial
cells, and &3 (IV), o4 (IV), and a5 (IV) originate only from
podocytes [10]. A host of transcription factors, especially
WT1 and PAX2, play a significant role in modulating podo-
cyte maturation. Although PAX? is essential for embryonic
renal formation, a decrease in PAX2 and increase in WT1 in
the embryonic kidney are also necessary for further differ-
entiation of podocytes [11]. Therefore, PAX2 mutation may
result in abnormal GBM production in podocytes, but fur-
ther investigations are required to clarify this issue.

In conclusion, this is the first report of Alport-like GBM
changes in RCS due to P4X2 mutation. It is unknown whether
PAX2 haploinsufficiency leads to GBM changes, as observed
in the siblings in this study. Our observations may lead to an
improved understanding of the pathogenesis of RCS.

Disclosure The authors declare that they have no competing
financial interests and no funding sources to disclose.
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