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FIGURE 4: Immunohistochemical staining for NMMHC-IIA in human glomerular diseases. (A) The expression levels of NMMHC-IIA mark-
edly decreased in Epstein syndrome (c) and steroid-resistant FSGS (d-g) compared with those in two control subjects (a and b). In contrast, the
expression of NMMHC-IIA was preserved in the tip variant of FSGS (h and i). The expression of NMMHC-IIA did not significantly change in
MCD both in relapse (j and /) and in remission (k). Expression of NMMHC-IIA did not significantly change in MN (m and n), IgAN (0 and p),
HSPN (g) and MPGN (r). P(1-14) shows each patient. (B) Intensity scores for NMMHC-IIA expression in each patient determined by immuno-
histochemical analysis. For statistic evaluation of the difference in intensity scores between diagnoses, see Table 2.

Table 2. Intensity scores of NMMHC-TIA expression determined by immunohistochemical analysis

in the patients with steroid-resistant FSGS and other proteinuric nephropathy

Steroid-resistant FSGS

Tip variant

MCD (relapse) Chronic glomerulonephritis

Number of patients 4 2 2 6
Intensity score (mean + SD) 0.42 +042 240049 2.02£0.33 2.07 £0.50
P value® - 0.13 0.13 0.016

Chronic glomerulonephritis includes MN, I[gAN, HSPN and MPGN.
*Compared with steroid-resistant FSGS.

this characteristic localization of NMMHC-IIA would contrib-
ute to maintaining the unique structure of podocytes. Ab-
normalities of NMMHC-IIA caused by mutations in MYH9
result in foot process effacement and development of FSGS
[19]. Expression patterns of NMMHC-IIA in the capillary
stage (Figure 2B) are consistent with immunofluorescence
studies (Figure 1A) and electron microscopy immunogold la-
beling analyses (Figure 1C).

K. Miura et al.

Nonmuscle myosin II has diverse functions in cell contrac-
tility, morphology, cytokinesis and migration [42]. NMMHC-
IIA maintains a balance between actomyosin and microtubule
systems by regulating microtubule dynamics [42]. The present
result, that NMMHC-IIA is localized at the podocyte primary
processes where microtubule systems maintain the cytoskele-
ton, predicts a perturbed interaction between NMMHC-IIA
and cytoskeleton molecules in primary processes,
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FIGURE 5: Immunofluorescence studies of podocyte-related proteins in human glomerular diseases. Cryostat sections (4 pm thick) were
stained with an anti-serum specific for foot process proteins (nephrin, Nephl, synaptopodin, podocin, ZO-1 and GLEPP1) and NMMHC-IIA in
control, idiopathic FSGS (Patient 2), MCD (Patient 7 when in relapse) and MN (Patient 10). No significant changes in expression of these foot
process proteins were observed in glomeruli of any patients, whereas expression of NMMHC-IIA markedly decreased in idiopathic FSGS and
moderately decreased in MCD.
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FIGURE 6: Dual immunostaining of NMMHC-IIA and other podocyte-associated proteins in human glomerular diseases. Cryostat sections
(4 pm thick) were co-stained with an anti-serum specific for NMMHC-IIA (red) and foot process proteins (nephrin and synaptopodin) (green)
in control, idiopathic FSGS (Patient 2), MCD (Patient 7 when in relapse) and MN (Patient 10). Nuclei were stained with DAPI (blue).
NMMHC-IIA expression was distinct from nephrin and synaptopodin. Expression levels of NMMHC-IIA markedly decreased in FSGS and
MCD, whereas those of nephrin and synaptopodin were preserved. Expression levels of NMMHC-IIA, nephrin and synaptopodin were pre-
served in MN.

particularly in the adjacent area between the primary and
foot processes: this unique localization could cause morpho-
logical changes of podocytes in idiopathic FSGS and Epstein

syndrome. In this regard, Babayeva et al. [43] showed that
plasma from a patient with recurrent idiopathic FSGS rapidly
decreased cultured podocyte levels of the phosphorylated

Decreased expression of NMMHC-IIA inidiopathic FSGS



myosin light chain and perturbed the usual localization of
NMMHC-IIA along actin stress fibers. Further studies are re-
quired to identify the mechanisms by which NMMHC-IIA
maintains the highly specific structures of podocytes as the ul-
trafiltration barrier.

In conclusion, we demonstrated the decreased expression
of NMMHC-IIA in human idiopathic FSGS. This phenomenon
is specific to idiopathic nephrotic syndrome, especially FSGS,
and not observed in other heavy proteinuric glomerulone-
phritis and nephropathy. NMMHC-IIA is primarily localized
in podocyte primary processes. These results suggest the
critical role of NMMHC-IIA in the development of idio-
pathic FSGS.
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a  Hypouricemia is characterized by low serwm wric acid (SUA) levels (< 3.0 mg/dL) with compli-
calions such as wrolithiasis and exercise-induced acute renal failure. We hawve previously reported
that urate transporter 1 (URAT1/SLC22A12) and glucose transporter 9 (GLUTY/SLC2A9 ) are
causative genes for renal hypouricemia type 1 (RHUCI) and renal hypouricemia type 2 (RIHUC2),
respectively. In the series of experiments, two families have been revealed to have RHUC2 due to
GLUTY nussense mutations R198C or R380W, respectively. Thus far, however, no studies have
reported other RHUC2 families or patients with these pathogenic mutations. This study is aimed to
Jfind other cases of RHUC2.

We performed mutational analyses of GLUTY exon 6 (for R198C) and exon 10 (for R380W)
in 50 Japanese hypouricemia patients. Patients were analyzed out of a collection of more than 2000
samples from the Japan Multi-Institutional Collaborative Cohort Study (JFMICC Study).

We identified a novel male patient with heterogeneous RHUC2 mutation R380W. The SUA
of this hypouricemia patient was 2.6 mg/dL, which is similar to that of owr previous report (SUA:
2.7 mg/dL).

This is the second report indicating RHUC2 patient due to GLUT9 mutation R380W. This
mutation occurs in highly conserved amino acid motifs and is reported to be an important membrane
lopology determinant. R380W is a dysfunctional multation which completely diminishes the urate
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transport activities of GLUT9. Qur study revealed a second hypouricemia patient with GLUT9
R380W, a pathogenic mutation of RHUC2, which may help to expand our understanding of
RHUC pathogenesis.

Keywords:  SLC transporters; GLUT family; GLUT9L; GLUT9S; renal urate
reabsorption

INTRODUCTION

Renal hypouricemia is characterized by low serum uric acid (SUA) levels
(<3.0 mg/dL), and confers risk of severe complications such as exercise-
induced acute renal failure or nephrolithiasis.!!* 2] Renal hypouricemia is
mainly caused by impaired renal urate reabsorption. We previously reported
that URAT1/SLC22A120B] and GLUT9/SLC2A9M are key regulators of
SUA, and play an essential role in urate reabsorption in the human kid-
ney. The dysfunctional mutations of URATI or GLUT9 cause renal urate
hypouricemia, called renal hypouricemia type 1 (RHUCI) and renal urate
hypouricemia type 2 (RHUC2), respectively. 1! Previously, two families have
been revealed to have RHUC2 due to GLUT? missense mutations R198C
or R380W, respectively. Thus far, however, no studies have reported other
RHUC2 families or patients with these pathogenic mutations. Here, we re-
port another hypouricemia patient with the pathogenic RHUC2 mutation.

MATERIALS AND METHODS

For the hypouricemia patients, 50 Japanese patients with lower SUA
(<3.0 mg/dl) were identified out of more than 2000 samples from the
Japan Multi-Institutional Collaborative Cohort Study (J-MICC Study). We
performed mutational analysis of GLUT9 exon 6 (R198C) and exon 10
(R380W) in these 50 hypouricemia patients.

For the GLUTY sequence determination, we used following primers de-
scribed previously:!*! for exon 6, forward 5-GTCCTCTGAAATGCACCTCC-
3’, and reverse b-GCACAGAAGATGCCTAAACAAACACA-3; for exon
10, forward 5'-GGTGACCATATCCATCCAG-3, and reverse b'-GAAGGAG-
CACCTTAAGGTTG-3'. High molecular weight genomic DNA was extracted
from peripheral whole blood cells,'®! and was amplified by PCR. The PCR
products were sequenced in both directions using a 3130x]1 Genetic Analyzer
(Applied Biosystems).[”

RESULTS

The human GLUTY gene consists of 14 exons (1 noncoding and 13
coding) and the alternative splicing of the GLUT9 gene results in two main
transcripts: GLUT9 isoform 1 (long isoform, GLUT9L) and isoform 2 (short
isoform, GLUT9S). Two heterozygous missense mutations of R380W and
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FIGURE 1 Pathogenic mutation sites of GLUT9 (Color figure available online).

R198C for GLUTYL have been identified in Japanese patients with renal
hypouricemia. Both mutations are missense mutations from basic amino acid
arginine to neutral amino acids, and are at equivalent positions within the
cytoplasmic loops, which cause a loss of positive charge. These pathogenic
mutation sites in two-dimensional and three-dimensional models are shown
in Figure 1. No hypouricemia patient with the R198C mutation was identified
among these 50 patients. However, we identified a novel male patient with
heterozygous mutation R380W (Figure 2). SUA of this hypouricemia patient
was 2.6 mg/dL (154.6 umol/1), which is similar to that of our previous report
(SUA: 2.7 mg/dL (160.6 pmol/1)).

DISCUSSION

GLUTY9 mutations in renal hypouricemia patients may change its
topology.

We have previously identified loss-of-function mutations of GLUT9 in
renal hypouricemic patients having no URATI mutations.l*] Mutation sites
in GLUTY9 (R380W and RI198C for GLUT9L, corresponding to R351W and
RI169C for GLUT9S) locate in highly conserved amino acid motifs called
“sugar transport proteins signatures,” which is observed in GLUT family
transporters. The corresponding mutations in GLUTI (R333W and R153C)
are known to cause GLUTI deficiency syndrome.!®) Arginine residues in this
motif are reported to be an important determinant of membrane topology
of human GLUTL,¥ and the same may be true in GLUT9 on the basis of
membrane topology.

Physiological Importance of GLUTS in Human Urate Transport

The urate metabolism in humans is quite different from thatin mice due
to the lack of uricase.!'?! In addition, hypouricemia is one of relatively rare
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FIGURE 2 Heterozygous mutation {R380W) in a newly-identified renal hypouricemia patient {(Color
figure available online).

diseases compared with common diseases including hyperuricemia and gout.
Therefore, it is of great significance to identify the dysfunctional GLUT?
mutations in humans through a large population.

In MDCK cells, GLUTIL and GLUT9S show basolateral and apical lo-
calization, respectively. Since dysfunctional mutations of either GLUT9L
or GLUTYS dramatically reduced the urate transport activity, renal hy-
pouricemia caused by these mutations could be ascribed to the decreased
urate reabsorption on both sides of the renal proximal tubules, where
GLUTY expresses. In the present study, we confirmed the importance of
GLUT?Y as a causative gene for renal hypouricemia, which encodes a renal
urate reabsorption transporter.

Identification of a Novel RHUC2 Patient

This is the second report indicating a RHUC2 patient due to GLUT9
mutation R380W. Screening of large genome cohort samples revealed the
second hypouricemia patient with GLUT9 R380W, a pathogenic mutation
of RHUC2. Our results confirm that GLUT9 can be a promising therapeutic
target for hyperuricemia, gout, and related cardiovascular diseases. This
finding may help to expand the understanding of RHUC pathogenesis.
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ABCG2 dysfunction causes

hyperuricemia due to both renal urate
underexcretion and renal urate overload
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'Department of Integrative Physiology and Bio-Nano Medicine National Defense Medical College, 3-2 Namiki, Tokorozawa,
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Ogasawara, Tokyo 100-2100, Japan, 3Department of Preventive Medicine and Public Health, National Defense Medical College,
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Gout is a common disease which results from hyperuricemia. We have reported that the dysfunction of urate
exporter ABCG2 is the major cause of renal overload (ROL) hyperuricemia, but its involvement in renal
underexcretion (RUE) hyperuricemia, the most prevalent subtype, is not clearly explained so far. In this
study, the association analysis with 644 hyperuricemia patients and 1,623 controls in male Japanese revealed
that ABCG2 dysfunction significantly increased the risk of RUE hyperuricemia as well as overall and ROL
hyperuricemia, according to the severity of impairment. ABCG2 dysfunction caused renal urate
underexcretion and induced hyperuricemia even if the renal urate overload was not remarkable. These
results show that ABCG2 plays physiologically important roles in both renal and extra-renal urate excretion
mechanisms. Our findings indicate the importance of ABCG2 as a promising therapeutic and screening
target of hyperuricemia and gout.

out is a common disease which causes severe acute arthritis, and results from persistent hyperuricemia.
Hyperuricemia shows elevated serum uric acid (SUA) levels and most of them are asymptomatic. So far,

7 three urate transporters, URAT1/SLC22A12!, GLUT9/SLC2A9**, and ABCG2/BCRP**, have been
reported to play important roles in the regulation of SUA, and their dysfunctions cause urate transport disorders.
Among them, common dysfunction of ABCG2 exporter has proved to be a major cause of hyperuricemia and
gout*’. Recently, we have provided a new mechanism for hyperuricemia that the decrease in extra-renal (intest-
inal) urate excretion by ABCG2 dysfunction induces renal urate overload, thereby causing hyperuricemia’. This
mechanism, however, does not give a sufficient explanation for all ABCG2 dysfunction cases as a major cause of
hyperuricemia and gout because the most prevalent type of hyperuricemia is not renal urate overload but renal
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Figure 1 | Estimation of ABCG2 function from diplotype of Q126X and Q141K alleles. (a) ABCG2*2 or *3 represents a haplotype with Q141K or Q126X
variant, respectively. ABCG2*1 indicates a haplotype with neither Q141K nor Q126X variant. Since Q141K is a half-functional variant and Q126X is
a nonfunctional variant, relative function of ABCG2*1, *2, and *3 is 1, 1/2, and 0, respectively, which is visualized by black-indicated areas.
Substituted residues are underlined. (b) Each participant’s function of urate exporter ABCG2 can be estimated from the diplotype, and can be also divided
into four functional groups; i.e., =1/4 function, 1/2 function, 3/4 function, and full function.

urate underexcretion (Supplementary Fig. S1). In this study, we first
focused on the involvement of ABCG2 dysfunction in renal under-
excretion (RUE) hyperuricemia.

Results

Genotyping was performed for 2,267 Japanese male participants,
who consisted of 644 hyperuricemia cases (SUA>7.0 mg/dl) and
1,623 controls. Their functional ABCG2 activities were estimated
from their genotype combinations of its two dysfunctional missense
variants, Q126X (rs72552713) and Q141K (rs2231142). Because
there is no simultaneous presence of the minor alleles of non-func-
tional variant Q126X and half-functional variant Q141K in one hap-
lotype®”, we defined three haplotype IDs as *1, *2, and *3, as shown
in Figure 1a. Thus, all participants were divided into four functional
groups; ie. full function (*1/*1), 3/4 function (*1/*2), 1/2 function
(*2/*%2 or *1/*3), and =1/4 function (*2/*3 or *3/*3) (Fig. 1b,
Table 1)°7. From the patients’ fractional excretion of urate (FEya)
and urinary urate excretion (UUE), all cases were then classified into
two groups, RUE hyperuricemia and renal overload (ROL) hyperur-
icemia (Supplementary Fig. S1).

The association analysis revealed that ABCG2 dysfunction
increased the risk of overall hyperuricemia according to the severity
of its impairment (Fig. 2a, Supplementary Table S1); the odds ratios
(ORs) in 3/4,1/2 and =1/4 function were 2.64, 4.11 and 6.81, respect-
ively. In RUE hyperuricemia that represents the dysfunction of renal
urate excretion, the ORs also increased as the ABCG2 dysfunction
became more severe; the ORs in 3/4, 1/2 and =1/4 function were
2.05, 2.66 and 4.53, respectively (Fig. 2b, Supplementary Table S1). In
ROL hyperuricemia in which extra-renal (mainly intestinal) urate
excretion plays an important role, contributions of ABCG2 dysfunc-
tion to the increase of ORs were more obvious; the ORs in 3/4, 1/2
and =1/4 function were 3.60, 6.83 and 16.0, respectively (Fig. 2b,
Supplementary Table S1). Furthermore, Q126X homozygote signify-
ing complete deficiency of ABCG2 was identified in one case with
goutin the ROL hyperuricemia group. This fact is consistent with our
previous report on the homozygous Abcg2 knockout mice having
characteristics of ROL hyperuricemia’.

When hyperuricemia was divided into three distinct types (i.e.,
RUE type, combined type, and ROL type as shown in Supplementary
Fig. §1), severe ABCG2 dysfunction (=1/4 function) significantly
raised the risk of combined and ROL types but not that of RUE type

Table 1 | ABCG2 functions of participants
Case' Control

Diplotype of Q126X (rs72552713)
Estimated transport activity and Q141K {rs2231142) alleles** N % N %
=1/4 function *3/%3 or ¥2/*3 29 (26) 4.54.7) 22 1.3
1/2 function *1 /%3 or ¥2/*2 151 (135) 23.4 (23.5) 190 11.7
3/4 function *1/*2 307 (277) 47.7 (48.2) 600 37.0
Full function *1/*1 157 (136) 24.4(23.7) 811 50.0
Total 644 (575) 100.0 (100.0) 1,887 100.0
**Haplotypes “Q-Q", “QK", and “X-Q" of two SNPs (126X and Q141K are referred to as *1, *2, and *3, respectively. Risk alleles are X for Q126X, and K for Q141K. The relative functional activities
of these haplotypes are 1, 1/2, and O, respectively, and visualized as Figure 1.
'The numbers in parentheses show the numbers and percentages of gout cases only {cases without asymptomatic hyperuricemia).
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Figure 2 | Risk of hyperuricemia by ABCG2 dysfunction. The risk of hyperuricemia is calculated based on the estimated ABCG2 dysfunction, i.e., 3/4
function (mild dysfunction), 1/2 function (moderate dysfunction), and =1/4 function (severe dysfunction). All bars show odds ratio (OR) * 95%

confidence interval (CI).

(P=0.62) (Fig. 2¢, Supplementary Table S1). Nevertheless, moderate
and mild dysfunction (3/4 and 1/2 functions) still contributed to
increase the risk of RUE type hyperuricemia, conferring ORs of
1.80 and 2.00, respectively. These data imply that ABCG2 dysfunc-
tion under certain conditions causes renal urate underexcretion and
leads to hyperuricemia even without renal urate overload.

Discussion

We previously reported a new mechanism by which ABCG2 dys-
function leads to the blockade of intestinal urate excretion (extra-
renal underexcretion, Supplementary Fig. S1), thereby inducing
hyperuricemia with renal urate overload (i.e., ROL hyperuricemia)
and its overflow into the kidney’. ROL hyperuricemia consists of
urate overproduction and extra-renal underexcretion, while most
ROL hyperuricemia is supposed to be induced by extra-renal under-
excretion due to ABCG2 dysfunction’ (Supplementary Fig. S1).
However, about two-thirds of uric acid is known to be excreted from
kidney in humans®'°, and RUE hyperuricemia consists of approxi-
mately 70-90% of all hyperuricemia cases'®*?. Therefore, the elu-
cidation of ABCG2 involvement in the pathogenesis of RUE
hyperuricemia is of great importance.

The present study showed that ABCG2 dysfunction also had a
great influence on renal urate underexcretion, and thus strongly
involved in the pathogenesis of two hyperuricemia groups, RUE
and ROL hyperuricemia, through two different mechanisms; ie.,
one is retention of urate in the blood stream because of the blockade
of urate excretion from the kidney, and the other is renal urate
overload because of the blockade of urate excretion from the intestine
(Fig. 3). Our results are consistent with the fact that urate exporter
ABCG2 expresses in both kidney and intestine in humans'>". Severe
ABCG2 dysfunction did not increase the risk of RUE type (Fig. 2¢),
and this type involved only a very small number of patients (n=3)
(Supplementary Table S1). This result indicates that severe ABCG2
dysfunction (=1/4 function) causes either ROL type or combined
type rather than RUE type because of renal urate overload.
Furthermore, our data show that moderate and mild ABCG2 dys-
function (1/2 and 3/4 function) significantly increase the risk of
RUE type (Fig. 2c). These findings support our idea that ABCG2

dysfunction caused renal urate underexcretion and induced hyper-
uricemia even without renal urate overload. Importantly, the present
study is the first to show that mild to severe ABCG2 dysfunction also
causes RUE hyperuricemia (Fig. 2b), suggesting its pathophysiologi-
cal involvement in decreased renal urate excretion (Fig. 3).

We wish to emphasize here that the present study was performed
as a subtype analysis based on participants’ clinical information of
SUA-related parameters. This approach could be applicable for other
research on common diseases; i.e., the results of genetic analysis also
indicate both the molecular function and localization of their gene
products. For instance, we have reported that a common variant of
transporter gene MCT?9 (also known as SLCI16A9) increases the risk
of ROL gout', which suggests the intestinal expression of MCT9 and
its association with intestinal urate excretion. Likewise, common
variants in URATI/SLC22A12 and GLUT9/SLC2A9 are reported to
have an association with SUA'®. We previously showed that
URATI/SLC22A12 and GLUT9/SLC2A9 are causative genes of renal
hyporucemia type 1 and type 2, respectively, and encode renal urate
reabsorption transporters. Thus, it is probable that changes in the
function of these two transporters associate with RUE hyperurice-
mia. Because our previous study showed that renal expression levels
of Uratl are markedly decreased in Abcg2 knockout mice which
represent ROL hyperuricemia’, urate reabsorption transporter
URAT1/SLC22A12 also should be involved in the pathogenesis of
ROL hyperuricemia by ABCG2 dysfunction.

Taken together, we first indicated that ABCG2 physiologically
mediates renal urate excretion as well as extra-renal (intestinal) urate
excretion, and its dysfunctional mutations are involved in all types of
hyperuricemia as their major genetic causes (Fig. 3). Besides our
previous reports®”’, the present study showed that ABCG2 genotyping
in combination with FEy, and UUE tests is sufficient for screening
high-risk individuals with hyperuricemia and gout. Our findings will
therefore serve to build up the health of people predisposed to hyper-
uricemia and gout.

Methods

All procedures involved in this study were performed in accordance with the
Declaration of Helsinki and were approved by the institutional ethical committees
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Figure 3 | Pathophysiology of hyperuricemia due to ABCG2 dysfunction. The dysfunction of urate exporter ABCG2 is revealed to cause RUE
hyperuricemia as well as ROL hyperuricemia due to blockade of urate excretion from the kidney and intestine, respectively. Abbreviation: SUA, serum
uric acid. RUE, renal underexcretion. ROL, renal overload. (This figure, and the images contained therein, were produced by the authors).
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Common dysfunctional variants in
ABCG2 are a major cause of early-onset
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Gout is a common disease which mostly occurs after middle age, but more people nowadays develop it before
the age of thirty. We investigated whether common dysfunction of ABCG2, a high-capacity urate
transporter which regulates serum uric acid levels, causes early-onset gout. 705 Japanese male gout cases
with onset age data and 1,887 male controls were genotyped, and the ABCG2 functions which are estimated
by its genotype combination were determined. The onset age was 6.5 years earlier with severe ABCG2
dysfunction than with normal ABCG2 function (P = 6.14 X 107°). Patients with mild to severe ABCG2
dysfunction accounted for 88.2% of early-onset cases (twenties or younger). Severe ABCG2 dysfunction
particularly increased the risk of early-onset gout (odds ratio 22.2, P = 4.66 X 10~°). Our finding that
common dysfunction of ABCG2 is a major cause of early-onset gout will serve to improve earlier prevention
and therapy for high-risk individuals.

out is a common disease which causes acute arthritis as a consequence of hyperuricemia’. Gout and
hyperuricemia are reportedly associated with other common diseases’, such as hypertension®’, coronary
artery diseases®, cerebrovascular diseases®, and kidney diseases®. Although gout mostly occurs after
middle age’, the number of patients experiencing its onset at a younger age is now increasing®. While gout with
an earlier onset has a heritable component'’, its common genetic causes are still unclear.

ATP-binding cassette (ABC) transporter, subfamily G, member 2 gene ABCG2/BCRP locates in a gout-
susceptible locus (MIM 138900) on chromosome 4q'!, which was earlier demonstrated by a genome-wide linkage
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Table 1 | ABCG2 functions of participants

Genotype Combination Number (%)
Estimated Function Q126X* (rs72552713)  Q141K* (rs2231142) Gout Control
=1/4 function /T c/C 37 (5.2) 22(1.2)
T/C C/A
1/2 function T/C c/C 169 (24.0) 219 (11.6)
c/C A/A
3/4 function c/C C/A 331 (47.0) 699 (37.0)
Full function c/C c/C 168 (23.8) 947 (50.2)
Total 705 (100.0) 1,887 {100.0)

"Risk alleles (T for Q126X, A for Q141K) are indicated in bold type at four locations, respectively.

study of gout'. Genome-wide association studies (GWAS) of serum
uric acid (SUA) also identified several transporter genes including
ABCG2'*'%, Recently, Woodward et al.'® and the present authors'
independently showed that ABCG2 regulates SUA as a urate trans-
porter, which mediates urate excretion. We also showed that geno-
typing of only two dysfunctional variants, Q126X (rs72552713) and
Q141K (rs2231142), is sufficient to estimate the severity of ABCG2
dysfunction; i.e. full function, 3/4 function (mild dysfunction), 1/2
function (moderate dysfunction), and = 1/4 function (severe dys-
function). This dysfunction increases gout risk markedly, conferring
an OR of more than 3.0'°. Furthermore, our human genetic analysis
and animal model studies demonstrated that ABCG2 dysfunction
plays an important role in the pathogenesis of hyperuricemia'.
Because the dysfunctional ABCG2 genotype combinations are very
common in gout/hyperuricemia patients'>***, ABCG2 dysfunc-
tion is a possible major cause of early-onset gout. In this study, we
investigated the estimated ABCG2 function in 705 gout cases with
onset age data and 1,887 controls to determine whether or not com-
mon dysfunction of ABCG2 causes early-onset gout.

Results

Onset age and ABCG2 function. Table 1 shows the genotype and
estimated function of ABCG2 in 2,592 male Japanese (705 gout cases
and 1,887 controls). Among them, in 705 gout cases, the less activity
the ABCG2 function showed the younger the onset age of gout
became (Fig. 1). The onset age of patients with severe ABCG2
dysfunction (= 1/4 function) was 6.5 years younger than those
with full function. Cox regression analysis also showed that
ABCG2 dysfunction significantly hastened the onset age (P = 6.14

Association analysis of gout. The logistic regression analysis of
ABCG2 dysfunction demonstrated the increased risk of gout in
each dysfunctional group with 705 cases and 1,887 controls. The
odds ratio (OR) was 2.74 (95% CI 2.21-3.39; P = 398 X 107%)
with mild dysfunction (3/4 function), and was markedly increased
109.98 (95% CI 5.63-17.7; P = 3.62 X 107") with severe dysfunction
(= 1/4 function) (Fig. 2).

The subsequent logistic regression analysis was performed to
evaluate the association between ABCG2 dysfunction and early-
onset gout (twenties or younger), as ABCG2 dysfunction accounted
for as much as 88.2% of the early-onset gout cases. Compared with
full function, severe ABCG2 dysfunction especially increased the risk
of early-onset gout, conferring an adjusted OR o0f 22.2 (95% CI 5.89-
83.7; P = 4.66 X 107°). In addition, moderate and mild dysfunction
of ABCG2 markedly increased the risk of early-onset gout, confer-
ring an adjusted OR 0f 15.3 (95% CI7.53-30.9; P = 4.08 X 10~"*) and
6.47 (95% CI 3.31-12.7; P = 4.89 X 107%), respectively (Supple-
mentary Fig. S1). In fact, any dysfunction of ABCG2 significantly
increased the risk of gout in all onset-age groups (Fig. 2).

Discussion

Our findings make it clear for the first time that any ABCG2 dys-
function causes early-onset gout. Dysfunctional ABCG2 accounts for
approximately 90% of early-onset gout patients and accelerated early
onset significantly in the present study. Moreover, the risk of early-
onset gout is markedly increased by severe ABCG2 dysfunction,
conferring an adjusted OR of 22.2. Thus, ABCG2 dysfunction is
indeed a major cause of early-onset gout. To our knowledge, this is
the first report on a common genetic cause of an early-onset gout that

X 1073). occurs in the twenties or earlier.
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Figure 1 | Onsetage of gout for each ABCG2 function. The onset age of cases with'1/4 function or less was 38.2 years old, whereas that with full function

was 44.7 years old, a difference of 6.5 years. All bars show mean * s.e.m.
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Figure 2 | Odds ratios for ABCG2 dysfunctions among gout patients in
each onset age group. Shown are the odds ratios (ORs) on a log;, scale of
the gout risks for each onset age group and ABCG2 dysfunction. ORs and
95% confidence intervals (Cls) for each ABCG2 dysfunction were obtained
by comparing with full function and adjusted for body mass index with
logistic regression analysis. Circles and diamonds with horizontal lines
indicate ORs with 95% Cls of each onset age groups. All ABCG2
dysfunction levels significantly increased the risk of gout (OR > 2.38) in all
onset-age groups. Severe ABCG2 dysfunction especially increased the risk
of early-onset gout, conferring an adjusted OR of 22.2.

Generally, SUA levels in humans are higher than in most other
mammals including mice, because humans lack the uric acid-degrad-
ing enzyme uricase®. Most uric acid mobilization is mediated by
urate transporters in human kidneys. Therefore, human genetic
studies have an advantage over rodent models in analyzing the urate
transporters in humans. Indeed, in addition to ABCG2, our human
genetic studies demonstrated that a urate transporter 1 (URAT1/
SLC22A12) encodes renal urate reabsorption transporter and that
its loss-of-function mutant causes renal hypouricemia type 1
(MIM 220150)*. After GWAS identified an association between
SUA and glucose transporter 9 (GLUT9/SLC2A9) gene®, we also
demonstrated that GLUT9 encodes another renal urate reabsorption
transporter and is a causative gene for renal hypouricemia type 2
(MIM 612076).

Recent genetic studies also revealed that various genes have asso-
ciations with common diseases, such as coronary artery diseases** ™,
stroke”, diabetes mellitus****, and Alzheimer’s disease®. The ORs to
assess the risk of onset in these studies were, however, likely to fall in
the 1.2 to 1.3 range or lower™. To date, there have been few genes to
explain major genetic causes of common diseases. The same holds
true for early-onset common diseases®*. In the case of early-onset
gout, the genetic causes have not been identified except for very rare
Mendelian disorders® such as hypoxanthine guanine phosphoribo-
syltransferase (HPRT) deficiency including Lesch-Nyhan syndrome

(MIM 300322)*, phosphoribosylpyrophosphate synthetase (PRPS)
superactivity (MIM 300661)*, and familial juvenile hyperuricemic
nephropathy (FJHN [MIM 162000])*%".

In the present study, Cox regression analysis of 705 gout patients
revealed that ABCG2 dysfunction significantly decreases onset age
(P = 6.14 X 107%). The onset age was 6.5 years earlier with severe
ABCG2 dysfunction. The gout risk is markedly increased in the
younger generation having ABCG2 dysfunction. The ORs in the
youngest onset-age group (onset age < twenties) with severe, mod-
erate and mild dysfunction were 22.2, 15.3 and 6.47, respectively
(Fig. 2). These risks were considerably higher than those of all gout
patients, conferring ORs of 9.98, 4.71 and 2.74, respectively (Fig. 2).
Thus, ABCG2 dysfunction remarkably increases the risk of gout,
especially for younger age-onset groups. In addition, mild to severe
ABCG2 dysfunction was detected in up to 88.2% of early-onset gout
patients, against 49.8% in controls. Our overall results clearly show
that common dysfunction of ABCG2 is a major cause of early-onset
gout.

Because early-onset gout will compromise patients’ quality of life
(QOL) for a long time and require huge life-long medical costs®,
early screening for ABCG2 dysfunction and appropriate interven-
tions will greatly benefit high-risk individuals. Moreover, risk assess-
ment by genotyping of only two SNPs will provide a very cost-
effective method for screening and personalized medicine including
adequate prevention and effective therapy. Therefore, our findings
will serve to improve the QOL of high-risk individuals and reduce
health-care costs, which also promote public health and preventive
medicine.

Methods

Study participants. All procedures were carried out in accordance with the standards
of the institutional ethical committees involved in this project and the Declaration of
Helsinki. Informed consent in writing was obtained from each subject participating in
this study. Genotyping was performed in 2,592 male Japanese (705 gout cases and
1,887 controls). All cases were clinically diagnosed as primary gout according to the
criteria established by the American College of Rheumatology™ at the gout clinics of
either Jikei University Hospital (Tokyo, Japan) or Midorigaoka Hospital (Osaka,
Japan). Patients with inherited metabolism disorders including Lesch-Nyhan
syndrome were excluded beforehand, and onset age data were available in all cases. As
control, 1,887 individuals were assigned from Japanese male health examinees with
normal SUA (= 7.0 mg/dl) and no gout history.

Genetic analysis. Genomic DNA was extracted from whole peripheral blood cells*.
Genotyping of Q126X (rs72552713) and Q141K (rs2231142) in ABCG2 gene by high-
resolution melting (HRM) analysis was performed with a LightCycler 480 (Roche
Diagnostics)*’. To confirm their genotypes, more than one hundred samples
including all genotype combinations identified by HRM were subjected to direct
sequencing. DNA sequencing analysis was performed with a 3130x] Genetic Analyzer
(Applied Biosystems)>. ABCG2 genotype combinations were divided into four
functional groups on the basis of the estimated ABCG2 transport functions's; i.e. full
function, 3/4 function (mild dysfunction), 1/2 function (moderate dysfunction) and
= 1/4 function (severe dysfunction) as shown in Table 1.

Statistical analysis. For all calculations in the statistical analysis, the software SPSS v.
16.0} (IBM Japan Inc., Tokyo, Japan) and JMP 10.0.0 (SAS Institute Japan Inc., Tokyo,
Japan) were used. Logistic regression analysis was performed to estimate adjusted
genetic effects. Cox regression analysis was conducted to obtain adjusted P value for
onset age. These regression analyses were corrected by body-mass index (BMI).
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