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SUMMARY

Monocytes and macrophages are important effec-
tors and regulators of inflammation, and both can
be divided into distinct subsets based on their
phenotypes. The developmental and functional rela-
tionship between individual subsets of monocytes
and those of macrophages has not been fully
elucidated, although Ly6C*CCR2" inflammatory
and Ly6C~CCR2™ resident monocytes are generally
thought to differentiate into M1 (classically activated)
and M2 (alternatively activated) macrophages,
respectively. Here we show that inflammatory mono-
cytes recruited to allergic skin acquired an M2-like
phenotype in response to basophil-derived inter-
leukin-4 (IL-4) and exerted an anti-inflammatory func-
tion. CCR2-deficient mice unexpectedly displayed
an exacerbation rather than alleviation of allergic
inflammation, in spite of impaired recruitment of
inflammatory monocytes to skin lesions. Adoptive
transfer of inflammatory monocytes from wild-type
but not IL-4 receptor-deficient mice dampened the
exacerbated inflammation in CCR2-deficient mice.
Thus, inflammatory monocytes can be converted
from being proinflammatory to anti-inflammatory
under the influence of basophils in allergic reactions.

INTRODUCTION

Monocytes are circulating leukocytes that can differentiate into
macrophages and dendritic cells after their migration to periph-
eral tissues (Auffray et al., 2009; Dominguez and Ardavin, 2010;
Geissmann et al., 2010; Shi and Pamer, 2011). Monocytes,
macrophages, and dendritic cells are essential components
of the innate immune system and participate in clearance of
dead cells and pathogens, tissue healing, and initiation and
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regulation of the adaptive immunity. They can also contribute
to the pathogenesis of inflammatory disorders. Accumulating
evidence indicates that those cell types can be further divided
into phenotypically distinct subsets, and each subset might
have particular function in the steady state and inflammation
(Auffray et al., 2009; Geissmann et al., 2010; Gordon and Taylor,
2005; Mosser and Edwards, 2008; Shi and Pamer, 2011).

Circulating monocytes commonly express CD115 (CSF1
receptor) on their surface and are divided into subsets on the
basis of the expression of particular surface molecules including
chemokine receptors (Auffray et al., 2009; Gordon and Taylor,
2005). In humans, differential expression of CD14 and CD16
allowed monocytes to be divided into two subsets: CD14"
CD16~ and CD147CD16" monocytes (Passlick et al., 1989).
The former cells represent 80%-90% of blood monocytes,
express high amounts of the chemokine receptor CCR2 and
low amounts of CX3CR1, and are often called classical mono-
cytes. By contrast, the latter (nonclassical) cells express high
amounts of CX3CR1 and low amounts of CCR2 and can be
further divided into at least two populations based on the expres-
sion of CD14 and CD64. Also in mice, two subsets of monocytes
have been described (Auffray et al., 2009; Geissmann et al.,
2003). The main subset of murine monocytes expresses
Ly6C, CCR2, and low amounts of CX3CR1, suggesting that
they are phenotypically equivalent to human CD14*CD16~
monocytes. Ly6C*CCR2" monocytes are readily recruited to
affected tissues where they produce inflammatory cytokines
such as tumor necrosis factor-o (TNF-a) and IL-1 during infection
and inflammation, and they were therefore termed “inflamma-
tory” monocytes. The second subset of murine monocytes is
characterized by high expression of CX3CR1 and the lack of
Ly6C and CCR2 expression and were termed “resident” mono-
cytes because they have a longer half-life and are found in
both resting and inflamed tissues. They adhere to and migrate
along the luminal surface of endothelial cells that line small
blood vessels and therefore appear to patrol the endothelium
in the steady state (Auffray et al., 2007).

Macrophages are also heterogeneous in their phenotype and
function, depending on the signals they receive (Biswas and
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Mantovani, 2010; Gordon and Taylor, 2005; Mosser and Ed-
wards, 2008; Murray and Wynn, 2011). Classically activated
M1-type macrophages are generated by stimulation with
bacterial moieties such as lipopolysaccharide (LPS) and the
Th1 cell cytokine interferon-vy (IFN-vy), whereas alternatively acti-
vated M2-type macrophages are typically elicited by stimulation
with the Th2 cell cytokines such as IL-4 and IL-13. M1 macro-
phages produce proinflammatory cytokines including IL-1 and
destroy intracellular pathogens such as M. tuberculosis by
means of an increased oxidative burst and NO production.
Although the in vivo roles of M2 macrophages have been less
well characterized, several functions are ascribed to them,
including those in protection from parasitic infections, promoting
Th2 cell-type immune responses, damping excessive inflam-
mation, tumor progression, angiogenesis, wound healing, tissue
remodeling, and fibrosis (Kreider et al., 2007; Martinez et al.,
2009; Murray and Wynn, 2011).

The developmental and functional relationship between
individual subsets of monocytes and those of macrophages
has not been fully elucidated. It is generally thought that
Ly6C*CCR2" inflammatory monocytes exit the bone marrow in
a CCR2-dependent manner and are recruited to inflamed tissues
where they can differentiate to inflammatory M1 macrophages
(Auffray et al., 2009; Dunay et al., 2008; Ingersoli et al., 2011; Ser-
bina and Pamer, 2006; Tsou et al., 2007). In contrast, the differ-
entiation of monocytes toward M2 macrophages remains ill
defined. It has been suggested that LyC™CCR2~ resident
monocytes are also recruited to sites of inflammation and then
differentiate into M2 macrophages, contributing to wound heal-
ing (Auffray et al., 2007, 2009; Geissmann et al., 2010). Alterna-
tively, recent study with a mouse model of helminth infection
demonstrated that M2 macrophages are generated through
IL-4-mediated proliferation and alternative activation of tissue-
resident macrophages rather than the recruitment of blood
monocytes (Jenkins et al., 2011). Thus, the origin of M2 macro-
phages and their mode of generation under homeostatic and
pathological conditions remain obscure.

Basophils, the least common granulocyte, represent ~0.5% of
peripheral blood leukocytes (Galli, 2000). Owing to their pheno-
typic similarities to mast cells and their small numbers, basophils
had long been neglected in immunological studies. However,
recent studies have defined previously unrecognized roles for
basophils, including those in allergic responses, protection
against parasitic infections, and regulation of acquired immunity
(Karasuyama et al., 2011a; Min et al., 2012; Siracusa et al., 2011;
Voehringer, 2011). Basophils readily generate large quantities
of Th2 cell cytokines such as IL-4 and IL-13 (Piccinni et al.,
1991; Seder et al., 1991), which contribute to initiation of Th2
cell differentiation (Perrigoue et al., 2009; Sokol et al., 2008,
2009; Yoshimoto et al., 2009) and to activation of B cells for
the enhancement of humoral memory responses (Chen et al.,
2009; Denzel et al., 2008). It remains to be investigated whether
basophils and their products have any impact on the activation
and differentiation of innate immune cells, including monocytes
and macrophages.

In the present study, we analyzed the fate, polarization, and
function of monocytes after their recruitment to skin lesions of
immunoglobulin E (IgE)-mediated chronic allergic inflammation
(IgE-CAl), a model where basophils rather than mast cells and

T cells play a critical role for the elicitation of allergic response
(Mukai et al., 2005). We found that Ccr2~~ mice unexpectedly
displayed an exacerbation rather than alleviation of IgE-CAl,
and ultimately identified a previously unappreciated mode of
M2 generation, in that inflammatory monocytes can differentiate
into anti-inflammatory M2-type macrophages via basophil-
derived IL-4, which in turn dampen allergic inflammation.

RESULTS

Ly6C*CCR2* Inflammatory Monocytes Are Recruited

to Allergen-Exposed Skin in IgE-CAI

We previously showed that an intradermal administration of
allergen induces three consecutive waves of ear swelling in
mice sensitized with allergen-specific IgE, with peaks of swelling
30 min, 10 hr, and 3-4 days after the allergen challenge (Mukai
et al., 2005). The delayed-onset (third) ear swelling with promi-
nent inflammation was designated IgE-CAl (Mukai et al., 2005).
Diphtheria toxin (DT)-mediated basophil ablation before the
antigen challenge abolished the development of IgE-CAl in
Mcpt8®™ mice (Wada et al., 2010) as shown in Figure 1A. This
confirmed the conclusion in our previous studies that basophils
play a pivotal role in the initiation of IgE-CAl, based on the results
of experiments via the cell transfer and antibody-mediated
basophil depletion (Mukai et al., 2005; Obata et al., 2007). Flow
cytometric analysis revealed that the cell number in the skin
lesions increased during the progress of Ige-CAl (Figure 1B).
Monocyte- and macrophage-lineage cells (referred to here as
monocytes-macrophages) and eosinophils were the major cell
types among the cellular infiltrates whereas neutrophils and
basophils were much less abundant (Figure 1C).

The vast majority of monocytes-macrophages isolated from
the IgE-CAl skin lesions expressed Ly6C and CCR2, in
contrast to those isolated from the control ear skin (Figure 2A
and Figure S1A available online). Although resident macro-
phages in ear skin of naive mice barely express Ly6C,
substantial numbers of Ly6C*CCR2* monocytes-macro-
phages were detectable in the skin iesions even at 1 day after
challenge (Figure S1A, top). These results suggested that
monocytes-macrophages accumulating in the skin lesions
were derived from Ly6C*CCR2* inflammatory monocytes
circulating in the peripheral blood (Figure S1B). Among the
skin-infiltrating cells examined, basophils also expressed rela-
tively high amounts of CCR2 on their surface in both C57BL/6
and BALB/c mice (Figure 2B). The expression of mRNAs
encoding CCR2 ligands CCL8 and CCL12 (but not CCL2) was
upregulated in the IgE-CAI skin lesions (Figure 2C). Various
types of cells in the skin lesions expressed the CCR2 ligands,
but basophils showed little or no expression of any of them
(Figure S2A). Based on these observations, we assumed that
CCR2 could contribute to the recruitment of both basophils
and inflammatory monocytes to the skin lesions and hence
the development of IgE-CALl.

Ccr2”~ Mice Show Exacerbated IgE-CAI in Spite of
Impaired Recruitment of Inflammatory Monocytes

In sharp contrast to our expectation, the ear swelling in IgE-CAI
was greatly augmented and prolonged in Ccr2~/~ mice com-
pared to that in wild-type mice (Figure 3A). Histopathological
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Figure 1. Cellular Components in the IgE-
CAI Reaction that Is Elicited by Basophils

(A) Mcpt8®™® C57BL/6 mice were sensitized with
anti-TNP IgE and challenged with intradermal
administration of TNP-OVA (or control OVA) in
their ears to induce IgE-CAl. The mice were
treated with either DT (open squares) or control
PBS (closed squares) twice, 1 day before and
3 days after the antigen challenge. Time course of
ear swelling (Aear thickness) is shown (mean =
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examination revealed many more cellular infiltrates in the skin
lesion of Ccr2™~ mice (Figure 3B). Flow cytometric analysis
demonstrated that the accumulation of monocytes-macro-
phages in the skin lesions was almost completely abolished in
Ccr2™'~ mice, as expected (Figure 3C). By contrast, the infittra-
tion of basophils was enhanced rather than reduced in Ccr2™/~
mice (Figure 3C), indicating that CCR2 was dispensable for
the basophil recruitment, unlike for the monocyte recruitment.
The accumulation of neutrophils in the skin lesions was also
augmented in Ccr2™/~ mice (Figure 3C). Thus, the IgE-CAI
reaction was exacerbated rather than alleviated in Ccr2~/~
mice, in spite of the fact that the recruitment of Ly6C* inflam-
matory monocytes was abolished.

Monocytes-Macrophages in the Skin Lesions Display

a Combined Phenotype of Inflammatory Monocytes

and M2 Macrophages

To clarify the reason for this unexpected observation, we further
examined the phenotype of monocytes-macrophages infiltrating
the IgE-CAl skin lesions of wild-type mice. Approximately
two-thirds of them expressed programmed death 1 ligand 2
(PD-L2) on their surface, whereas few cells isolated from the
control skin did so (Figures 4A, 4B, and S1A, bottom). Because
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SEM, n =5 each). *p < 0.05, **p < 0.001.

(B and C) C57BL/6 mice were sensitized with
anti-TNP IgE and challenged with TNP-OVA
(closed circles) or control OVA (open circles).
The number of total cells (B) and indicated cell
types (C) isolated from the ear skin at each
time point postchallenge is shown (mean + SEM,
n =3 each).

Data shown are representative of at least
three independent experiments. Note that error
bars are displayed in all figures, but often are
hidden behind symbols such as squares and
circles.
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PD-L2 is a marker of M2-type macro-
phages (Loke and Allison, 2003), we
examined the expression of other M2
markers in the skin lesions during the
Ige-CAl reaction. The Arg1, Chi3I3, and
Fizz1 expression was upregulated and
then downregulated, in parallel with the
number of PD-L2* monocytes-macro-
phages in the skin lesions (Figures 4B
and 4C). Moreover, PD-L2* monocytes-
macrophages expressed significantly
higher amounts of these mRNAs com-
pared to PD-L2™ monocytes-macro-
phages and other cell lineages in the IgE-CAIl skin lesions
(Figures 4D and S2B), demonstrating that PD-L2* monocytes-
macrophages indeed displayed an M2 phenotype.

Gene profiling of monocytes-macrophages accumulating in
the skin lesions revealed that M2 markers (Arg7, Chi3I3, and
Fizz1) but not M1 markers (I/1b, Nos2, and Tnfa) were significantly
upregulated during the IgE-CAIl progression (Figure S3A). By
contrast, the expression of the M2 markers and PD-L2 in blood
monocytes, regardless of Ly6C expression, remained undetect-
able or very low during the IgE-CAIl progression (Figures S3C
and S3D). Importantly, the expression of genes involved in the
macrophage differentiation (Maf and Mafb) but not those
involved in the dendritic cell differentiation (Sfpi7 and Relb) was
upregulated in monocytes-macrophages in the skin lesions
during the IgE-CAI progression (Figure S3B). These results
strongly suggested that inflammatory monocytes recruited to
the skin lesions differentiated into M2- but not M1-type macro-
phages during the IgE-CAI reaction. In contrast, monocytes-
macrophages accumulating in skin lesions of delayed-type
hypersensitivity (DTH) to the same antigen displayed an M1
phenotype with little or no expression of M2 markers including
PD-L2 (Figure S4). Thus, the phenotype of monocytes-macro-
phages in skin lesions, either M1 or M2, appeared to be
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Figure 2. Monocytes-Macrophages Accumulating in the IgE-CAI
Skin Lesions Display a Phenotype of Inflammatory Monocytes

(A) C57BL/6 mice were treated as in Figure 1 to induce IgE-CAI. The expres-
sion of Ly6C and CCR2 on F4/80*CD11b*SSC' monocytes-macrophages in
the skin lesions of mice chailenged with TNP-OVA or conirol OVA was
examined on day 4 postchallenge.

(B) The expression of CCR2 on indicated cell lineages isolated from the bone
marrow of C57BL/6 and BALB/c mice. Shaded histograms show control
staining with isotype-matched antibody.

(C) The expression of indicated mRNAs in the skin lesions of mice challenged
with TNP-OVA or control OVA was examined on day 3 postchallenge (mean +
SEM, n =5 each).

Data shown are representative of three independent experiments. NS, not
significant; **p < 0.01. See also Figures 81 and S2.

associated with the type of immune responses rather than the
nature of antigens.

A previous study with a mouse mode! of helminth infection
reported that M2 macrophages are generated through the
proliferation and alternative activation of tissue-resident macro-
phages without any requirement of the blood monocyte recruit-
ment (Jenkins et al., 2011). Therefore, we examined whether this
mode of M2 generation could also take place in IgE-CAL
Although tissue-resident macrophages, mostly negative for
Ly6C, were detected in ear skin of naive Ccr2~'~ mice to an
extent comparable to that observed in wild-type mice (Fig-
ure S5A), PD-L2* monocytes-macrophages were barely de-
tected in the IgE-CAI skin lesions of Ccr2™~ mice (Figure 4E).
Moreover, few monocytes-macrophages in the skin lesions of

wild-type mice were positive for a proliferation marker Ki-67,
regardless of the PD-L2 expression (Figure S5B). Thus, the
proliferation and M2 conversion of tissue-resident macrophages
appear to have little, if any, contribution to the M2 generation
during the IgE-CAl reaction.

Basophil-Derived IL-4 Confers an M2-like Phenotype

on Ly6C* Inflammatory Monocytes Ex Vivo

Th2 cell cytokines such as IL-4 and IL-13 as well as IL-10 have
been shown to induce the differentiation of macrophages
toward M2. Quantitative RT-PCR analysis revealed that the
expression of /14 but not //73 or //T0 mRNAs in the IgE-CAI skin
lesions was upregulated in parallel with the accumulation of
PD-L2* monocytes-macrophages (Figure 5A). /4 mRNAs were
almost exclusively expressed by basophils among various cell
types isolated from the skin lesions (Figure 5B). Indeed, primary
basophils isolated from the bone marrow produced substantial
amounts of IL-4 but not IL-13 when stimulated ex vivo with IgE
plus antigens (Figure 5C).

Ly6C*LyBG™ inflammatory monocytes freshly isolated from
the bone marrow expressed no detectable PD-L2 on their
surface (Figure 5D). Of note, they upregulated the PD-L.2 expres-
sion when incubated ex vivo with the culture supernatants of
primary basophils that had been stimulated with IgE plus
antigens. This upregulation of PD-L2 was abolished when IL-4
antibody was included during the incubation (Figures 5D and
5E), indicating that basophil-derived IL-4 was responsible for
the PD-L2 upregulation in inflammatory monocytes. The ex-
pression of Arg7, Chi3/3, and Fizz1 mRNAs in inflammatory
monocytes was also upregulated when incubated with the
culture supernatants of activated basophils in an [L-4-dependent
manner (Figure 5F). These results demonstrated that basophil-
derived [L-4 can confer an M2-like phenotype on monocytes
even before they differentiate into macrophages.

Skin-Infiltrating Monocytes Acquire an M2-like
Phenotype in an IL-4R- and Basophil-Dependent Manner
We next examined whether the basophil IL-4-mediated
acquisition of an M2-like phenotype by inflammatory monocytes
indeed occurs in vivo. First, CD115* bone marrow monocytes
were prepared from wild-type mice, labeled with CFSE, and
adoptively transferred into IgE-sensitized wild-type mice,
simultaneously with the challenge with ailergens. On day 3
postchallenge, many of CFSE-labeled cells infiltrating the skin
lesions became positive for PD-L2, concomitantly with F4/80
upregulation (Figure 6A), indicating their differentiation into
M2-type macrophages. Of note, virtually all of the CFSE*PD-
L2*F4/80™ cells expressed Ly6C (Figure 6A), suggesting that
they were derived from Ly6C* inflammatory but not Ly6C~
resident monocytes. Indeed, when CD115"Ly6C*Ly6G™~ inflam-
matory monocytes were purified from the bone marrow and
adoptively transferred, most of them became positive for PD-
L2 in the skin lesions on day 3 postchallenge (Figure 6B).
Second, to examine the IL-4 dependency of M2 differentiation,
CD115* bone marrow monocytes were prepared from wild-type
or ll4ra~'~ mice, labeled with CFSE, and adoptively transferred
into wild-type mice, followed by IgE-CAI induction (Figure 6C).
On day 1 postchallenge, when few basophils were recruited to
the skin lesions (Figure 1C), little or no expression of PD-L2
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was detected on CFSE-labeled cells infiltrating the skin
lesions, regardless of the source of transferred cells (Figure 6C).
On day 3 postchallenge, when the basophil infiltration reached
a plateau (Figure 1C), a significant fraction of CFSE-labeled
cells infiltrating the skin lesions expressed PD-L2 in mice that
had received cells derived from wild-type but not /i4ra~'~ mice
(Figure 6C). Thus, monocytes recruited to the skin lesions
acquired the PD-L2 expression in an IL-4 receptor (IL-4R)-
dependent manner.

We then investigated whether basophils could contribute to
this process. IgE-CAl was elicited in Mcpt8®™ mice, and on
day 2 postchallenge, CFSE-labeled CD115* bone marrow
monocytes from wild-type mice were adoptively transferred
to them, in conjunction with or without DT-mediated basophil
ablation. The basophil ablation completely abolished the acqui-
sition of PD-L2 expression by transferred monocytes infiltrating
the skin lesions (Figure 6D). These results strongly suggested
that blood-circulating monocytes acquire an M2-like phenotype
after their recruitment to the Ige-CAl skin lesions, in response to
basophil-derived IL-4.

Adoptive Transfer of Ly6C*CCR2"* Inflammatory
Monocytes Dampens the Exacerbated IgE-CAI

in Ccr2”~ Mice in an IL-4R-Dependent Manner

We next examined the functional consequence of the monocyte
recruitment to the IgE-CAI skin lesions by means of adoptive
transfer of wild-type monocytes to Ccr2™~ mice that display
the exacerbated IgE-CAl. A single transfer of CD115" bone
marrow monocytes at the time point of the antigen challenge,
as shown in Figure 6A, showed no apparent impact on the ear
swelling (data not show). We assumed that repeated transfer
might be needed to reproduce the recruitment and accumulation
of monocytes in the IgE-CAl skin lesions. Of note, four consecu-
tive transfers of CD115* monocytes but not CD115~ bone
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Figure 3. IgE-CAl Is Exacerbated rather
than Ameliorated in Ccr2”~ Mice

Wild-type and Ccr2™~ BALB/c mice were treated
as in Figure 1 to induce IgE-CAI.

(A) Time course of ear swelling (Aear thickness) in
wild-type (open squares) and Ccr2™/~ (closed
squares) mice is shown (mean + SEM, n = 4-5
each). Note that error bars are displayed, but often
are hidden behind symbois.

(B) Giemsa-stained specimens of IgE-CAl skin
lesions isolated 4 days postchallenge.

(C) The numbers of total cells and indicated cell
types isolated from the ear skin on day 4 post-
j challenge are shown (mean + SEM, n = 4-5 each).
Data shown are representative of four indepen-
dent experiments. *p < 0.05, ™p < 0.01, **p <
0.001.
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marrow cells dampened the exacerbated
IgE-CAIl in Ccr2™~ mice to the level
observed in wild-type mice (Figure 7A),
suggesting that CD115* bone marrow
monocytes manifest an anti-inflamma-
tory property after their recruitment to
the skin lesion.

We then asked two questions. Are Ly6C*Ly6G™~ inflammatory
monocytes (rather than Ly6C™ resident monocytes) that are re-
cruited to and accumulate in the skin lesions indeed responsible
for the negative regulation of IgE-CAI? Is the IL-4R-mediated
acquisition of the M2-like phenotype by inflammatory mono-
cytes associated with the regulation? To address these issues,
Ly6C*Ly6G~ inflammatory monocytes were further purified
from CD115" bone marrow cells, derived from either wild-type
orlidra™~ mice, and directly transferred once into the ear dermis
of Ccr2~/~ mice where the antigens were administered (Fig-
ure 7B). The adoptive transfer of Ly6C*Ly6G™ inflammatory
monocytes derived from wild-type but not /i4ra~~ mice damp-
ened the exacerbated IgE-CAI. This strongly suggests that after
the recruitment to the IgE-CAI skin lesions, CCR2*Ly6C*Ly6G™~
inflammatory monocytes acquired an Mz2-like phenotype
through IL-4R and exerted an anti-inflammatory function to regu-
late the allergic inflammation.
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DISCUSSION

Activated M2-type macrophages have been observed in arange
of physiological and pathological processes, including Th2
cell-type immune responses (Kreider et al., 2007; Martinez
et al., 2009; Murray and Wynn, 2011). However, the origin,
differentiation pathway, and function of M2 macrophages have
been ill defined, compared to those of M1 macrophages. In the
present study, we have demonstrated a previously unappreci-
ated cascade of monocyte-to-macrophage transition toward
M2, being from proinflammatory to anti-inflammatory to dampen
an allergic reaction. After recruitment to allergen-exposed skin,
Ly6C*CCR2* “inflammatory” monocytes acquired an M2-like
phenotype and exerted an anti-inflammatory function in IgE-
CAl, in response to IL-4 produced by antigen- and IgE-stimu-
lated basophils. Accordingly, the failure in the recruitment



