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| Abstract

Mutations in the MYO75A gene located on chromosome 17p11.2, are responsible for non-syndromic autosomal :
i recessive profound hearing loss (DFNB3). Direct sequencing of 96 Japanese families with profound congenital
i hearing loss revealed one family with a novel homozygous mutation in MYO75A, a T to Atransition at the nucleotide :

of 9413 (c.9413T>A) that encodes the MyTh4 domain of the protein (p. L3138Q). This is the first report of an East

i Asian hearing loss patient with a MYO75A mutation.
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Introduction

Hearing loss is one of the most common communication disorders
in humans, affecting millions of individuals worldwide. To date, 95 loci
for autosomal recessive sensorineural hearingloss (ARSNHL) have been
reported and at 41 of these loci, the causative genes have been identified
(Hereditary Hearing Loss Homepage: http://hereditaryhearingloss.
org/). MYOI5A is comprised of 66 exons distributed across 71 kbp
of DNA on chromosome 17p11.2. The MYOI5A mRNA transcript
encodes a 3530 amino acid protein in its longest form. MYOI5A has
MyTh4 (Myosin-Tail like Homology region 4) domains, FERM (4.1
protein, Ezrin, Radixin, and Moesin) motifs, a SH3 (Src Homology 3)
domain, and the PDZ domain.

In humans, 36 different MYOI5A mutations have been reported
and 35 of these cause congenital profound ARSNHL. The remaining
MYOI5A mutation was a heterozygous missense mutation detected in
a Smith-Magenis syndrome patient who had moderate sensorineural
hearing loss.

In this report, we describe the first identified novel missense
MYOI5A mutation in a Japanese ARSNHL patient together with a
review of the previous literature. This mutation is located in a MyTh4
domain and is thought to disrupt normal MYOI15A function, resulting
in congenital hearing loss.

Subjects

DNA samples from 96 independent subjects who had profound
congenital ARSNHL were collected from 33 ENT departments
nationwide in Japan. All subjects gave prior written informed consent
for participation in the project, which was approved by each hospital’s
ethical committee. Anamnestic and physical examinations were
performed to exclude those with syndromic symptoms, outer and/or
middle ear diseases, and environmental factors such as premature birth,
or newborn meningitis. Controls were 192 Japanese healthy individuals
with normal hearing confirmed by pure tone audiometry.

Mutation Analysis

All of the MYOI5A exons were amplified using gene-specific
primers described elsewhere [1]. PCR reactions were performed
with 25 pl in 1.5 mM MgCl,, 100 mM of each dNTP, 1U of Taq DNA
polymerase, and 2 mM forward and reverse primers. After an initial
denaturation at 95°C for 90 seconds, amplification was performed for
35 cycles of 95°C for 45 seconds, 60°C for 45 seconds, and 72°C for 2
minutes. Then, a final extension was performed at 72°C for 5 minutes.

Sequencing was performed with a BigDye™ vI.1 Terminator Cycle
Sequencing kit (Applied Biosystems, Foster City, CA), according to the
manufacturer’s instructions. Sequencing products were analyzed by an
ABI PRISM* 3100 Genetic Analyzer (Applied Biosystems, Foster City,
CA, USA).

Computer analysis to predict the effect of missense variants on
MYOI5A protein function was performed with Sorting Intolerant from
Tolerant (SIFT; http://sift.jevi.org/), and Polymorphism Phenotyping
(PolyPhen2; http://genetics.bwh.harvard.edu/pph2/).

Results

Direct sequencing revealed a novel homozygous mutation of
MYOI5A at exon 57 (c.9413T>A) in one patient (Figure 1). This
mutation (p. L3138Q) is located in the MyTh4 domain of the myosin
15a protein, and is predicted to be pathologic by prediction programs
(Table 1). We also confirmed that the patient’s father and mother
had heterozygous mutations and that the mutation was absent in
the controls. The patient had no mutations in GJB2, the gene most
frequently involved with hearing impairment in Japanese, nor in
mitochondrial 1555A>G.

In detail, the patient was a female with congenital severe to
profound sensorineural hearing loss. At age one, her mother became
aware of her hearing impairment because she did not speak. The
patient visited the hospital for genetic testing the age of 17 (Figure 1).
Computed Tomography examination indicated that she did not have
any malformations, such as ossicular anomalies, cochlear hypoplasia,
vestibular dilation or enlarged vestibular aqueduct. In addition, she
had no history of vertigo. Her sister also had severe congenital hearing
loss, but her parents, brother, and other relatives did not have hearing
impairment (Figure 1). DNA samples were not obtained from her
siblings.
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Figure 1: Family pedigree, audiogram of the patient, and lectropherogram analysis of MYO15A in the family. A novel homozygous mutation of
MYO15A at exon 57 (€.9413T>A) is found in a patient with congenital severe to profound sensorineural hearing loss.

We also found other heterozygous variants: ¢.6824delG, p.G1441V, Discussion
p-G1220R, and p.53474G, each in a different independent patient, and

none being found in the controls (Table 1). Myosin 15a protein is required for normal auditory function,
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therefore MYOI5A mutations cause ARSNHL. Mutations in this
gene also cause the shaker 2(sh2) phenotype in mice. Sh2 mice are
characterized by a vestibular defect and profound hearing loss [2,3] but
such vestibular defects are not found in human carriers of MYOI5A
mutations. The stereocilia of hair cells of the sh2 mice are short and lack
the characteristic staircase-like pattern [4].

In our patient, the novel MYO15A mutation located in the MyTH4
domain caused sensorineural hearing loss. In addition, this is the first
MYOI5A mutation found in an East Asian population. To date, 43
mutations in MYOI15A were reported. Type of mutations, domains,
and clinical features are summarized in Table 2 [1,5-15]. All MYOI5A
mutations previously reported were found in prelinguistic or congenital
hearing loss patients, except for one Smith-Meganis syndrome patient
[6]. Our patient had prelingual profound hearing loss, consistent with
previous reports.

Of the 43 reported MYOI5A mutations, six were missense
mutations in the MyTH4 domains. Five of those six were found in
homozygous state: p.N2111Y in Indians [5]; p.I2113F in Indonesians
[5); pR2124Q and p.P2073S in Iranians [1}; and p. L3160F in a
Pakistani family [7]. The sixth missense mutation was a heterozygous
mutation, p. T2205L, in a North American family affected by Smith-
Magenis syndrome [6] (Table 2).

Furthermore, based on the prediction programs, two missense
mutations, p. G1441V, p. L3138Q, are predicted to be pathologic
variants (Table 1). However, except for p. L3138Q, all variants found in
this study were identified as heterozygous and no associated mutation
was found in the other allele.

The structure of the MyTH4 domain has not been fully
characterized. In other myosins, it has been implicated in microtubule
binding as well as actin binding to the plasma membrane. Some data
suggest that the MyTH4/FERM domains are required for localization
of Myosin15a to stereocilia tips. The co-localization of Myosinl5a and
whirlin proteins appears essential to form the complex at the stereocilia
tips [16]. From our data combined with previous reports, the MyTH4
domain mutations interfere with the interaction between Myosinl5a
and whirlin, preventing the formation of the complex required for
normal hearing [1]. MYOI5A mutations have been found in each
domain (Motor, MyTH4, N-terminal extension, FERM, and SH3) and
caused similar clinical features including hearing level, implying the
overall importance of MYOI5A protein in cochlear function.
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ORIGINAL ARTICLE

Mutation spectrum and genotype—phenotype
correlation of hearing loss patients caused by
SLC26A4 mutations in the Japanese: a large
cohort study

Maiko Miyagawa!, Shin-ya Nishio!, Shin-ichi Usami! and The Deafness Gene Study Consortium?

Mutations in SLC26A4 cause a broad phenotypic spectrum, from typical Pendred syndrome to nonsyndromic hearing loss
associated with enlarged vestibular aqueduct. Identification of these mutations is important for accurate diagnosis, proper
medical management and appropriate genetic counseling and requires updated information regarding spectrum, clinical
characteristics and genotype-phenotype correlations, based on a large cohort. In 100 patients with bilateral enlarged vestibular
aqueduct among 1511 Japanese hearing loss probands registered in our gene bank, goiter data were available for 79, of whom
15 had Pendred syndrome and 64 had nonsyndromic hearing loss. We clarified the mutation spectrum for the SLC2644
mutations and also summarized hearing levels, progression, fluctuation and existence of genotype-phenotype correlation.
SLC26A4 mutations were identified in 82 of the 100 patients (82.0%). Of the Pendred syndrome patients, 93% (14/15) were

carriers, as were 77% (49/64) of the nonsyndromic hearing loss patients. Clinical characteristics of patients with SLC2644
mutations were congenital, fluctuating and progressive hearing loss usually associated with vertigo and/or goiter. We found no
genotype-phenotype correlations, indicating that, unlike in the case of GJB2 mutations, the phenotype cannot be predicted
from the genotype. Our mutation analysis confirmed the importance of mutations in the SLC26A4 gene among hearing loss
patients with enlarged vestibular aqueduct and revealed the mutation spectrum, essential information when performing genetic

testing.

Journal of Human Genetics advance online publication, 6 March 2014; doi:10.1038/jhg.2014.12

Keywords: congenital hearing loss; DFNB4; enlarged vestibular aqueduct; goiter; Pendred syndrome; SLC26A4

INTRODUCTION

Based on our genetic screening, SLC26A4 is the second most common
responsible gene in Japanese deafness patients.! Mutations in the
SLC26A4 gene are known to be responsible for a broad phenotypic
spectrum, from typical Pendred syndrome to nonsyndromic hearing
loss with enlarged vestibular aqueduct (EVA). The prevalent
association of SLC26A4 mutations in these patients (90% in
Pendred syndrome and 78.1% in nonsyndromic hearing loss
associated with EVA) indicates the importance of this gene in the
pathophysiology of this category of hearing impairment.? More
than 160 mutations have been found in SLC26A4 (Pendred/BOR
Homepage, http://www.healthcare.uiowa.edu/labs/pendredandbor/),
and different mutational spectrums among different ethnic groups
have been reported? The identification of SLC26A4 mutations
enables more appropriate genetic counseling and proper medical
management for these patients. For such clinical application, updated
information regarding mutation spectrum, clinical characteristics and

genotype~phenotype correlations based on a large cohort is needed.
In addition to our previous reports!” the present study was
performed using a large cohort of patients to collect updated data
and summarize these data to enable more precise decision making by
ear, nose and throat clinicians.

MATERIALS AND METHODS

Subjects

Data on 1511 independent probands and 1545 family members were collected
from 33 ear, nose and throat departments nationwide in Japan and registered
in our gene bank. All subjects or next of kin, caretakers or guardians on behalf
of the minors/children gave prior written informed consent for participation in
the project, and the Shinshu University Ethical Committee as well as the
respective Ethical Committees of the other participating institutions of the
Deafness Gene Study Consortium (Hokkaido University, Hirosaki University,
Iwate Medical University, Tohoku University, Yamagata University, Fukushima
Medical University, Jichi Medical University, Gunma University, Nihon
University, Nippon Medical School, Nippon Medical School Tama Nagayama

I Department of Otorhindlaryngology, Shinshu University School of Medicine, Matsumoto, Japan

2Participating institutions: see Acknowledgments
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Hospital, Jikei University, Toranomon Hospital, Kitasato University, Hama-
matsu Medical University, Mie University, Shiga Medical Center for Children,
Osaka Medical College, Hyogo College of Medicine, Kobe City Medical Center
General Hospital, Wakayama Medical University, Okayama University, Yama-
guchi University, Ehime University, Kyushu University, Fukuoka University,
Nagasaki University, Kanda ENT Clinic, Miyazaki Medical College, Kagoshima
University and Ryukyus University) approved the study.

Computerized tomography scan was used to diagnose EVA (according to the
criteria of EVA: a diameter of > 1.5 mm at the midpoint between the common
crus and the external aperture), and they were clinically well characterized by
repeated auditory examinations.

The 100 subjects (51 males and 49 females) from among the 1511 probands
who met the criteria of bilateral EVA and who ranged in age from 0 to 59 years
with a mean age of 13.9 years at the time of examination were enrolled in
the current study. Fifteen subjects had Pendred syndrome and 64 had
nonsyndromic hearing loss.

The controls were 192 unrelated Japanese healthy individuals with normal
hearing evaluated by auditory testing.

Mutation analysis
To identify SLC26A4 mutations, a DNA fragment containing all the exons of
SLC26A4, including flanking intronic sequences, was sequenced as described
elsewhere.* New variants were tested in 192 unrelated normal hearing controls.
Possible pathologic mutations were defined as (1) mutations found to be
homozygotes or compound heterozygotes (and determined by segregation
study); (2) variants that were not found, or were very few, in the 192 control
subjects; and (3) amino acids that were well conserved among various species.

Clinical evaluations

Hearing levels were determined by pure-tone audiometry in adults. For the
young patients, conditioned orientation response audiometry or auditory
steady-state response was used. Clinical data, including hearing loss progres-
sion, fluctuation, episodes of tinnitus and vestibular dysfunction (vertigo,
dizziness) and goiter, were collected by anamnestic evaluation. For genotype-
phenotype correlation analysis, one-way analysis of variance (Tukey’s honest
significant difference (HSD) test), Kruskal-Wallis test and multivariate
statistics (multiple regression analysis and logistic regression analysis)
were used.

RESULTS
SLC26A4 mutation spectrum
There were a total of 39 SLC26A4 mutations found in the probands
with bilateral EVA (Table 1). These mutations were either homo-
zygous, compound heterozygous or heterozygous with no other
mutations being detectable. There were two nonsense mutations
(p.S610X, p.L727X), three deletion frameshift mutations (c.322delC,
¢.917delT, ¢.1219delCT) and three insertion frameshift mutations
(€.139insC, ¢.1652insT, c.2111lins GCTGG). Seven splice site muta-
tions were found (c.416-1G>A, c600+1G>T, c.601-1G>A,
¢919-2A>G, ¢.1001 + 1G> A, ¢.1002-9A>G and ¢.1707 +5G > A).
There were 24 missense mutations (p.P76S, p.T94l, p.P123S,
p-M147V, p.P297Q, pK369E, p.A372V, pN392Y, p.G396E,
p.TA10M, p.A434T, p.G439R, p.S448L, p.T527P, p.1529S, p.S5321,
p.C565Y, p.R581S, p.S657N, p.V659L, p.S666F, p.T721M, p.H723R
and p.H723Y). To evaluate the evolutionary conservation of the
amino acids affected by these missense mutations, we made an
alignment of the SLC26A4 amino acid sequence of four mammalian
species: human, rat, cow and mouse. On the basis of this alignment,
all missense mutations had changed evolutionary conserved amino
acids. Of these mutations, nine variants had not been reported. We
checked the 192 control subjects with normal hearing, but with the
exception of p.H723R in 1 case, no mutations were detected.
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Sequencing identified mutations in 82 of the 100 patients (82.0%).
Mutations were detected in 93% of those with Pendred syndrome
(14/15) and 77% (49/64) of those with nonsyndromic hearing loss. Of
these, 15/100 (15.0%) were homozygous, 51/100 (51.0%) were
compound heterozygous and 16/100 (16.0%) were heterozygous
(Table 2).

The most frequent mutation was p.H723R that accounted for
36.0%, and the second was ¢.919-2A>G found in 7.0%, followed by
c.1707 +5G>A (4.0%). Frequency of the other 36 mutations was
very low (0.5-2.0%).

Clinical findings
Table 2 shows the clinical details for the 100 subjects.

The subjects had an average hearing level of 80.9dB (7.5-112.5dB),
with hearing loss that was mild in 5, moderate in 22, severe in 37,
profound in 19 and unknown in 12. Regarding onset age of hearing
loss, 45 patients were congenital, 18 were prelingual (1-3 years old),
20 were from 4 to 14 years and 17 were unknown. These results
clearly indicated that early onset is dominant in patients with EVA.
Also, 70 patients (70%) showed progressive hearing loss and 56
patients (56.0%) felt fluctuation of hearing. With regard to the 79
patients for whom data on vertigo were available, 41 patients
complained of vertigo and 38 did not. Of the 79 patients for whom
data on goiter were available, 15 had goiter and 64 did not, with an
onset age from 12 to 33 years. As to family history, all families were-
recessive inheritance or sporadic cases.

Genotype—phenotype correlations for diagnostic age, fluctuation,
vertigo, tinnitus and goiter are summarized in Figure 1.

We defined nonsense or frameshift mutations as truncating (T) and
missense mutations as nontruncating (NT) and classified the geno-
types as truncating/truncating (T/T), truncating/nontruncating
(T/NT) or nontruncating/nontruncating (NT/NT). Significant differ-
ences were not found between the groups in any of the clinical
features (Tukey’s HSD test was used for diagnostic age and Kruskal—
Wallis test was used for fluctuation, vertigo, tinnitus and goiter, all
tests indicated P>0.05; Figure 1). Figure 2 shows the relationship
between hearing loss severity and the mutation (T or NT) that also
showed no significant differences (Tukey’s HSD test, P>0.05). We
also performed multivariate statistics (multiple regression analysis and
logistic regression analysis) and we found that only the age of the
patients correlated with the hearing loss severity while the genotype of
SLC26A4 mutations did not significantly affect the hearing loss
severity (P>0.05).

DISCUSSION

The present large cohort study revealed a high prevalence (82%;
82/100) of SLC26A4 mutations in sensorineural hearing loss patients
with EVA in Japanese. The frequency (8.7%) is the second most
common next to GJB2 that is found in 16.2% of overall and 25.6% of
congenital hearing loss patients.!

Our mutation analysis results confirmed the previous reports that
indicated the importance of this gene among hearing loss patients
with EVA. This study also added novel mutations and summarized
updated data for the precise molecular diagnosis.

First, the high prevalence (82%) of SLC26A4 mutations in EVA
patients is compatible with the high prevalence of SLC26A4 mutations
reported in eastern Asians; that is, 97.9% in Chinese,® and 92% in
Koreans.” These frequencies are higher than those reported in
Caucasoid populations (20% in Americans,!® 40.0% in French!!
and 28.4% in Spanish!'?). It is still an open question whether other
genes are involved in the EVA patients without SLC26A4 mutations.
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Table 1 Possible pathogenic variants found in enlarged vestibular aqueduct (EVA) subjects (n=100)

Frequency (n= 100)

Amino acid Compound Aliele frequency
Nucleotide change change Exon Homozygote heterozygote Heterozygote (in 200 alleles) References
c. 139insC 1 1 0.50 This study
c. 266C>T p. P76S 2 1 0.50 Suzuki et al58
c. 281C>T p. T94| 3 1 0.50 Wang et al78
c. 322delC 4 1 0.50 Tsukamoto et /.2
c. 367C>T p. P123S 4 1 0.50 Tsukamoto et a/.2:4
c. 416-1G>A Intron 4 2 1.00 Tsukamoto et al24
c. 439A>G p. M147V 5 2 1.00 Tsukamoto et /.24
c. 600+ 1G>T Intron 5 1 0.50 This study
c. 601-1G>A Intron 5 1 0.50 Tsukamoto et a/.24
c. 890C>A p. P297Q 7 1 0.50 This study
c. 917delT 7 0.50 Tsukamoto et a/.24
c. 919-2A>G Intron 7 1 11 1 7.00 Coucke et a/.21
c. 1001+ 1G>A Intron 8 2 1.00 Coyle et a/2?2
c. 1002-9A>G? Intron 8 1 0.50 This study
c. 1105A>G p. K369E 9 1 0.50 Usami et al.23
c. 1115C>T p. A372V 9 1 0.50 Usami et a/23
c. 1174A>T p. N392Y 10 3 1.50 Park et /1416
c. 1187G>A p. G396E 10 1 0.50 This study
c. 1219delCT 10 1 0.50 This study
c. 1229C>T p. T410M 10 1 1 1.50 Coyle et al2?
c. 1300G>A p. A434T7 11 1 0.50 This study
c. 13156>A p. G439R 11 1 0.50 Suzuki et al5®
c. 1343C>T p. S448L 11 1 0.50 Wang et al.’ 8
c. 1579A>G p. T527P 14 2 1.00 Suzuki et al58
c. 1586T>G p. 1529S 14 1 0.50 Wang et al7 8
c. 1595G>T p. S5321 14 2 1.00 Usami et al3:17
c. 1652insT 15 3 1 2.00 Tsukamoto et a/.24
c. 1694G>A p. C565Y 15 1 0.50 Tsukamoto et al.24
c. 1707 +5G>A Intron 15 1 6 4.00 Park et al82
c. 1743G>C p. R581S 16 2 1.00 lwasaki et a/.5:18
c. 1829C>A p. S610X 17 1 0.50 Tsukamoto et al2#
c. 1970G> A p. S657N 17 1 0.50 Tsukamoto et a/.24
c. 1975G>C p. V659L 17 3 1.50 Wang et al7®
c. 1997C>T p. S666F 17 1 0.50 Tsukamoto et a/.24
c. 2111ins GCTGG 19 1 1 1.00 Usami et al23
c. 2162C>T p. T721M 19 1 1 1.00 Usami et al.2:3
c. 2168A>G p. H723R 19 11 40 10 36.00 Usami et al.2?
c. 2168C>T p. H723Y 19 1 1.00 This study
c. 2180T>A p. L727X 19 1 0.50 This study

3¢, 1002-9A> G, uncertain pathogenicity.

Mutations in FOXIL!* a modulatory gene of SLC26A4, were not
found in our series of patients (data not shown). As seen in previous
mutation screening reports, we encountered a significant number of
heterozygous cases without a second mutation even after direct
sequencing of the coding region of the gene. It is highly likely that
there is one more occult mutation somewhere because patients with
heterozygous mutation are associated with EVA.

Second, it is evident that the mutation spectrum found in the
Japanese population is quite different from that in Caucasoid
populations, but similar to the mutation spectrum reported in the
Asian populations, especially Koreans.®1#1% There are two frequent
mutations in east Asians, namely p.H723R and c919-2A>G.
p-H723R is most prevalent in the Japanese and Korean
populations,? whereas ¢.919-2A >G is most common in the Chinese.”
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The existence of a genotype—phenotype correlation is still
controversial.*1%!> Mutations in SLC26A4 can cause a broad pheno-
typic spectrum, from typical Pendred syndrome to nonsyndromic
hearing loss associated with EVA. In the present study, various
features of the phenotype were compared with the genotypes. We
defined nonsense or frame shift mutations as truncating (T) and
missense mutations as non-truncating (NT) and classified the
genotypes as truncating/truncating (T/T), truncating/non-truncating
(T/NT), or non-truncating/non-truncating (NT/NT). However,
statistical differences were not found between the groups in any of
the clinical features (y? tests, P> 0.05; Figure 1).

Concerning the relationship between the severity of hearing loss
and individual SLC26A4 mutations, several functional studies have
demonstrated the property of transporter function.!5-'® Furthermore,
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Table 2 Phenotypes and genotypes of affected EVA subjects

Hearing
level
Age of Threshold  Threshold in the low
D Age  Mutation allele 1/allele 2 awareness Progression  Fluctuation ~Tinnitus  Vertigo  Goiter  (Rt) (dBF  (Lt) (dBF frequencies®
77 12 p.[917delThi=1 12 + + + + - 58.75 45 49.375
237 7 p. [T72IM}E{H723R] 0 + - - + - 1125 68.75 83.75
334 23 p. [A372V};[H723R] 0 NA NA + NA NA 96.25 83.75 81.9
695 4 p. [K369EL[H723R] 0 + - NA NA - 100 90 89.4
752 18 p. [1652insT}(=] 1 - - + + + 98.75 102.5 96.3
1045 25  p. [H723R}[H723R] o] + NA - + + 78.75 90 85.6
1306 3 p.[919-2A>GJ;[H723R] 0 NA NA NA NA NA NA NA NA
1365 20 p. [T721M)(=] 2 NA NA NA NA NA 96.25 105 96.9
1379 10 p.[1001 +1G>AkIH723R] 0 + + - - NA 66.25 46.25 57.5
1432 6 p.[H723R}[=] 0 + - - - NA 102.5 105 100.0
1625 16  p.[919-2A>GJi[H723R] 0 + + NA + NA 100 95 88.1
1795 NA  p. [H723R}i=] NA NA N/A NA NA NA NA NA NA
1820 12 p. [H723R}[H723R] 5 + + - - NA 72.5 73.75 61.3
1957 7 p.[S666FLIH723R] 3 + + NA NA - 95 101.25 93.8
1961 12 p.{C565Y][H723R] 0 + N/A NA NA NA 108.75 110 103.8
2010 12 p.[416-1G>Al[H723R] 9 + + - - + 80 91.25 81.3
2202 4 p.[P297Q)[T527P) 3 + - - - - 775 76.25 73.8
2331 31 p. [H723RL[H723R] 0 + + + + + 90 100 87.5
2449 1 p.[139insCk[322delC] 0 NA NA - + - 100 85 92.5
2462 52 p.[M147V][H723R] 2 + + - - . 98.75 95 88.1
2498 0~ p.[919-2A>GJ; 0 + NA - - 86.25 86.25 83.8
{1001+ 1G> Al

2538 10 p. [H723R}[H723R] 3 + + - - + 81.25 55 66.9
2621 3 p. [R581S}[H723R] 0 + + - - - 91.25 91.25 90.0
2695 13 p. [T527P}[H723R] 2 + + + + - 62.5 61.25 63.1
2728 3 p.[919-2A>GL;[H723R] 1 + + - - - 97.5 97.5 93.8
2798 15  p. [H723R}[H723R] 4 + + NA + + 52.5 96.25 66.3
2804 2 p.[1707 +5G>AJ[H723R] 0 + + - - - 78.75 78.75 82.5
3072 44 p. [G439R}[H723R] 6 + + + + - 110 108.75 105.0
3074 21 p.[H723R}; (=] 2 + + + + + 105 106.25 99.4
3298 6 p.[919-2A>GL[H723R] 0 + + + + - 73.75 110 86.9
3301 4 p.[416-1G>AJ[H723R] 0 + + + + - 65 72.5 68.1
3442 6 p.[919-2A>GLH723R] NA + NA + + - 81.25 50 60.0
3450 14 p. [H723R];(H723R] o] + + + + - 110 73.75 87.5
3561 6 p. [H723Y];[H723Y] 4 NA NA NA NA NA 83.75 65 713
3994 59  p.[601-1G>AL[H723R] 10 + + + + + 96.0 94 91.3
3996 8  p. [H723RI1i[1652insT] 0 + - + - - 100 110 98.1
3999 8  p. [H723R}[1652insT] 0 + + - + - 30 50 40.0
4050 5 p. [M147V}[H723R] 1 + + + + - 107.5 85 93.8
4097 3 p. [N392Y};[1002-9A>G] o] - - - - - 106.25 85 93.1
4098 26 p.[N392Y;[919-2A>G) 2 - + + + - 110 37.5 71.3
4102 5  p. [N392Y}[H723R] 0 + + + + - 95 78.75 83.1
4131 10 p. [H723R}i[=] 8 + + - - - 81.25 60 70.6
4144 21 p. [H723R}[H723R] 4 + NA + + - 93.756 105 95.6
4232 15 p. [V659L)[H723R] NA - + + + - 60 92.5 69.4
4299 4 p.[S5321};[2111ins GCTGG] 3 - + - + - 17.5 70 42.5
4305 14 p. [A434TL[=] 0 + - + - - 110 110 105.0
4320 10 p. [G396EL[S5321] NA + + + - - 72.5 80 72.5
4338 6 p. [RE8ISLIH723R] 0 + + + + - 78.75 52.5 64.4
4380 10 p.[1707 +5G>AL[H723R] 2 + + - - - 86.25 81.25 84.4
4386 21 p. [H723R][H723R] NA + + + + + 77.5 93.75 85.0
4398 4 p.[1652insTLH723R] 2 + + + + - 70 97.5 86.9
4434 8 p.[T410M][1707 +5G>A] 1 + + - + - 92.5 100 91.3
4469 11 p. [H723R]; [ =] 0 + NA - - - 20 21.25 16.9
4485 40 p. [H723R}; [=1] 10 + + + + - 56.25 65 58.8
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Table 2 (Continued)

Hearing
level
Age of Threshold  Threshold in the low
1D Age  Mutation allele 1/allele 2 awareness Progression  Fluctuation Tinnitus  Vertigo Goiter  (Rt) (dBP (L) (dBP  frequencies®
4486 20 p.[1707 +5G>A); 4 -+ + + + “+ 72.5 95 78.1
[1707 +5G> A}

4490 25 p. [T410MJ;[T410M] o] - - + + + 87.5 92.5 90.0
4508 29 p. [H723R}[H723R] 5 + + - - - 85 110 919
4518 26 p.[H723R}[918-2A>G] 0 + + + + - 105 97.5 98.1
4530 5 p.[H723R}[919-2A>G] o] + + - + - 67.5 86.25 71.9
4545 12  p.[1707 +5G>Al;[H723R] 4 + + + + + 86.25 28.75 53.1
4549 13 p. [V659L}{1219delCT] NA + + + + - 38.75 50 38.1
4663 0 p.[1707 +5G>AL[H723R] 0 - + NA NA - 68.75 68.75 99.2
4696 0 p. [V659LLIH723R] 0 + - NA NA - NA NA 97,5
4362 26 p.[H723R} [=1] 6 + - - - 70 68.75 63.8
4513 34 p.[H723R}; [=] NA + + + NA - 71.25 53.75 61.3
4645 23 p.[919-2A>G]; [=] 14 + - + - - 96.25 105 93.8
723 NA  p. [H723R}; [=] NA NA NA NA NA NA NA NA NA
724 NA  p. [2111insBbp); [=] NA NA NA NA NA NA NA NA NA
742 NA  p.[H723R}; (=1 NA NA NA NA NA NA NA NA NA
1975 3 p.[H723R};[H723R] 0 NA NA NA NA NA 80 70 62.5
2082 2 p.[H723R};[H723R] 0 - - - - - NA NA NA
4735 9 p.[H723R}(919-2A>G] 8] + + + - 107.5 110 103.8
195 20 p.(=kl=] 2 + + + + - 83.75 83.75 819
670 8 p.l=kl=] 3 + - + - - 26.25 107.5 62.5
1755 16 p.[=]l=] NA NA NA NA NA NA NA NA NA
2607 5 pl=ll=] o] - + - - - 97.5 105 98.8
3851 33 p.l=ll=1 0 + + + - + 103.75 103.75 100.6
4194 11 p.[=1l=] NA + + - - - 67.5 80 76.3
4215 5 p. 0 + + - - - 98.75 93.75 93.8
4216 55 p NA -+ “+ + + NA 51.25 78.75 68.8
4258 30 p 28 NA - + - - 17.5 7.5 138
4281 6 p 2 - - - - - 57.5 61.25 63.1
4324 37 p 6 - - - - - 10 275 22,5
4352 3 p 0 + + - - - 86.25 88.75 88.1
4357 6 p 4 + + + - - 71.25 725 67.5
4397 5 p 0 - - - - - 102.5 105 100.6
4402 8 p o] + - - - - 100 S0 88.8
4450 12 p NA + + + - - NA NA NA
4462 8 p 7 + - + - - 63.75 20 41.3
4488 1 p 0 - - NA - - 397.5 97.5 95.0
4671 2 p.[H723R};[600+1G>T] 0 + - - + - NA NA NA
3253 NA  p. [1529S];[H723R] NA NA NA NA NA NA NA NA NA
4949 0 p. [L727X}[H723R] 0 + - - - - NA NA 51.7
J27 NA  p. [H723R};[S448L] NA NA NA NA NA NA NA NA °0.6
3309 5 p.[919-2A>G};[P7685] 0 + + + + - 106.25 106.25 101.3
J15 0 p.[P123S}[H723R] 0 NA NA NA NA NA NA NA NA
FUK2004 1 p.[H723R5(T9411 0 NA NA N/A NA NA NA NA 85.0
1299 NA  p. [S610XL[S657N] 0 NA NA NA NA NA NA NA NA
SNS5500 42 p.[918-2A>G);[919-2A>G] 4 + + + + + 70 81.3 64
SNS5503 37 p. [H723RL[1707 +5G>A] 5 + + + -+ + 67.5 70 NA

Abbreviation: EVA, enlarged vestibular aqueduct; Lt, left; NA, not available; Rt, right.
2Average of 500, 1000, 2000 and 4000 Hz.
°Average of 125, 250 and 500 Hz.

retention of improperly folded Pendrin mutants in the endoplasmic  correlations (data not shown). Indeed, there was great variation
reticulum has been suggested as the major pathological mechanism for  regarding hearing loss severity even with the same mutations. For
Pendred syndrome.!®?® In this study, we compared not only the example, in the patients homozygous for the most prevalent mutation,
difference between the T and NT mutations, but also compared the p.H723R, hearing level at low frequency varied from 61 to 99dB
individual mutations and severity of hearing. However, there were no  (Table 2). In addition, many reports have described intrafamilial
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Figure 1 Genotypes and phenotypes (diagnostic age, fluctuation, vertigo, tinnitus and goiter) in the current study. NT/(-), heterozygote of nontruncating
mutation; NT/NT, nontruncating/nontruncating; NT/T, nontruncatingtruncating; T/(—), heterozygote of truncating mutation; T/T, truncating/truncating; (),

wild type.
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Figure 2 The relationship between hearing level at the lower frequencies
and genotype. Hearing level was the average of 125, 250 and 500Hz.
NT/(-), heterozygote of nontruncating mutation; NT/NT, nontruncating/
nontruncating; NT/T, nontruncatingtruncating; T/(-), heterozygote of
truncating mutation; T/T, truncating/truncating; (), wild type.

phenotypic variation.3-2 Therefore, phenotype may be determined
not only by SLC26A4 mutations but also other factors (genetic as well
as environmental), contributing to such variability (Figure 2).

Unlike in the case of GJB2, phenotype cannot be predicted from the
genotype;® however, the clarification of clinical features will enable
more appropriate genetic counseling and proper medical
management for these patients.

The present study confirmed clinical characteristics of 66 patients
with EVA caused by biallelic SLC26A4 mutations. These included
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Figure 3 The relationship between hearing level and age in subjects with
biallelic SLC26A4 mutations. Hearing level was calculated as the average of
250, 500, 1000 and 2000 Hz in both sides.

congenital (5/63, 7.9%), fluctuated (42/52, 80.8%) and progressive
(49/56, 87.5%) hearing loss usually associated with vertigo (35/52,
67.3%) and/or goiter (12/53, 22.6%) during long-term follow-up, in
accordance with our previous study® It is known that goiter
sometimes becomes apparent between 10 and 20 years of age. The
present cohort included young children, and therefore the frequency
of goiter may be underestimated. As seen in Figure 3, in 66 patients
with biallelic mutations for whom data were available, onset of
hearing loss was likely to be early onset, and progressive with age.
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CONCLUSIONS

Pendred syndrome and nonsyndromic hearing loss associated with
EVA are a continuum of disease characterized as being associated with
congenital, fluctuating and progressive hearing loss, and most patients
have vertigo and/or goiter. However, in the present study, no
genotype-phenotype correlation was found. The results obtained
from the present study will facilitate accurate molecular diagnosis and
better genetic counseling.
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Abstract

Background: Pendred syndrome (PS) and nonsyndromic hearing loss associated with enlarged vestibular aqueduct
(EVA) are caused by SLC26A4 mutations. The Okinawa Islands are the southwestern-most islands of the Japanese
archipelago. And ancestral differences have been reported between people from Okinawa Island and those from
the main islands of Japan. To confirm the ethnic variation of the spectrum of SLC26A4 mutations, we investigated
the frequencies of SLC26A4 mutations and clinical manifestations of patients with EVA or PS living in the Okinawa
Islands.

Methods: We examined 22 patients with EVA or PS from 21 unrelated families in Okinawa Islands. The patient’s
clinical history, findings of physical and otoscopic examinations, hearing test, and computed tomography (CT) scan
of the temporal bones were recorded. To detect mutations, all 21 exons and the exon-intron junctions of SLC26A4
were sequenced for all subjects. Quantitative reverse-transcription polymerase chain reaction (qRT-PCR) for SLC26A4
and calculations using the comparative CT (27#4%") method were used to determine the pathogenicity associated
with gene substitutions.

Results: SLC26A4 mutations were identified in 21 of the 22 patients. We found a compound heterozygous mutation
for IVS15+ 5G > A/H723R in nine patients (41%), a homozygous substitution of IVS15+5G > A in six patients (27%),
and homozygous mutation for H723R in five patients (23%). The most prevalent types of SLC26A4 alleles were
IVS15+5G > A and H723R, which both accounted for 15/22 (68%) of the patients. There were no significant
correlations between the types of SLC26A4 mutation and clinical manifestations. Based on gRT-PCR results,
expression of SLC26A4 was not identified in patients with the homozygous substitution of IVS15+5G > A.

Conclusions: The substitution of IVS15 +5G > A in SLC26A4 was the most common mutation in uniquely found in
patients with PS and EVA in Okinawa Islands. This suggested that the spectrum of SLC26A4 mutation differed from
main islands of Japan and other East Asian countries. The substitution of IVS15 + 5G > A leads to a loss of SLC26A
expression and results in a phenotype of PS and EVA.
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Background

Profound hearing loss affects about 1 in 300 to 1 in
1000 newborns [1-4], and about one-half of these cases
can be attributed to genetic factors [5]. About 51% of
these cases are due to single nucleotide polymorphisms
[5]. As to inheritance pattern among monogenic pro-
bands, about 1% is X-linked, 22% is autosomal domin-
ant, and 77% is autosomal recessive [5]. Pendred
syndrome (PS) is an autosomal recessive disorder char-
acterized by congenital sensorineural hearing loss and
goiter [6]. The causative gene for PS and EVA was iden-
tified to be SLC26A4 [7,8]. Enlarged vestibular aqueduct
(EVA) is a common inner ear malformation that can be
diagnosed radiographically in patients with impaired
hearing (Figure 1). EVA is frequently associated with PS
[9-11]. In addition to PS, SLC26A4 mutations also cause
nonsyndromic hearing loss with EVA in the absence of a
thyroid phenotype [12,13].

Previous studies revealed that the spectrum of
SLC26A4 mutations varied on the basis of ethnic back-
ground [14,15]. Tsukamoto et al. [15] demonstrated that
SLC26A4 mutations occurred in 90% of families with a
history of PS and in 78% of families with a history of
EVA in Japan. Among these SLC26A4 mutations, H723R
was suggested to have a founder effect in the Japanese
population.

The Okinawa Islands are the southwestern-most
islands of the Japanese archipelago (Figure 2). Previous
studies suggested that there were substantial ancestral
differences between Okinawa Islands the main islands of
Japan [16]. In this study, we examined patients with
EVA or PS from the Okinawa Islands to determine the
frequencies and the genotypes of SLC26A4 mutations
and their clinical manifestations.

Methods

Subjects

From May 2008 to July 2012, 22 patients (8 males, 14 fe-
males; age range: 0-33 years; mean age: 5.8 years; median
age: 8.5 years; Table 1) were diagnosed with PS or EVA in
the Department of Otorhinolaryngology, Head and Neck
Surgery of the University of the Ryukyus, Japan.

© Page 20f 10

Prior to enrollment, all subjects provided a written
informed consent. Our research protocol was approved by
the Ethical Review Board of the University of the Ryukyus.

Clinical manifestations of PS and EVA

Clinical history of 22 patients with neuro-otologic symp-
toms was recorded. A physical examination, including
otoscopy, hearing level test, computed tomography (CT)
scan of the temporal bones, and examination for thyroid
goiter was conducted.

Depending on a subject’s ability, hearing level was de-
termined using auditory brainstem response, condi-
tioned orientated response, or pure tone audiogram.
Hearing level was defined as the average of the hearing
threshold at 0.5, 1.0, 2.0, and 4.0 kHz. Hearing was de-
scribed as: normal, < 20 dB; mild impairment, 21-40 dB;
moderate impairment, 41-70 dB; severe impairment,
71-90 dB; and profound impairment, >91 dB.

Neck palpation or echography of the neck was
performed in all patients, to determine thyroid goiter. In
addition, their serum levels of thyroid-stimulating hor-
mone (TSH) and free thyroxine (FT4) were measured to
evaluate thyroid function (normal values: 0.9-1.6 ng/dl
and 0.5-5.0 mU/], respectively). A perchlorate test was
not performed.

High-resolution temporal bone CT was performed in
all patients to determine if there were any other inner
ear malformations in addition to EVA. EVA was defined
as a vestibular aqueduct with a diameter of >1.5 mm at
the midpoint between the common crus of the semicir-
cular canal and the external aperture of the vestibular
aqueduct on CT [17].

Mondini dysplasia was defined when the cochlea
consisted of 1.5 turns in which the middle and apical
turns had coalesced to form a cystic apex due to the ab-
sence of the interscalar septum [18,19].

Vestibular enlargement was defined when the ratio of
the membranous vestibule diameter to the inner ear
diameter of the lateral semicircular canal was >1.2 [20].

Vertigo was investigated based on spontaneous nystag-
mus, caloric vestibular test or patients’ self-reporting of
past episode. The spontaneous nystagmus was evaluated

Figure 1 Computed tomography of the temporal bone showing an enlarged vestibular aqueduct. Circles show the vestibular aqueduct.
The vestibular aqueduct is not identified in control subject (A). The enlarged vestibular agueduct is identified in a patient with EVA (B).
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Figure 2 Location of the Okinawa islands in relation to East Asia. The Okinawa islands are located between Taiwan and the Japanese island
of Kyushu. The Japanese-archipelago comprises Hokkaido, Honshu, Kyusyu, and the Okinawa islands, as well as some smaller islands.

using Frenzel’s glass or infrared CCD camera (IRN-1,
Morita, Kyoto, Japan).

SLC26A4 genotyping

Genomic DNA was extracted from whole blood using a
QIAamp DNA Blood Mini Kit (Qiagen, Hilden, Germany).
To detect mutations, all 21 exons and the exon—intron
junctions of SLC26A4 were sequenced for all subjects. A
35 step cycle of Polymerase chain reactions (PCR) was
performed as follows: initial denaturation at 94°C for
5 min; 35 cycles of 94°C for 40 s, 60°C for 40 s, and 72°C
for 1 min; and a final extension at 72°C for 5 min. PCR
reactions were run using a programmable thermal cycler
(Verti™ 96-Well Thermal Cycler, Applied Biosystems, CA,
USA).

PCR products were purified using a Wizard® SV Gel
and PCR Clean-Up System (Promega, W1, USA) and dir-
ectly sequenced using an ABI PRISM 3130 x1 Genetic
Analyzer (Applied Biosystems). The sequences obtained
were aligned and compared using the BLAST program
with known human genome sequences available in the
GenBank database.

We surveyed the substitution IVS15+5G > A in 100
healthy objects as control.

The genotype of the IVS15 +5G > A was detected by
digestion of the PCR product with the restriction en-
zyme Sspl (New England Biolabs, Ipswich, MA, U.S.A).

Total RNA isolation and reverse-transcription
Total RNA was isolated from leukocytes using a
QIAamp RNA Blood Mini Kit (Qiagen) according to the

manufacturer’s protocol. Before cDNA synthesis, residual
DNA was removed by incubation with RNase-free DNase
I (Ambion Inc., City, TX, USA). Then, total RNA was
reverse transcribed using a TaKaRa Prime Script High Fi-
delity RT® Kit (TaKaRa, Tokyo, Japan) according to the
manufacturer’s protocol. Possible contaminating genomic
DNA in RNA samples was determined by electrophoresis.

Quantitative nested real-time PCR
Nested real-time quantitative (q) PCR was performed to
investigate the level of SLC26A4 expression in the blood.

First-step PCR (conventional PCR)

A conventional PCR assay was performed in a 10 pl reac-
tion mixture that included 2 pl of cDNA, 0.5 units of DNA
Taq polymerase (TaKaRa), 2.5 mM deoxynucleotide tri-
phosphates (ANTPs), 1 uM forward and reverse primers
for first-step PCR (Table 2), 10 x buffer, and 1.875 mM
MgCl,, with distilled water (H,O) for the final reaction vol-
ume of 10 pl. A 33 step cycle of PCR were performed as
follows: 94°C for 5 min, 33 cycles of 94°C for 30 s, 60°C for
30 s, 72°C for 40 s, and a final extension at 72°C for 5 min.

Second-step PCR (quantitative nested PCR)

Following the first PCR, a second PCR was performed
using a set of internal primers (Table 2). The reaction
mixture contained 1 pl of the first PCR product (diluted
10-fold), 10 ul of SYBR Premix Ex Taq, and 0.2 uM of
the internal forward and reverse primers; the final
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Table 1 Summary of clinical features of 22 patients

Age (years) cT PTA Vertigo Thyroid
EVA MD VE HL (dB) Conductive hearing loss Goiter Thyroid function

1 3 R + + + SO unknown - - normal
L + + SO unknown

2 14 R + + - 105 + - + normal
L + + - 96 +

3 21 R + + + 73 + + + normal
L + + + 91 +

4 21 R + - 81 + + + normal
L + - - 85 +

5 28 R + + + 96 + + + normal
L + + + SO +

6 33 R + + - 101 + + + normal
L + + + 106 +

7 1 R + + - SO unknown - - normal
L + + + SO unknown

8 1 R + - - SO unknown - - normal
L + - - 103 unknown

9 2 R + + - 101 unknown - - normal
L + + - 100 unknown

10 12 R + - - 95 + - + normal
L + - - 100 +

1 29 R + + + 85 + - -
L + + + 110 +

12 0 R + - - 55 unknown + - normal
L + - - 73 unknown

13 3 R + - + 85 unknown + - normal
L + + + 58 +

14 5 R + + + 95 + + - normal
L + + + 93 +

15 5 R + + + 103 + - - normal
L + + + 100 unknown

16 6 R + - - 81 + + - normal
L + - - 9 +

17 7 R + - - 83 + - - normal
L + - + 81 +

18 14 R + + + 96 + - + normal
L + + + 91 +

19 16 R + - + 91 + - + normal
L - + 21 -

20 26 R + - 98 + + - normal
L + - + 103 +

21 5 R + + + 85 + - - normal
L + + - 97 +

22 10 R + - - 53 + - - normal
L S - 15 =

EVA enlarged vestibular aqueduct, MD Mondini malformation, VE vestibular enlargement, PTA pure tone audiogram, HL hearing level, SO scale out, NA no
available data.
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Table 2 Primer sequences used for nested real-time PCR

Page 5 of 10

Nested PCR assay Sequence PCR product size (bp)
First-step PCR (external primer) Exon 14 forward TCTTGGAATGGCCTTGGAAGC 282

Exon 17 reverse TGAAACAGCATCACTTATGATGC
Second-step PCR (internal primer) Exon 15 forward TGAAGAACCTCAAGGAGTGAAG 154

Exon 16 reverse TITCTGTATTTTCCTCAGCGCT

reaction volume was adjusted to 20 pl with distilled
H,0. A Light Cycler real-time quantitative PCR system
(Roche, Basel Switzerland) was used for amplification
and detection of the PCR products. A 40 step cycle of
thermal cycler program was performed as follows: de-
naturation at 95°C for 5 min; 40 cycles of 95°C for 10 s,
60°C for 20 s, and 72°C for 40 s; followed by recording
the fluorescence values after each elongation step and
melting curve analysis with denaturation at 95°C for
5 s, annealing at 65°C for 1 min, and redenaturation by
increasing the temperature to 95°C. The second-step
PCR products were separated by 1.5% agarose gel elec-
trophoresis, stained with ethidium bromide, and visual-
ized by UV transillumination. For this analysis, we used
three control subjects with no mutations (wild type),
three patients compound heterozygous for IVS15 + 5G >
A/H723R, and three patients homozygous for IVS15 +
5G > A.

Validation of comparative CT (2722T) method and
calculations for quantifying SLC26A4 mRNA

We used the CT (272*T) method by assuming approxi-
mately equal amplification efficiencies for both target
and reference genes. This prerequisite was verified by
performing a validation experiment using both SLC26A4
and a housekeeping gene. Calculations were made using
the comparative CT (2722“T) method. GAPDH (glycer-
aldehyde 3-phosphate dehydrogenase), PGK-1 (phospho-
glycerate kinase 1), and ACTB (actin beta) were used as
internal reference genes for PCR normalization with re-
gard to the amount of RNA added to the reverse tran-
scription reactions. Normalized results were expressed
as the mean ratio of SLC26A4 mRNA to GAPDH mRNA,
PGK-1 mRNA, and ACTB mRNA. To evaluate relative
transcript levels, the threshold cycle value (Ct) of each
sample was used to calculate and compare the ACt of each
sample to that of the control subject and patients with a
compound heterozygous for IVS15 + 5G > A/H723R, and
a homozygous for IVS15 + 5G > A. AACT was also calcu-
lated to compare the transcript levels in the control sub-
ject, and patients with a compound heterozygous for
IVS15 +5G > A/H723R, and a homozygous for IVS15 +
5G > A. The transcript levels were calculated in each
genotype with three subjects and each subject was calcu-
lated in triplicate.

Results

Mutation analysis for SLC26A4

By direct DNA sequence analysis, SLC26A4 mutations
were observed in 21 of 22 patients. Among the 21 pa-
tients with mutations, a compound heterozygous muta-
tion for IVS15+5G > A/H723R was identified in nine
patients (Figure 3C, D), a homozygous mutation for
H723R was identified in five patients (Figure 3E), and a
homozygous substitution of IVS15 + 5G > A was identified
in six patients (Figure 3F). A compound heterozygous
substitutions for IVS15 + 5G > A/T527P was identified in
one subject. We could not identify any SLC26A4 muta-
tions in one subject (Table 3). We could not find the sub-
stitution IVS15 + 5G > A in 100 control objects.

Clinical characteristics

Table 1 summarizes the clinical characteristics of all 22
subjects. High-resolution temporal bone CT scans re-
vealed that bilateral EVA was present in 20 patients and
unilateral EVA was present in other two. Mondini dys-
plasia and vestibular enlargement was observed in 17
ears (17/44; 39%) and 22 ears (22/44; 50%), respectively.

Hearing loss grades in the affected ears ranged from
moderate to profound in the patients with EVA (Table 1).
The hearing levels of the two unaffected ears were nor-
mal and mild hearing loss, respectively. Table 4 shows
the hearing level distributions based on genotypes. No
significant differences were expected in the distributions
for hearing level among the five genotype groups due to
the small sample of only 22 patients.

Neck examinations revealed thyroid goiters in 8 of 22
patients. Overall, 0% (0/11) and 73% (8/11) of the pa-
tients younger and older than 10 years of age, respect-
ively, had a thyroid goiter. Their serum FT4 and TSH
levels were within the normal ranges. There is no relation
between occurrence of goiter and mutation genotypes.

SLC26A4 expression in patients with IVS15 + 5G > A
Electrophoretic separation of the real-time PCR products
did not exhibit any bands in patients with the homozygous
substitution for IVS15 + 5G > A (Figure 4C).

Because the SLC26A4 expression levels were not high
in blood samples, we investigated its expression using
nested real-time qPCR for three control subjects, three
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Figure 3 Examples of direct sequence analysis of the SLC26A4 gene. Representative results of H723R and the IVS15 + 5G > A mutation
analysis are shown. Genomic sequences of the SLC26A4 gene in normal individuals (A), (B). A compound heterozygous mutation for IVS15 + 5G >
A/H723R (C), (D). A homozygous mutation for H723R (E). A homozygous substitution of IVS15 + 5G > A (F). The arrows indicate the

4

patients with the compound heterozygous mutation for
IVS15+5G > A/H723R, and three patients with the
homozygous substitution for IVS15 + 5G > A. The control
subjects had normal hearing without any malformations
of the inner or middle ear and no family history of hearing
loss. After obtaining a written informed consent, blood
samples were collected from each subject and were
subjected to Real-time PCR with SYBR Green and the
expression level was evaluated using the comparative CT
(2"22€T) method. The relative SLC26A4 expression levels
in the control no.1, control no.2 and control no.3 with no
SLC26A4 mutations were 9089 +441.5 (standard devi-
ation), 2417 +189.5, and 4956 +260.4 respectively. In
patient no.12, patient no.14 and patient no.16 with a com-
pound heterozygous mutation for IVS15 + 5G > A/H723R
were 979.5 +79.12, 2846 + 206.5 and 1183 + 33.93 respect-
ively. In patient no.1, patient no.2 and patient no.4 with a
homozygous substitution for IVS15 + 5G > A were 1.96 x
10*+£7.66x 10°, 576x10°+3.37x10° and 4.35x
107 + 8.09 x 107 respectively (Figure 5).

Based on the results of both electrophoresis and RT-
nested qPCR, no SLC26A4 expression was observed in pa-
tients with homozygous substitution of IVS15 + 5G > A.

Discussion

Correlations between SLC26A4 genotypes and hearing
phenotypes

Hearing loss in patients with EVA and PS is usually ap-
parent at the pre- or perilingual stage [6,21]. Hearing
loss in EVA and PS is sensorineural with some mixed
hearing loss in the low-frequency range [22-27]. The
hearing level sometimes deteriorates suddenly and may
be followed by a partial recovery, such as with fluctuat-
ing hearing loss [28,29]. In our study, hearing loss was
detected at the pre- or perilingual stage in all cases ex-
cept for two cases of unilateral EVA. However, in all
cases, hearing levels eventually deteriorated to severe or
profound loss (Table 1) and were permanent with or
without hearing fluctuation or stepwise hearing deterior-
ation. No significant differences were observed in the
hearing levels among the five genotypes (Table 4).

Correlations between SLC26A4 genotypes and thyroid
phenotype

SLC26A4 encodes for the 86 kDa transmembrane pro-
tein pendrin [7,30]. In the thyroid, this protein acts as
co-transporter of chloride and iodine in the thyroid
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Table 3 Distribution of SLC26A4 genotypes of 22 patients

Age at onset  Ageat  Sex Allele 1 Allele 2
of hearing genetic
loss (years) test (years)

1 0 3 M IVSI5+5G>A IVSI5+5G> A
2 2 14 F IVSI54+5G>A IVS15+5G> A
3 3 21 F IVSI5+5G>A IVS15+5G > A
4 2 22 FIVS15+5G>A [VS15+5G> A
5 0 23 M IVS15+5G>A IVS15+5G > A
6 0 29 F IVSI5+5G>A IVS15+5G> A
7 0 1 F H723R H723R
8 1 1 F H723R H723R
9 4 2 M H723R H723R
10 0 12 F H723R H723R
1 5 29 M H723R H723R
12 0 0 M IVSI5+5G > A H723R
13 2 3 M IVS1545G > A H723R
14 0 5 FIVSI5+5G>A H723R
15 1 5 FoIVSI5+5G>A H723R
16 0 6 FIVSI5+5G>A H723R
17 2 7 FIVS15+5G> A H723R
18 2 14 F IVS1545G> A H723R
19 7 16 F IVS154+5G > A H723R
20 5 26 M IVS154+5G > A H723R
21 1 5 M H723R T527p
22 7 10 F ND ND

ND not determined.

[31,32]. In PS patients, a mutation in SLC26A4 results in
reduced pendrin-induced chloride and jodide transport
and, ultimately, goiter [33].

Goiter usually develops around the end of the first
decade of life or during young adulthood, although the
time of onset and severity vary considerably among pa-
tients [12,34], and even within families [35]. Despite an
impaired incorporation of iodide, most patients with PS
are clinically and biochemically euthyroid [21,34,36].

Table 4 Clinical features in different genotype groups
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To our knowledge, no previous studies have investi-
gated correlations between SLC26A4 genotypes and the
thyroid phenotype. In the present study, PS was diag-
nosed in 8 of 11 patients older than 10 years of age, but
not in any of the 11 patients who were younger than
10 years of age. This indicates that it is difficult to diag-
nose PS before the age of 10 years.

Thyroid function was normal in all of the 21 patients
we examined, as demonstrated by their normal serum
concentrations of FT4 and TSH. There were no signifi-
cant differences in serologic thyroid test results and goi-
ter status among patients with homozygous substitution
for IVS15 +5G > A, the H723R homozygous mutation,
or compound heterozygous mutation for IVS15+5G >
A/H723R. Therefore, our results indicate that serologic
testing of FT4 and TSH levels is not useful to distinguish
between individuals with PS or EVA.

Distributions of SLC26A4 mutations in EVA and PS
patients in Okinawa Islands
It was previously reported that the spectrum of SLC26A4
mutations varied based on ethnic background [35,36].
H723R and IVS7-2A > G are prevalent alleles that ac-
count for the majority of the observed SLC26A4 muta-
tions in East Asian populations [35]. In the Japanese
population, H723R was the most common mutation
[15,36,37]. In Chinese and Taiwanese populations, IVS7-
2A > G was the most common mutation [38-40], whereas
in the Korean population, H723R and IVS7-2A > G were
the most frequent and accounted for 60.2% (47/78) and
30.7% (24/78) of the mutated alleles, respectively [41].
Ancestral differences have been reported between
people from Okinawa Islands and those from the main
islands of Japan based on single-nucleotide polymorph-
ism genotypes [16]. We analyzed SLC26A4 mutations
among 22 patients with EVA or PS from 21 unrelated
families. H723R have been reported as the most com-
mon mutation found in the main islands of Japan. As
with H723R mutation, IVS15 + 5G > A substitution was

Genotype Hearing level [q) Vertigo
Normal Mild Moderate Severe Profound MD VE
VS15 +5 G > A homozygous (n = 6) 0 0 0 3 9 6/12 6/12 4/6
H723R homozygous (n =5) 0 0 0 1 9 4/10 3/10 0/5
IVS15+5 G > A/H723R (n=9) 0 1 2 4 n 5/18 11/18 4/9
IVS1545G > /T527P (n=1) 0 0 0 1 1 2/2 1/2 01
No mutation (n=1) 1 0 1 0 0 0/2 0/2 01
Subtotal 1 1 3 9 30 17/44 21/44 8/22
Total 44

Normal: <20 dB; Mild: 21-40 dB; Moderate: 41-70 dB; Severe: 71-90 dB; Profound: >91 dB.
MD Mondini malformation, VE Vestibular enlargement, CT computed tomography.

198



Ganaha et al. BMC Medical Genetics 2013, 14:56
http://www.biomedcentral.com/1471-2350/14/56

Figure 4 Expression of the SLC26A4 gene in patients with PS or
EVA. The expected RT-nested PCR amplification product of SLC26A4
was 154 base pairs (bp) in length. Agarose gel electrophoresis shows
the 154 bp band for the control subject (A) and the patient with
IVS15 +5G > A/H723R compound heterozygous mutation (B);
however, there was no band for the patient with IVS15+5G > A

homozygous substitution (C).

also identified most frequently in 15 of 22 of our
Okinawa patients. The substitution of IVS15+5G > A
in one allele have been reported only 10 cases in Asian
populations [36,42-45]. Thus, IVS15+5G > A was the
characteristic SLC26A4 gene mutation among patients
in Okinawa Islands, indicating a difference in the
spectrum of SLC26A4 mutations among patients in
Okinawa Islands compared with patients in other

Istandard deviation

ratio of SLC2644/ mean of reference genes mRNA

A B C D E F G H I
Figure 5 Relative expression of the SLC26A4 gene in control
subjects and in patients with a homozygous mutation of IVS15 +
5G > A or compound heterozygous mutation of IVS15 +5G >
A/H723R. The ratio of SLC26A4 mRNA to GAPDH mRNA is shown in
three control subjects (A, B, C), three patients with compound
heterozygous mutation of V515 +5G > A/H723R (D, E, F), and three
patients with IVS15 + 5G > A homozygous substitution (G, H, I). No
expression of SLC26A4 was observed in the three patients with the
IVS15 + 5G > A homozygous substitution (G, H, I). All experiments
were done in tripricate.
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populations. These results suggest that this SLC26A4
mutation may have originated from a common ancestor.

Pathogenic effect of IVS15 + 5G > A substitution

The heterozygous substitution of IVS15+5G > A has
been assumed to cause aberrant splicing [36,42-45].
However, Yang et al. [42] could not find any abnormal
RT-PCR products related to the size for SLC26A4 se-
quence analysis in patients with splice mutation. Because
its pathogenicity was only implicated on the basis of un-
common polymorphisms, the pathogenic potential of
IVS15 + 5G > A still remains unknown.

Substitutions near the canonical splice sites are diffi-
cult to classify as pathogenic or non-disease causing.
Because such substitutions affect proper RNA splicing
but some substitutions do not cause any effect [46-48].
Thus, it is important to determine the pathogenic effect
of a particular substitution near the donor site by
mRNA analysis [48]. We investigated SLC26A4 expres-
sion in patients with compound heterozygous mutation
for IVS15+5G > A/H723R and homozygous substitu-
tion for IVS15+5G > A by RT-PCR and RT-real time
PCR by targeting genes around these mutations. No ab-
errant PCR products were detected in the patient with
heterozygous substitution of IVS15 + 5G > A (Figure 4B),
which suggests that IVS15 + 5G > A does not cause ab-
errant splicing, as also argued by Yang et al. However, in
patients with the homozygous substitution of IVS15 +
5G > A, SLC26A4 was not expressed, as shown in
Figure 4. In addition, for patients with the heterozygous
substitution, SLC26A4 expression was reduced from the
normal control level. These findings suggest that IVS15 +
5G > A disrupts pre-mRNA splicing and causes the loss of
SLC26A4 expression. The patients in Yang et al. [42] were
heterozyote so that Yang et al. [42] most likely amplified
the non-mutated allele. Taken together, our results
indicate that the substitution of IVS15 +5G > A is a loss-
of-function mutation caused by a loss of SLC26A4
expression.

Conclusions

We found no correlations between the type of SLC26A44
mutation and hearing levels or the thyroid phenotype.
Moreover, thyroid testing using serum FT4 and TSH
levels was not useful for distinguishing between individ-
uals with PS and EVA.

The substitution of IVS15+5G > A in the SLC26A4
was unique and the most common in PS and EVA pa-
tients from Okinawa Islands. This supports that the
spectrum of SLC26A4 mutations differs by geographic
area in East Asia. Our qPCR results for SLC26A4 indi-
cate that the substitution of IVS15 + 5G > A should be a
pathogenic mutation that leads to a loss of SLC26A4 ex-
pression and results in a phenotype of PS and EVA.
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