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Figure 1. Effects of the ALDH2 deficiency on Japanese
FA patients. (A-B) Cumulative incidence of BMF (A) or
MDS/AML (B) were analyzed in 64 FA subjects. Num-
bers of AA, GA, and GG patients were 3, 25, and 36,
respectively. (C) Cumulative incidence of BMF was
analyzed in patients with confirmed biallelic FANCA mu-
tations having protein truncations and/or large deletions
(n = 12). Numbers of AA, GA, and GG patients were 1,
5, and 6, respectively. P values shown were calculated by
the Gray test. In panel A, P values between genotypes
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40 500 were 8.625 X 1077 (GG vs GA), 2.107 X 107'° (GG vs

AA), 1.259 X 1078 (GA vs AA), respectively. In (B),
the difference between GG and GA subjects was not
significant (P = .4564479), whereas other statistical com-
parisons were highly significant (GG vs AA, 2.911 X 1070,
GA vs AA, 8.813 X 107%). In panel C, the P values
between GG and GA, GG and AA, or GA and AA were
calculated as 0.001228433, 0.01430588, 0.02534732,
respectively. (D) Percentage of birth weight or (E)
total number of physical abnormalities (shown in sup-
plemental Table 1) in 64 FA patients with 3 ALDH2
genotypes. Birth weight was nommalized to mean weight at
gestational age in Japan. Mean and SEM are indicated.
Birth weight records were missing for 3 patients (sup-
plemental Table 1). There was no significant difference
between the ALDH2 genotypes (Kruskal-Wallis test). (F)
Frequency (percentage) of cardiovascular, radial, thumb,
skeletal, kidney, and extensive malformations in each
ALDH2 genotype. P values were calculated by the
Cochran-Armitage test for trend, which detects statistical
significance of effects across the genotypes. The error
bars represent 95% confidence intervals.
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Abstract The congenital dyserythropoietic anemias
(CDAs) are a heterogeneous group of genetic disorders of
red cell production. They are characterized by ineffective
erythropoiesis and dyserythropoiesis. Here, we present the
clinical description and mutation analysis of a Japanese
female with CDA type 1. She has long been diagnosed with
unclassified congenital hemolytic anemia from the neonatal
period. However, bone marrow morphology and genetic
testing of the CDANI1 gene at the age of 12 years con-
firmed the afore-mentioned diagnosis. Thus, we should be
aware of the possibility of CDA if the etiology of con-
genital anemia or jaundice cannot be clearly elucidated.

Keywords Congenital dyserythropoietic anemia -
CDANT1 gene - Congenital hemolytic anemia

Introduction

The congenital dyserythropoietic anemias (CDAs) com-
prise a group of very rare hereditary disorders character-
ized by ineffective erythropoiesis and distinct
morphological abnormalities of the erythroblasts in the
bone marrow {1]. Morphological analysis is the first step in
the diagnosis of all types of CDA, followed by confirma-
tory tests [2]. The diagnosis of CDAs can be delayed due to
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their rarity and lack of information (especially in non-
severe cases) [3-5].

On the basis of the dysplastic changes observed in bone
marrow erythroblasts by light and electron microscopy, the
mode of inheritance and the associated dysmorphism,
CDAs have been divided into 3 major types: CDA types 1,
2, and 3. Responsible genes have been identified for CDA
type 1 (CDANI) [6] and CDA type 2 (SEC23B) [7], not for
CDA type 3.

In this brief report, we describe a unique case of CDA
type 1 previously diagnosed as unclassified congenital
hemolytic anemia. Marked erythroid dysplasia and the
detection of a novel mutation in the CDANI gene aided in
accurately diagnosing the condition.

Case report

A 12-year-old female was referred to our hospital for
further evaluation of persistent anemia after gastroen-
teritis. She had no family history of hemolytic anemia,
was born at 39 weeks’ gestation, and weighed 2,085 g at
birth. Her initial symptom was severe jaundice at birth.
She received three exchange transfusions during infancy,
followed by erythropoietin administration for subsequent
anemia up to the age of 1 year. At the age of 8 years, she
experienced exacerbations of anemia, jaundice, and
splenomegaly following mild gastroenteritis. Evaluation
of her laboratory results at that point revealed low
hemoglobin levels (10.6 g/dl), elevated mean corpuscu-
lar volume (MCV 101.3 1), elevated bilirubin levels
(total bilirubin 3.1 mg/dl, direct bilirubin 0.9 mg/dl),
and undetectable haptoglobin (<10 mg/dl). The clinical
and hematological features were suggestive of congeni-
tal hemolytic anemia; however, further investigation
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Fig. 1 Bone marrow
morphology. a Megaloblastic
changes, b nuclear bridging,

¢ nuclear lobulations, and

d multinuclearity (May-Giemsa
staining, x400)

[peripheral blood smear, osmotic fragility test, fraction
of hemoglobin, isopropanol test, and red blood cell
(RBC) enzyme activities] excluded the possibility of
disorders of red cell membrane, thalassemias, unstable
hemoglobinopathies, and red cell enzymopathies.

At the time of her first visit to our hospital, physical
examination revealed mild splenomegaly and conjunctival
pallor; she had no skeletal malformations (including
distal limb anomalies). Laboratory evaluation revealed
low hemoglobin levels (8.1 g/dl), normal MCV values
(93.9 fl), normal bilirubin levels (total bilirubin 1.0 mg/
dl, direct bilirubin 0.2 mg/dl), and mildly elevated serum
ferritin levels (400.8 ng/ml). The levels of serum vitamin
B12, folate, and iron were within the normal ranges.
Furthermore, peripheral blood smear revealed anisocyto-
sis and poikilocytosis (including teardrop-shaped poi-
kilocytes), and schistocytes. Bone marrow examination
revealed erythroid hyperplasia and marked erythroid

dysplasia; megaloblastic changes, nuclear bridging,
nuclear lobulations, multinuclearity were observed
(Fig. 1). No significant features of dysplasia were

observed in the myeloid or megakaryocytic lineages. To
confirm the diagnosis, we conducted a mutational anal-
ysis that revealed a novel heterozygous frameshift
mutation ¢.552_553 insG in exon 2, and another known
[6] heterozygous missense mutation ¢c.A1910G in exon 12
of CDANI gene (Fig. 2); subsequently, we diagnosed her
as a case of CDA type 1. One year after the diagnosis,
her anemia resolved spontaneously (hemoglobin levels

CDANIex2 COANLex12
Leu Asn Gly
Lleu Pro Gly Lens Ser  Gly

CTGCCLGGA CYCAATGGT

Father
leu #fPro  Gly
leu  sla  Arg leu Asn  Gly
CTGCELGGA CTCAATGGT
Mother
Leu Pro Gly teu Asn  Gly
teu Ala  Arg teu S Gly
CTGLCCLCGGA CTCAATGGT
Patient

LGCCCGG G

i
i

G
p.N5985

€55

p.P185fs

Fig. 2 The compound heterozygous mutation of the CDANI gene

11.1 g/dl), but the ferritin levels remained relatively high
(342.1 mg/ml); this required meticulous observation and
follow-up.
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Discussion

We report a 12-year-old female diagnosed with unclassi-
fied congenital hemolytic anemia with recurrent episodes
of anemia and jaundice; subsequently, she was diagnosed
with CDA type 1. CDA type 1 is inherited as an autosomal
recessive disease. More than 150 patients have been
described, mainly patients from Western Europe, the
Middle East, India and Japan [8]. The anemia observed in
CDA type 1 varies from mild to severe. About 50 % of
neonates with CDA type 1 need at least one transfusion of
erythrocytes, and some remain transfusion-dependent in
the following years [9]. In most adolescents and adults, the
need for transfusions is limited to aplastic crisis, preg-
nancy, periods of severe infections, or major surgery [10].
The anemia seen in CDA type 1 is usually macrocytic; in
addition, peripheral blood smear showed other features of
anisocytosis, poikilocytosis, and basophilic stippling [2].
Moreover, light microscopy of the bone marrow in CDA
type 1 presents erythroid hyperplasia with abnormal pre-
cursors displaying a megaloblastoid appearance. Dysplastic
signs include markedly irregular nuclei with frequent
binucleate erythroblasts [11]. A particular diagnostic fea-
ture in CDA type 1 is thin, internuclear chromatin bridges
between nearly completely separated erythroblasts.

Nevertheless, CDA should be diagnosed only after
exclusion of other congenital anemias known to be asso-
ciated with ineffective erythropoiesis and dyserythropoiesis
[12]. Distinguishing CDA and the other congenital hemo-
lytic anemias only on the basis of clinical course, labora-
tory data, and peripheral blood smear can be challenging.
In CDA and the other congenital hemolytic anemia,
symptoms of anemia and jaundice vary from mild to
severe, with the most severe cases presenting in the neo-
natal period and milder cases presenting in adolescence or
later stages in life. Abnormally shaped RBCs can appear in
both the categories. Heimpel et al. [13] reported that in the
German CDA Registry, the age of the 21 patients at the
time of initial diagnosis of CDA type 1 ranged
0.145 years (median 17.3 years) and that 11 of 21 cases
were previously misdiagnosed as congenital hemolytic
anemia. Bone marrow examination might be often omitted,
not usually performed, in pediatric cases with hemolytic
anemia. In contrast, bone marrow examination is indis-
pensible in case of CDAs because CDAs are diagnosed
only after identifying distinct morphological abnormalities
of the erythroblasts in the bone marrow.

Approximately, 90 % of patients with bone marrow
evaluation suggesting CDA type 1 have mutations in
CDAN1 [6]. Most patients with a confirmed diagnosis of
CDA type 1 demonstrate mutations of at least one allele
from exons 6 to 28 within CDANI; more than 30 unique
mutations have been identified so far [6, 10, 13-17]. The

@ Springer

majority of mutations in CDAN] are missense or nonsense,
and only two frameshift mutations are known [10]. To our
knowledge, ¢.552_553 insG in exon 2 is a novel frameshift
mutation in CDAN].

In summary, we report a Japanese female of CDA type
1. Bone marrow morphology and genetic testing in CDAN/
gene was the key to accurate diagnosis. Taken together,
when we encounter a patient whose clinical manifestations
and laboratory results suggest the possibility of congenital
hemolytic anemia but we cannot confirm the diagnosis, we
should consider the possibility of CDA and bone marrow
morphology and genetic testing should be conducted.
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