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Importance of Clinical Analysis
in the Era of New Technology
in Molecular Genetic Screening*®

Watary Shimizu, MD, PuD

or the past 2 decades, a number of inherited

cardiac arrhythmia syndromes have been

shown to be linked to mutations in genes
encoding cardiac ion channels or other membrane
components. These include congenital and acquired
long-QT syndrome (LQTS), Brugada syndrome (BrS),
progressive cardiac conduction defect, Lenegre dis-
ease, catecholaminergic polymorphic ventricular
tachycardia (CPVT), short-QT syndrome, early repo-
larization syndrome, and familial atrial fibrillation
(AF) {1). In congenital LQTS, 13 genotypes have been
identified in approximately 75% of subjects with clin-
ically diagnosed congenital LQTS {1,2}, and genotype-

phenotype correlations have been investigated in:
detail. Thus, genetic testing is now a gold standard *

for diagnosing congenital LQTS, enabling risk stratifi-

cation of cardiac events and better patient manage-
ment {1). Mutations in the RyR2 gene or calsequestrin =

gene can be identified in approximately 60% of typical
patients with CPVT associated with bidirectional
and/or multifocal ventricular tachycardia {1,2}: How-
ever, the yield associated with disease-specific ge-
netic testing is far short of 100%, even in congenital
LQTS or CPVT. Moreover, causative mutations have
been identified in a small number of patients with
other inherited arrhythmia syndromes ¢1}. The yield
of disease-specific genetic testing is only 20% to 30%
in BrS and is still unknown in progressive cardiac con-
duction defect, short-QT syndrome, early repolariza-
tion syndrome, and familial AF {1,2}.

* Editorials published in the Journal of the American College of Cardiology
reflect the views of the authors and do not necessarily represent the
views of JACC or the American College of Cardiology.

From the Department of Cardiovascular Medicine, Nippon Medical
School, Tokyo, Japan. Dr. Shimizu is supported in part by a Research
Grant for the Cardiovascular Diseases (H24-033) from the Ministry of
Health, Labour and Welfare, Japan.

In BrS, the first mutation was identified in an alpha
subunit of a sodium channel gene, SCN5A4, in 1998 {2},
Subsequently, genetié studies have identified 13
responsible genes on chromosomes 1, 3, 7, 10, 11, 12,
17, and 19 (i}. Among 13 genotypes, more than 300
mutations have been identified in the major player,
SCN5A (>75% of genotyped cases); however, a
worldwide cohort reported that SCN5A accounts only
for 11% to 28% of clinically diagnosed patients with
BrS {4}. Moreover, the majority of mutations were
found in a single family or a small number of families.
Thérefore, a genotype-phenotype correlation is not
available in most cases {1,5}.

The relatively lower yield of disease-specific ge-

netic testing except for congenital LQTS or CPVT is

due mainly to the technology of genetic testing.
Candidate gene analysis has long been used to iden-
tify a causative mutation in a gene, which is expected
to relate to the pathophysiology of each inherited
arrhythmia syndrome, such as cardiac ion channel
genes. However, causative mutations do not always
involve genes of ion channels or membrane compo-
nents. Innovative advances in molecular genetic
testing are overcoming this issue with the advent of
more powerful molecular genetic screening tools,
including genome-wide association study (GWAS)
using gene array, as well as targeted, whole-exome
and whole-genome next-generation sequencing
techniques.

Several recent GWASs have disclosed significant
association of numerous loci in some genes with
electrocardiographic markers or arrhythmia syn-
dromes. Arking et al. (6} first identified NOSi1AP
(CAPON), a regulator of neuronal nitric oxide syn-
thase, as a gene that is significantly associated with
QT-interval variation in a general population derived
from 3 cohorts {&}. Subsequently, 2 groups conducted
a meta-analysis of the GWAS and observed associa-
tions of single-nucleotide polymorphisms (SNPs) in
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several genes in addition to NOS1AP with QT interval,
suggesting that these genes are candidate genes for
LQTS or sudden cardiac death (7,8}. Several GWASs
also identified associations of SNPs in several genes,
including SCN10A, with cardiac conduction parame-
ters, such as QRS duration and PR interval {g-ii}.
Regarding associations with cardiac arrhythmias,
some SNPs in several genes, including ZFHX3 and
KCNN3, have been reported to be associated with
AF (12-14}. The association of a SNP in CXADR with
ventricular fibrillation in acute myocardial in-
farction also has been reported {i3). However, no
responsible mutations have thus far been reported
in these candidate genes in patients with clinically
diagnosed inherited arrhythmia syndromes, such as
congenital LQTS, familial AF, and familial conduction
abnormalities.

Bezzina et al. {16} recently conducted a GWAS in

312 patients with BrS with type 1 electrocardiographic:
pattern and 1,115 controls. They detected 2 significant

association signals at the SCNIOA intronic locus

(rs10428132) in chromosome 3p22 and near the HEY2

gene (1s9388451) in chromosome 6q22 with BrS.
SCN10A, which encodes the sodium channel isoform
Navi.8, was originally reported as highly expressed in
cardiac neuromns. Recent evidence indicates: that
SCN10A also is expressed in the working myocardium
and the specialized conduction system, indicating a
possible role for Nav1.8 in cardiac electrical function.
HEY2 is involved in patterning Navi.5 (SCN5A)
expression across the ventricular wall. In an experi-
ment using HEY2 knockout mouse, Bezzina et al. {15}
suggested that loss of HEY2 might affect the trans-
mural expression gradient of sodium channel impli-
cated in BrS. =

In this issue of the Journal, Hu et al. {17) report on a
clinical analysis and direct sequencing of SCN10A and
all known BrS genes in 150 unrelated patients with
BrS and 17 family members, as well as more than 200
ethnically matched healthy controls. They identified
17 SCN10A mutations in 25 of 150 patients with BrS
(a yield of 16.7%). Twenty-three of the 25 (92.0%)
displayed- overlapping phenotypes, such as early
repolarization - syndrome and cardiac conduction

JACC voL. H, NO. B, 2014
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defect. Patients with BrS with SCN10A mutations
were more symptomatic and displayed significantly
longer PR and QRS intervals than SCN10A-negative
p‘atients with BrS. Heterologous coexpression of
SCN10A mutants (R14L and R1268Q) with wild-type
SCN5A caused 79.4% and 84.4% reductions in so-
dium channel current, strongly implicating SCN10A
as a major susceptibility gene for BrS. This study
provides the first major step forward in more than
16 years in the identification of new BrS susceptibility
genes, advancing the yield for detection of a geno-
type to more than 50%.

New molécula’r' genetic screening technologies,
such as GWAS and whole-exome and whole-genome
next-generation sequencing, are promising tools for
identifying new candidate genes responsible for
inherited arrhythmia syndromes. However, no res-

_ponsible mutations have been reported in the candi-

date genes identified by GWAS in patients with

‘clinically diagnosed inherited arrhythmia syndromes.

To the best of my knowledge, the SCN10A is the first
gene to be suggested as a BrS susceptibility gene

by both GWAS and direct sequencing techniques.

Direct sequencing using the Sanger technique com-
bined with a detailed clinical analysis, including
genotype-phenotype correlation and functional
expression studies, continue to play an important
role in molecular genetic testing, even in the new era
in which gene arrays and next-generation sequencing
are available. The importance of a detailed clinical
analysis including genotype-phenotype correlation as
well as functional expression studies cannot be
overemphasized. Even in GWAS and whole-genome
or whole-exome studies, clinical misdiagnosis can
contribute to confounding genetic noise. A detailed,
precise clinical diagnosis is therefore a prerequisite
for the identification of new potential candidate
genes.
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Genetic Characteristics of Children and Adolescents With
Long-QT Syndrome Diagnosed by School-Based
Electrocardiographic Screening Programs

Masao Yoshinaga, MD, PhD; Yu Kucho, MD; Jav Sarantuya, MD, PhD;
Yumiko Ninomiya, MD; Hitoshi Horigome, MD, PhD; Hiroya Ushinohama, MD, PhD;
Wataru Shimizu, MD, PhD; Minoru Horie, MD, PhD

Background— A school-based electrocardiographic screening program has been developed in Japan. However, few data are
available on the genetic characteristics of pediatric patients with long-QT syndrome who were diagnosed by this program.

Methods and Results— A total of 117 unrelated probands aged <18 years were the subjects who were referred to our centers
for genetic testing. Of these, 69 subjects diagnosed by the program formed the screened group. A total of 48 subjects
were included in the clinical group and were diagnosed with long-QT syndrome-related symptoms, familial study, or
by chance. Mutations were classified as radical, of high probability of pathogenicity, or of uncertain significance. Two
subjects in the clinical group died. Genotypes were identified in 50 (72%) and 23 (48%) of subjects in the screened and
clinical groups, respectively. Of the KCNQI or KCNH2 mutations, 31 of 33 (94%) in the screened group and 15 of 16
(94%) 1n the clinical group were radical and of high probability of pathogenicity. Prevalence of symptoms before (9/69
versus 31/48; P<0.0001) and after (12/69 versus 17/48; P=0.03) diagnosis was significantly lower in the screened group
when compared with that in the clinical group although the QTc values, family history of long-QT syndrome, sudden
death, and follow-up periods were not different between the groups.

Conclusions— These data suggest that the screening program may be effective for early diagnosis of long-QT syndrome that
may allow intervention before symptoms. In addition, screened patients should have follow-up equivalent to clinically
identified patients. (Circ Arrhythm Electrophysiol. 2014;7:107-112.)

Key Words: diagnosis B genetic testing @ QT interval electrocardiography @ screening

Congenital long-QT syndrome (LQTS) is a genetic dis-
order characterized by delayed repolarization and by a
long-QT interval on 12-lead ECGs. Although many patients do
not have symptoms, the hallmark of the condition is syncope
or sudden death because of torsade de pointes.!? To date, 13
genes have been identified 3# There have been many reports on
the clinical and genetic backgrounds of patients with LQTS.
However, these were mainly based on data collected from
patients who had LQTS-related symptoms or familial studies
and from combined adult and pediatric populations.2*~®

Clinical Perspective on p 112

A nationwide school-based ECG screening program for
heart diseases in first, seventh, and 10th graders in Japan has
revealed children and adolescents with prolonged QT inter-
vals. The prevalence of subjects with prolonged QT intervals
was =1:1200 in the seventh grade.!® Differences in clinical

characteristics between patients who were screened by the
program and those who visited hospitals with symptoms have
been previously reported.!! However, before this study, few data
have been reported about the genetic characteristics of pediatric
patients who were diagnosed by ECG screening programs and
whose genetic testing was performed.'>™* In addition, because
of a lack of reports containing large numbers of patients who
were screened alongside genetic testing, it is unclear whether
screened subjects have similar mutations of a high possibility of
pathogenesis to those who have LQTS-related symptoms.
From the genetic testing viewpoint, the few percentage
background rate of the rare KCNQJ and KCNH2 nonsynony-
mous single nucleotide variants among healthy individuals
has lessened the ability to distinguish rare pathogenic muta-
tions from similarly rare, yet presumably innocuous, vari-
ants.’>'® Novel mutations have been found in every study,”*
but it is difficult to perform electrophysiological studies for
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each novel mutation except in large laboratories. Recently, an
algorithm designed to guide the interpretation of genetic test-
ing results for KCNQ/ and KCNH? has been developed.'¢

Thus, the aim of the present study was to determine the genetic
characteristics of pediatric patients with LQTS who were diag-
nosed by a school-based screening program and whose genetic
testing was performed and to compare results with subjects who
visited hospitals because of the presence of LQTS-related symp-
toms, familial history, or who were diagnosed by chance.

Methods

Study Population

The study population included 117 unrelated probands <18 years of
age who were referred to the Department of Pediatrics, Kagoshima
University Hospital, Japan, between November 1993 and March 2005
or to the National Hospital Organization Kagoshima Medical Center
from April 2005 to December 2012 for genetic evaluation. The pop-
ulation included 69 subjects who were screened by a school-based
ECG screening program (Table 1). In the present study, LQTS-related
symptoms were defined as syncope, aborted cardiac arrest, or sudden
cardiac death at <30 years old. Subjects were divided into 2 groups on
the basis of index events: subjects who were diagnosed by the school-
based ECG screening program (screened group) and those who visit-
ed hospitals because of the presence of symptoms and family history
or who were diagnosed by chance (clinical group; Table 1).

Diagnosis of LQTS and Screening of QT Intervals
in the School-based ECG Screening Program

The present study was a retrospective study, and diagnosis of LQTS
and screening for prolonged QT intervals was based on the judg-
ment of the chief medical doctors in each hospital or doctors who

Table 1.  Characteristics of Probands
Subjects Screened Group  Clinical Group P Value
No. of subjects 69 48
Age at diagnosis* 10.4x3.4 7.4+8.0 0.04
Age at diagnosis (median 12.2(6.2-18.8) 8.9(0-17.2)
and range)
Sex (men/women) 36/33 27121 0.66
Mean QT interval, ms* 46651 442:+83 0.09
Mean RR interval, ms* 887+170 802+261 0.09
QTc (Bazett), ms"#* 49640 502+52 0.84
History of symptomst 9 (13%) 31 (65%) <0.0001
Syncope 9 28
Aborted cardiac arrest 0 7%
Family history of long-QT 27 (39%) 18 (38%) >0.99
syndromet
Family history of sudden deatht 5 (7%) 7 (15%) 0.23
Follow-up periods* 4.6+4.9 5.2+57 0.36
Symptoms after diagnosist 12 (17%) 17 (35%) 0.03
Syncope 12 17
Aborted cardiac arrest 0 28
Sudden cardiac death 0 2#

*The mean value=SD.

tNumber of subjects and percentage in parenthesis.

$0f 7 subjects with aborted cardiac arrest (ACA), 4 experienced both syncope
and ACA.

#0f each 2 subjects with ACA or sudden cardiac death (SCD), all 4 subjects
experienced syncope and ACA or SCD.
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participated in the program in each area. Many Japanese cardiolo-
gists use a scoring system published in 1993" and recently' for the
final diagnosis of LQTS. To screen subjects with prolonged QT in-
tervals in the program, the Japanese Society of Pediatric Cardiology
and Cardiac Surgery recommended that children and adolescents be
screened when they have a QTc value, using Bazett formula, of 2450
ms at a heart rate of <75 beats per minute or a QT'¢2500 ms at a hours
of 275 beats per minute.® Bazett formula overcorrects the QT inter-
val at high heart rates. Pediatric cardiologists who participated in the
program used age- and sex-specific criteria using an exponential for-
mula (QT/RR®*")* or Fridericia formula.”? In the screening program,
cardiologists use computer-based QTc values as a reference because
all ECG machines used in Japan are generally equipped with a func-
tion for automated measurement of QT intervals. However, manual
measurement using the tangent method is usually applied to obtain
QT intervals in Japan.?*#

Genetic Testing

Referral for genetic testing was based on the opinion of the chief
medical ‘doctors in the present study. Pediatric cardiologists in the
present study recommended genetic testing based on the following
criteria: (1) for a patient in whom they had established a strong clini-
cal index of suspicion for LQTS based on examination of the patient’s
clinical history, family history, and expressed ECG phenotype or; (2)
for an asymptomatic patient with QT prolongation in the absence of
other clinical conditions that might prolong the QT interval, as de-
tailed in the recent consensus recommendation report.2*

Genomic DNA was isolated from blood after obtaining written in-
formed consent. Genetic screening for all exons of KCNQJI, KCNH2,
SCN5A, KCNEI, KCNE2, KCNJ2, and CAV3 was reperformed for
the present study using polymerase chain reaction and direct DNA
sequencing. When a patient was suspected to have Timothy syn-
drome, which is a multisystem disorder characterized by cardiac (QT
prolongation and sometimes congenital heart diseases), hand/foot,
facial, and neurodevelopmental features, the exons of CACNAIC
were amplified. When a patient had a prolonged QT interval and hy-
peraldosteronism, the exon of KCNJ5 was amplified. The exons of
ANKB, SCN4B, AKAP9, and SNTAI were not analyzed because of
a lack of reported cases of these mutations in the Japanese popula-
tion. Genomic DNA was isolated using a QlAamp DNA Blood Midi
Kit (Qiagen, Gaithersburg, MD). Polymerase chain reaction products
were purified using AMPure (Beckman Coulter, Brea, CA). After
treating with BigDye Terminator version 1.1 Cycle Sequence Kit
(ABI, Warrington, United Kingdom) and BigDye X Terminator, direct
sequencing was performed by a genetic analyzer, ABI3130x1 Genetic
Analyzer (ABI). The study was approved by the Ethics Committee
of the Kagoshima University Hospital between November 1993 and
March 2005 and the National Hospital Organization Kagoshima
Medical Center from April 2005.

Nucleotide changes reported as single nucleotide polymor-
phisms'®# were excluded from mutation analysis in the present study.
However, amino acid changes of G643S in KCNQI%* and D85N in
KCNEI* were included in the present study because previous reports
have shown that these mutations are associated with an =30% reduc-
tion in potassium channel currents.?**” When multiple mutations were
present, each mutation was counted in each genotype.

Mutations of High Probability of Pathogenicity
Mutations of a high probability of pathogenicity were based on data
published by Giudicessi et al.'¢ Radical mutations included splice-
site, nonsense, frame-shift, and insertion/deletions.'® Mutations of a
high probability of pathogenicity in the present study were defined
as those present in the subunit assembly domain of the C-terminal
of KCNQI, the Per-Amt-Sim domain, Per-Arnt-Sim-associated
C-terminal domain, and the cyclic nucleotide-binding domain of
KCNH2. Mutations present in the transmembrane/linker/pore and
C-terminal regions of KCNQJ and the transmembrane/linker/pore
regions of KCNH2 were also defined as those of a high probability
of pathogenicity.'* Remaining mutations were defined as those of un-
certain significance.
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Statistical Analysis

Differences in the mean values and prevalence values were examined
using the Mann—Whitney U test and Fisher exact probability test, re-
spectively. Tukey multiple comparison test was used to assess differ-
ences in the mean QTc¢ values among first, seventh, and 10th graders.
Statistical analysis was performed using IBM SPSS Statistics version
21.0 (IBM Japan, Ltd, Tokyo, Japan). A 2-tailed P value of <0.05 was
considered statistically significant.

Results

Population

Characteristics of the 117 subjects, including 69 screened and
48 clinical patients, are shown in Table 1. Of the 48 subjects
included in the clinical group, 36 were diagnosed with LQTS-
related symptoms, 6 were diagnosed by familial study, and
6 were diagnosed by chance. Subjects who were diagnosed
by chance included those who visited hospitals for medical
checks and for examination of heart murmurs at 1 month (4
patients), those who had been followed with Kawasaki disease
(1 patient), and as Ehlers—-Donlos syndrome (1 patient). There
were no differences in sex, mean QTc values, family history
of LQTS, family history of sudden death, or follow-up period
between the screened and clinical groups. The mean age was
lower in the clinical group when compared with the screened
group (P=0.04). Prevalence of subjects having LQTS-related
symptoms before and after diagnosis was significantly lower
in the screened group when compared with that in the clinical
group (P<0.001 and P=0.03, respectively). Symptoms before
and after diagnosis in the screened group were all syncope. Of
117 subjects, 2 subjects in the clinical group died. A girl had
a history of aborted cardiac arrest at 2 months, and died sud-
denly in her sleep at 5 years of age. An 11-year-old boy had
frequent symptoms and died suddenly during class. Genetic
analysis failed to show the presence of any of the mutations
analyzed in this study. The treatment of subjects with symp-
toms during follow-up period is shown in Table I in the online-
only Data Supplement.

Mutations Determined in the Present Study

The yield of genetic testing in the present study by QTc val-
ues using Bazett formula is shown in Table II in the Data
Supplement. The data show that there was no difference in
yield between subjects with a QTc<500 ms and those with a
QTc=500 ms in both screened and clinical groups in the pres-
ent study. Of 50 subjects who were screened and whose muta-
tions were identified, 29, 18, and 3 subjects were screened in
the first, seventh, and 10th grade, respectively. Their QTc val-
ues using Bazett formula were 491+35, 503+43, and 500+49
ms, respectively. There were no differences in QTc values
among the screened periods. Of 117 subjects, mutations were
found in 50 of 69 (72%) screened and 23 of 48 (48%) clinical
subjects (Table III in the Data Supplement). The prevalence of
LQT1, LQT2, and LQT3 between the 2 groups was not differ-
ent. LQTS-related mutations in the present study are summa-
rized in Table IV in the Data Supplement.

Genetic Characteristics of Subjects
All mutations found in KCNQI from 18 mutations in the
screened and 9 mutations in the clinical groups were located

Genetic Characteristics of Screened Patients With LQTS
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in regions of a high probability of pathogenicity (Table 2;
Figure 1A and 1B). In the screened group, 8 mutations were
located in the transmembrane/linker/pore regions and 10 were
present in the C-terminal regions (Figure 1A). Three mutations
were radical and 1 mutation was present in the subunit assem-
bly domain. About the association between locations of muta-
tion and the presence or absence of LQTS-related symptoms,
14 (78%) of 18 mutations were associated with the presence of
symptoms in probands and family members, including 4 (22%)
with family history of sudden death in the screened group.
Eight of 9 mutations in the clinical group were associated with
the presence of symptoms, and the remaining mutation was
found in a subject who was diagnosed by a familial study.

Among mutations yielded in KCNH2, 13 (87%) of 15 muta-
tions in the screened group and 6 (86%) of 7 mutations in the
clinical group were located in regions of a high probability of
pathogenicity (Table 2; Figure 2A and 2B). In the screened
group, 1 mutation was both radical and present in the cyclic
nucleotide-binding domain. Another 5 mutations were radi-
cal, and 1 each was present in Per-Arnt-Sim and Per-Arnt-
Sim-associated C-terminal regions. However, only 4 (31%)
of 13 mutations were associated with the presence of LQTS-
related symptoms in probands or family members in the
screened group. In the clinical group, 6 (86%) of 7 mutations
were associated with the presence of symptoms in probands
and family members, and the remaining mutation was found
in a subject by ECG screening during a medical check-up at
1 month.

Discussion
Mutations in subjects with LQTS who were diagnosed by
school-based ECG screening programs were mostly of high
possibility of pathogenicity, similar to clinical subjects.
Clinical background, such as QTc values, family history of
LQTS, or sudden death, and follow-up periods, was not dif-
ferent between the 2 groups. However, prevalence of symp-
toms before and after diagnosis in the screened group was
significantly lower when compared with the clinical group.

Table 2. Number of Patients With Mutations at High Risk
in Each Group

Screened Clinical P

Genes Mutations Group  Group Value
KCNQT* Radical mutationt 4 1 >0.99
High probabilityt 14 8 0.59

Variants of uncertain significance 0 0 >0.99

KCNH2t Radical mutationt and high probabilityf 1 1 0.53
Radical mutationt 5 1 0.66

High probability: 7 4 0.73

Variants of uncertain significance 2 1 >0.99

*Variants of uncertain significance include mutations other than radical or of
high probability of pathogenicity.

‘tRadical mutations include splice-site, nonsense, frame-shift, and insertion/
deletions.

tMutations of high probability include subunit assembly domain,
transmembrane/linker/pore, and C-terminal regions of KCNQ7, and the
Per-Arnt-Sim (PAS) domain, PAS-associated C-terminal domain, the cyclic
nucleotide-binding domain, transmembrane/linker/pore region of KCNHZ.
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Figure 1. Topological depiction of KCNQT7 in the present study in
the screened (A) and clinical (B) groups. Mutations found in the
screened group are shown as boxes (A) and those in the clinical
group as circles (B). Each box or circle is divided into 2 parts: left
and right sides. Each part represents the presence or absence of
long-QT syndrome-related symptoms in probands (left) and fam-
ily members (right), respectively. Green, brown, and red colors
symbolize no symptoms, syncope or aborted cardiac arrest, and
sudden death, respectively. Bold red circles surrounding muta-
tions represent radical mutations. A bold blue circle represents
subunit assembly domain. Two big purple circles symbolize loca-
tions of transmembrane/linker/pore and C-terminal regions of
KCNQ1.

These data suggest that screening programs may be effective
for early diagnosis of LQTS and prevention of symptoms, and
that screened patients should be followed similar to clinical
patients.

Clinical and genetic backgrounds of patients with LQTS
have been reported widely for infants, children, adolescents,
and adults>® These data were mostly based on symptom-
atic probands and family members. Few data are available
on the genetic background of subjects who were diagnosed
by ECG screening programs. Schwartz et al'? reported that
LQTS-related mutations were identified in 16 neonates of
43 080 who underwent neonatal ECG screening; 8 KCNQI,5
KCNH2, and | each of KCNE] and KCNE?2. One infant had a
digenic mutation of KCNQ/ and KCNH2.

February 2014
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Figure 2. Topological depiction of KCNH2 in the present study

in the screened (A) and clinical (B) groups. Explanations of sym-
bols and shapes are the same as in Figure 1. Bold blue circles
surrounding mutations in this figure represent Per-Arnt-Sim
(PAC), PAC-associated C-terminal, and cyclic nucleotide-binding
domains, respectively, from the left side. A big purple circle sym-
bolizes locations of transmembrane/linker/pore regions.

A school-based ECG screening program for heart diseases
was initiated in 1994 for first, seventh, and 10th graders in
Japan. The program screened subjects with QT prolongation.
However, few studies have confirmed the genetic background
in these screened subjects.'>!* Hayashi et al’® reported that
mutations were identified in 3 subjects with high or inter-
mediate probabilities of LQTS using Schwartz criteria from
7961 school children; all 3 mutations were present in KCNHZ.
Yasuda et al** reported that KCNQ mutations were found in 8
of 13 pediatric patients and that 7 of 8§ patients were diagnosed
by the ECG screening program.

In the present study, a relatively large number of subjects,
who were diagnosed by ECG screening programs accom-
panied by genetic testing, were included. The clinical back-
grounds of the screened subjects, such as QTc values, family
history of LQTS, or sudden death, were similar to clinical
subjects. All 16 mutations in the KCNQ1 gene in the screened
group were radical or of high probability of pathogenicity
similar to the clinical group. The ratio of mutations of radical
and of high probability of pathogenicity in the KCNH2 gene
in the screened group (13/15; 87%) was remarkably similar
to that in the clinical group (6/7; 86%). These data suggest
that pediatricians, who asked for genetic testing in the pres-
ent study, chose patients with similar clinical backgrounds in
both groups, and that demand for genetic testing was more
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prevalent in screened patients when compared with clinical
patients when ECG screening was developed in Japan.

Conversely, prevalence of symptoms before and after diag-
nosis was significantly lower in the screened group when
compared with that in the clinical group. A low prevalence
of symptoms before diagnosis suggests that the ECG screen-
ing program is effective for early diagnosis of LQTS. The
reason for low prevalence of symptoms after diagnosis in the
screened group is uncertain. Doctors may recommend pedi-
atric patients with LQTS and their parents adopt changes to
their lifestyles, for example, not doing vigorous exercise, not
swimming a lap, and not diving,”® in both the screened and
clinical subjects. The precise reason remains to be clarified.

The reason for no difference in the prevalence of family his-
tory between the screened and clinical groups is unclear. The
authors posit that even now in Japan the general population
may not be familiar with LQTS, and that the parents in the
present study did not think that syncope in their children was
a serious condition. In addition, they may have been unaware
that LQTS is an inherited disease. The reason of the high
prevalence of family history of LQTS in the screened group
is also unclear. The authors speculate that doctors did not ask
the parents (grandparents of the probands in the present study)
to perform familial studies 2 or 3 decades ago, when parents
of the probands of the present study and their family mem-
bers experienced symptoms at younger ages; however, no data
were obtained addressing this hypothesis from the families.

There are some limitations of the current study. First, we did
not discuss subjects with the SCN5A gene. One fourth of pedi-
atric patients with LQTS had the SCN5A gene. We need simi-
lar algorithms designed to guide the interpretation of genetic
testing results for the SCN5A mutation and to determine the
possibility of pathogenesis in patients with SCN5A in the
future. Second, the clinical group showed a low rate (48%)
of genotypic determination. We could not find mutations in
2 cases of death in the present study. The reasons for this are
unclear. One potential reason was that we did not screen copy
number variations in genes associated with LQTS.*3° Eddy
et al® and Barc et al*® reported that 3 of 26 (12%) and 3 of
93 (3%) unrelated mutation-negative probands showed copy
number variations, indicating that some mutation-negative
patients may have copy number variations. Another reason
may be that numerous previously undetected mutations exist
in symptomatic patients.

In conclusion, mutations in subjects with LQTS who were
diagnosed by screening programs had a high probability of
pathogenicity similar to clinical subjects. Clinical back-
grounds were not different although the prevalence of symp-
toms before and after diagnosis in the screened group was
significantly lower when compared with that in the clinical
group. These data suggest that the school-based screening
program may be effective for early diagnosis of LQTS and
prevention of symptoms, and that screened patients should
have follow-up equivalent to clinical patients.
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CLINICAL PERSPECTIVE

This study aimed to determine the genetic characteristics of 69 pediatric patients with long-QT syndrome who were diag-
nosed by a school-based screening program (screened group) and in whom genetic testing was performed. The screened
group was compared with 48 subjects who visited hospitals because of the presence of long-QT syndrome-related symp-
toms, familial history, or who were diagnosed by chance (clinical group). A recently developed algorithm, designed to
guide the interpretation of genetic testing results for KCNQ! and KCNH2, enabled us to classify the mutations as probably
pathogenic or variant of uncertain significance. Using the algorithm, the authors found that of mutations yielded in KCNQ1
or KCNH2, 31 of 33 (94%) mutations in the screened group and 15 of 16 (94%) mutations in the clinical group were radical
and of high probability of pathogenicity. They also found that prevalence of symptoms before (P<0.0001) and after (P=0.03)
diagnosis was significantly lower in the screened group when compared with that in the clinical group although the QTc
values, family history of long-QT syndrome, sudden death, and follow-up periods were not different between the groups.
Demand for genetic testing is now more prevalent in screened patients when compared with clinical patients because ECG
screening was developed in Japan. This study may help to clarify the benefits of ECG screening. In addition, this study pro-
vides valuable genetic information and confirms that patients identified by ECG screening have the condition and are similar
in many ways to those identified via a clinical setting.

Downloaded from htip://circep.ahajournals.org/ by MASAO YOSHINAGA on March 6, 2014

57




Yosuke Kokunai, MD,
PhD*

Tomohiko Nakara, MD*

Mitsura Furuta, MD*

Souhei Sakata, PhD

Hiromi Kimura, MD,
PhD

Takeshi Aiba, MD, PhD

Masao Yoshinaga, MD,
PhD

Yusuke Osaki, MD

Masayuki Nakamori,
MD, PhD

Hideki Itoh, MD, PhD

Takako Sato, MD, PhD

Tomoya Kubota, MD,
PhD

Kazushige Kadota, MD,
PhD

Katsuro Shindo, MDD,
PhD

Hideki Mochizuki, MD,
PhD

Watara Shimizu, MD,
PhD

Minoru Horie, MD, PhD

Yasushi Okamura, MD,
PhD

Kinji Ohno, MD, PhD

Masanori P. Takahashi,

MD, PhD

Correspondence to

Dr. Takahashiz
mrakahas@uneurol.med.osaka-u.
ac.jp

Bupplemental data at
Neurology.org

A Kir3.4 mutation causes Andersen— [ awil
syndrome by an inhibitory effect

on Kir2.1

ABSTRACT

Objective: To identify other causative genes for Andersen-Tawil syndrome, which is characterized by
a triad of periodic paralysis, cardiac arrhythmia, and dysmorphic features. Andersen-Tawil syndrome is
caused in a majority of cases by mutations in KCNJ2, which encodes the Kir2.1 subunit of the inwardly
rectifying potassium channel.

Methods: The proband exhibited episodic flaccid weakness and a characteristic TU-wave pattern,
both suggestive of Andersen-Tawil syndrome, but did not harbor KCNJ2 mutations. We performed
exome capture resequencing by restricting the analysis to genes that encode ion channels/associ-
ated proteins. The expression of gene products in heart and skeletal muscle tissues was examined by
immunoblotting. The functional consequences of the mutation were investigated using a heterolo-
gous expression system in Xenopus oocytes, focusing on the interaction with the Kir2.1 subunit.

Results: We identified a mutation in the KCNJ5 gene, which encodes the G-protein-activated
inwardly rectifying potassium channel 4 (Kir3.4). Immunoblotting demonstrated significant
expression of the Kir3.4 protein in human heart and skeletal muscles. The coexpression of
Kir2.1 and mutant Kir3.4 in Xenopus occytes reduced the inwardly rectifying current significantly
compared with that observed in the presence of wild-type Kir3.4.

Conclusions: We propose that KCNJ5 is a second gene causing Andersen-Tawil syndrome. The

inhibitory effects of mutant Kir3.4 on inwardly rectifying potassium channels may account for the
clinical presentation in both skeletal and heart muscles. Neurology® 2014;82:1-7

GLOSSARY
cRNA = complementary RNA; LQT = long QT; SNP = single nucleotide polymorphism; SNV = single nucleotide variant.

Periodic paralysis is a heterogencous disorder caused by mutations in several ion channel genes,
including sodium, calcium, and potassium channels.” Andersen—Tawil syndrome is a form of
periodic paralysis that is characterized by a triad of periodic muscle weakness, cardiac arrhythmia,
and dysmorphic features.*> Although dominantly inherited, its phenotypes are highly variable and
its penetrance is low.%” The syndrome has been proposed as LQT7; however, the ECG features are
distinct from those of classic forms of long QT (LQT) syndrome, Le., characteristic TU patterns,
including enlarged U waves, a wide TU junction, and a prolonged terminal T-wave downslope.*®

KCNJ2 mutation, which encodes the Kir2.1 subunit, causes Andersen—Tawil syndrome.” Kir2.1
is predominantly expressed in the brain, heart, and skeletal muscles and forms an inwardly rectifying
potassium channel via the homo- or heteromeric assembly of 4 Kir2.x subunits.'® Most KCN/2
mutations cause loss of function or dominant-negative suppression of the inwardly rectifying

*These 3 authors conuibuted equally o this work.
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