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Extensive gene deletions in Japanese patients with Diamond-Blackfan anemia
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Fifty percent of Diamond-Blackfan ane-
mia (DBA) patients possess mutations in
genes coding for ribosomal proteins
(RPs). To identify new mutations, we in-
vestigated large deletions in the RP genes
RPL5, RPL11, RPL35A, RPS7, RPS10,
RPS17, RPS19, RPS24, and RPS26. We
developed an easy method based on
quantitative-PCR in which the threshold
cycle correlates to gene copy number.
Using this approach, we were able to

diagnose 7 of 27 Japanese patients
(25.9%) possessing mutations that were
not detected by sequencing. Among these
large deletions, similar results were ob-
tained with 6 of 7 patients screened with a
single nucleotide polymorphism array. We
found an extensive intragenic deletion in
RPS19, including exons 1-3. We also
found 1 proband with an RPLS5 deletion,
1 patient with an RPL35A deletion, 3 with
RPS17 deletions, and 1 with an RPS19

deletion. In particular, the large deletions
in the RPL5 and RPS17 alleles are novel.
All patients with a large deletion had a
growth retardation phenotype. Our data
suggest that large deletions in RP genes
comprise a sizable fraction of DBA pa-
tients in Japan. In addition, our novel
approach may become a useful tool for
screening gene copy numbers of known
DBA genes. (Blood. 2012;119(10):
2376-2384)

Introduction

Diamond-Blackfan anemia (DBA; MIN# 105650) is a rare congeni-
tal anemia that belongs to the inherited BM failure syndromes,
generally presenting in the first year of life. Patients typically
present with a decreased number of erythroid progenitors in their
BM.! A main feature of the disease is red cell aplasia, but
approximately half of patients show growth retardation and congeni-
tal malformations in the craniofacial, upper limb, cardiac, and
urinary systems. Predisposition to cancer, in particular acute
myeloid leukemia and osteogenic sarcoma, is also characteristic of
the disease.?

Mutations in the RPS19 gene were first reported in 25% of DBA
patients by Draptchinskaia et al in 1999.3 Since that initial finding,
many genes that encode large (RPL) or small (RPS) ribosomal
subunit proteins were found to be mutated in DBA patients,
including RPL5 (approximately 21%), RPLII (approximately
9.3%), RPL35A (3.5%), RPS7 (1%), RPS10 (6.4%), RPS17 (1%),
RPS24 (2%), and RPS26 (2.6%).*7 To date, approximately half of
the DBA patients analyzed have had a mutation in one of these
genes. Konno et al screened 49 Japanese patients and found that
30% (12 of 49) carried mutations.® In addition, our data showed
that 22 of 68 DBA patients (32.4%) harbored a mutation in
ribosomal protein (RP) genes (T.T., K.T., R.W,, and EI, unpub-

lished observation, April 16, 2011). These abnormalities of RP
genes cause defects in ribosomal RNA processing, formation of
either the large or small ribosome subunit, and decreased levels of
polysome formation,*6%!2 which is thought to be one of the
mechanisms for impairment of erythroid lineage differentiation.

Although sequence analyses of genes responsible for DBA are
well established and have been used to identify new mutations, it is
estimated that approximately half of the mutations remain to be
determined. Because of the difficulty of investigating whole allele
deletions, there have been few reports regarding allelic loss in
DBA, and they have only been reported for RPS19 and RPL35A 3613
However, a certain percentage of DBA patients are thought to have
alarge deletion in RP genes. Therefore, a detailed analysis of allelic
loss mutations should be conducted to determine other RP genes
that might be responsible for DBA.

In the present study, we investigated large deletions using our
novel approach for gene copy number variation analysis based on
quantitative-PCR and a single nucleotide polymorphism (SNP)
array. We screened Japanese DBA patients and found 7 patients
with a large deletion in an allele in RPL5, RPL35A, RPS17, or
RPS19. Interestingly, all of these patients with a large deletion had
a phenotype of growth retardation, including short stature and
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Table 1. Primers used for synchronized quantitative-PCR (s-q-PCR) of RPL proteins

Gene Primer name Sequence Primer name Sequence Size, bp
RPLS  L502F - CTCCCAAAGTGCTTGAGATTACAG o8 SCCAAT ‘
' L5-05F AGCCCTCCAACCTAGGTGACA
L5476 TGAAGCCTTGCCCTAAAACATG.
L5-19F ATTGTGCAAACTCGATCACTAGCT
CLsR1E GTGCCACTCTCTTGGACAAACTG
L5-28F TCCACTTTAGGTAGGCGAAACC
RPL11: L11-06F  GCACCCACATGGCTTAAAGG
L11-20F GAGCCCCCTTTCTCAGATGATA
i Li1-22F © . TATGTGCAGATAAGAGGGGCAGTCT
RPL19 L19-02F  TGGCCTCTCATAAAGGAAATCTCT
¢ L19:08F . TTTGAAGGCAAGAAATAAGTICCA
L19-16F GGTTAGTTGAAGCAGGAGCCTTT
S IM919F - GGACCAGTAGTTGTGACATCAGTTAAG
RPL26 1.26-03F TCCAAAGAGCTGAGACAGAAGTACA
S 1.26-16F . TTTGAGAATGCTTGAGAGAAGGAA
L26-18F  ATGTTTTAATAAGCCCTCCAGTTGA
S U 12890F T GGGCTTTGCTTGATCACTCTAGA - o o
RPL35A L35A-01F ~ TGTGGCTTCTATTTTGCGTCAT

RﬁLygey

 LSAEE

136

L35A07F
L35A-17F

L36-17F

 TTTCCGTICTGTCTATTGCTGTGT
GCCCACAACCTCCAGAGAAT
 TTAGGTGGGCTTTTCAGTCICAA
C TACAAGTGAAGAAATTCT
TGCGTCCTGCCAGTGTIG | 6-04F -
CCCCTTGAAAGGACAGCAGTT L36-17R TTGGACACCAGGCACAGACTT 114

Table 2. Primers used for s-q-PCR of RPS proteins

Gene Primer name Sequence Primer name Sequence Size, bps
RPS7 ST1F . GCGCTGCCAGATAGGAAATC = 4 A
S7-12F ACTGGCAGTTCTGTGATGCTAAGT
S746F  GTGTCTGTGCCAGAAAGCTTGA -
RPS10 '$10-03F CTACGGTTTTGTGTGGGTCACTT
Sl aygiEE GTTGGCCTGOAGTCETGATTT
S10-17F AATGGTGTTTAGGCCAACGTTAC
RPS14: | S14-03F _GAATTCCAAACCCTTCTGCAAA
S14-05F ACAACCAGCCCTCTACCTCTTTT
L S14-06F 'CGCCTCTACCTCGCGAAMAG -
S14-09F GCCATCATGCCGAAACATACT
S14-43F  ATCAGGTGGAGCACAGGAABAC
S14-15F AGAAGTTTTAGTGAGGCAGAAATGAGA
G S1449F 0 GATGAATIGTCCTTTCCTCCATT
RPS15 $15-11F CTCAGCTAATAAAGGCGCACATG 108
v SIBMSEL . GGTTGGAGAACATGGTGAGAACTA 108
RPS17 $17-03F ACTGCTGTCGTGGCTCGATT ‘
Nl e o Ao
S17-12F CTATGTGTAGG GGTCCCAGGATAG
US1746F 1 TAGCGGAAGTTGTGTGCATIG . 817-16R
S17-18F TGGCTGAATCTGCCTGCTT S17-18R
s S17:20F - GGGCCCTTCACAAATGTIGA ~  Si720R
APS19 S19-24F CCATCCCAAGAATGCACACA $19-24R
' S1998F - GACACACCTGTTGAGTCCTCAGAGT =~ S18-288
519-36F . CTCTTGAGGGTGGTCTGGAAAT © S19-36R
- 519-40F | GGAACGGTGTCAGGATTCAAG .
S19-44F CTGAGGTTGAGTGTCCCATTTCT S19-44R
S19°57F  CAGGGACACAGTGCTGAGAAACT ste
S19-58F CATGATGTTAGCTCCGTTGCATA S19-58R
© §19-62F . - GCAACAGAGCGAGACTCCATIT . sig62R / T
$19-65F ACATTTCCCAGAGCTGACATGA ~ S19-65R TCGGGACACCTAGACCTTGCT 102
RPS24 [ S2417F ' CGACCACGTCTGGCTTAGAGT = 82a47R | CCTITCATGCCCAACCAAGTC o
$24-20F ACAAGTAAGCATCATCACCTCGAA S24-20R TTTCCCTCACAGCTATCGTATGG 105
k SP4-32F ‘GGGAAATGCTGTGTCCACATACT - So43m
RPS26 $26-03F CGCAGCAGTCAGGGACATTT S26-03R
B §26.05F . ATGGAGGCCGICTAGTTTGGT =~ S26-05R
RPS27A S27A-09F  GCTGGAGTGCATTCGCTTGT S27A-09R
i S27A-12F . CAGGCTTGGTGTGCTGTGACT . ' S27A-12R
S27A-18F GGGTTTTTCCTGTTTGGTATTTGA S27A-18R
S27A22F | TTACCATATTGCCAGTCTTTCCATT . SoTADR
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Figure 1. s-q-PCR can determine a large gene deletion in DBA. (A) Concept of the DBA s-q-PCR assay. The difference in gene copy number between a healthy sample and
that with a large deletion is 2-fold (i). When all genomic s-q-PCR for genes of interest synchronously amplify DNA fragments, a 2-fold difference in the gene copy number is
detected by a 1-cycle difference of the Ct scores of the s-q-PCR amplification curves (ii). Also shown is a dot plot of the Ct scores (iii). (B) Results of the amplification curves of

s-q-PCR performed with a healthy person (i) and a DBA patient (patient 3; ii). The top p
cycles at logarithmic amplification. (C) Graph showing Ct scores of s-q-PCR. If all speci
large deletion in the gene. Gene primer sets with a large deletion are underlined in the

small-for-gestational age (SGA), which suggests that this is a
characteristic of DBA patients with a large gene deletion in Japan.

Methods

Patient samples

Genomic DINA was extracted using the GenElute Blood Genomic DNA Kit
(Sigma-Aldrich) according to the manufacturer’s protocol. Clinical manifes-

anel shows the results of PCR cycles; the bottom panet is an extended graph of the PCR
fic primer sets for DBA genes show a 1-cycle delay relative to each other, this indicates a
graph. **P < .001.

tation of patients from a Japanese DBA genomic library are listed elsewhere
or are as reported by Konno etal® The study was approved by the
institutional review board at the National Institute of Infectious Diseases
and Hirosaki University.

DBA gene copy number assay by s-q-PCR

For s-g-PCR, primers were designed using Primer Express Version 3.0
software (Applied Biosystems). Primers are listed in Tables 1 and 2.
Genomic DNA in water was denatured at 95°C for 5 minutes and
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immediately cooled on ice. The composition of the s-q-PCR mixture was
as follows: 5 ng of denatured genomic DNA, 0.4mM forward and
reverse primers, 1 X SYBR Premix Ex Taq II (Takara), and 1X ROX
reference dye 1I (Takara) in a total volume of 20 pL (all experiments
were performed in duplicate). Thermal cycling was performed using the
Applied Biosystems 7500 fast real-time PCR system. Briefly, the PCR
mixture was denatured at 95°C for 30 seconds, followed by 35 cycles of
95°C for 5 seconds, 60°C for 34 seconds, and then dissociation curve
measurement. Threshold cycle (Ct) scores were determined as the
average of duplicate samples. The technical errors of Ct scores in the
triplicate analysis were within 0.2 cycles (supplemental Figure 1,
available on the Blood Web site; see the Supplemental Materials link at
the top of the online article). The sensitivity and specificity of this
method was evaluated with 15 healthy samples. Any false positive was
not observed in all primer sets in all healthy samples (supplemental
Figure 2). We performed direct sequencing of the s-g-PCR products. The
results of the sequence analysis were searched for using BLAST to
confirm uniqueness. Sequence data were obtained from GenBank
(http://www.ncbi.nlm.nih.gov/gene/) and Ensemble Genome Browser
(http://uswest.ensembl.org).

Genomic PCR

Genomic PCR was performed using KOD FX (Toyobo) according to the
manufacturer’s step-down PCR protocol. Briefly, the PCR mixture con-
tained 20 ng of genomic DNA, 0.4mM forward and reverse primers,
1mM dNTP, 1 X KOD FX buffer, and 0.5 U KOD FX in a total volume of
25 pL in duplicate. Primers are given in supplemental Figure 3 and
Table 2. PCR mixtures were denatured at 94°C for 2 minutes, followed
by 4 cycles of 98°C for 10 seconds, 74°C for 12 minutes, followed by
4 cycles of 98°C for 10 seconds, 72°C for 12 minutes followed by
4 cycles of 98°C for 10 seconds, 70°C for 12 minutes, followed by
23 cycles of 98°C for 10 seconds and 68°C for 12 minutes. PCR
products were loaded on 0.8% agarose gels and detected by LAS-3000
(Fujifilm).

DNA sequencing analysis

The genomic PCR product was purified by the GenElute PCR clean-up kit
(Sigma-Aldrich) according to the manufacturer’s instructions. Direct se-
quencing was performed using the BigDye Version 3 sequencing kit.
Sequences were read and analyzed using a 3120x genetic analyzer (Applied
Biosystems).

SNP array-based copy number analysis

SNP array experiments were performed according to the standard protocol
of GeneChip Human Mapping 250K Nsp arrays (Affymetrix). Microarray
data were analyzed for determination of the allelic-specific copy number
using the CNAG program, as described previously.!* All microarray data
are available at the EGA database (www.ebi.ac.uk/ega) under accession
number EGAS00000000105.

Resulis

Construction of a convenient method for RP gene copy number
analysis based on s-q-PCR

We focused on the heterozygous large deletions in DBA-
responsible gene. The difference in copy number of genes
between a mutated DBA allele and the intact allele was 2-fold
(N and 2N; Figure 1Ai). If each PCR can synchronously amplify
DNA fragments when the template genomic DNA used is of
normal karyotype, it is possible to conveniently detect a gene
deletion with a 1-cycle delay in s-qg-PCR analysis (Figure

LARGE DELETIONS IN DBA-RESPONSIBLE GENES 2379

Table 3. Summary of mutations and the mutation rate observed in
Japanese DBA patients

Gene

RPS19 o
RPLS

RPLIT
RPS17
RPS1I0
RPS26
RBPL3BA
RPS24

APS14 . S S L
Mutations, n (%) 2.
Totalanalyzed, N Ly -

Sequencing analysis

(32.4%)

NO O O - ity o

8

To apply this strategy for allelic analysis of DBA, we prepared
primers for 16 target genes, RPLS5, RPLI1l, RPL35A, RPSI0,
RPS19, RPS26, RPS7, RPSI7, RPS24, RPL9, RPLI9, RPL26,
RPL36, RPS14, RPS15, and RPS27A, under conditions in which
the Ct of s-g-PCR would occur within 1 cycle of that of the other
primer sets (Tables 1 and 2). At the same time, we defined the
criteria of a large deletion in our assay as follows. If multiple
primer sets for one gene showed a l-cycle delay from the other
gene-specific primer set at the Ct score, we assumed that this
represented a large deletion. As shown in Figure 1Bii and 1Cii, the
specific primer sets for RPLS (L5-02, L5-05, L5-17, L5-19, and
1.5-28) detected a 1-cycle delay with respect to the mutated allele
of patient 3. This assessment could be verified by simply confirm-
ing the difference of the cycles with the s-q-PCR amplification
curves.

Study of large gene deletions in a Japanese DBA genomic
DNA library

Sixty-eight Japanese DBA patients were registered and blood
genomic DNA was collected at Hirosaki University. All samples
were first screened for mutations in RPLS, L11, L35A, §10, 514,
S17, S§19, and S26 by sequencing. Among these patients,
32.4% (22 of 68) had specific DBA mutations (Table 3 and data
not shown). We then screened for large gene deletions in 27 pa-
tients from the remaining 46 patients who did not possess
mutations as determined by sequencing (Table 4).

When we performed the s-q-PCR DBA gene copy number
assay, 7 of 27 samples displayed a 1-cycle delay of Ct scores:
1 patient had RPLS5 (patient 14), 1 had RPL35A (patient 71), 3 had
RPS17 (patients 3, 60, 62), and 2 had RPS!9 (patients 24 and 72;
Figure 2 and Table 4). Among these patients, the large deletions in
the RPL5 and RPSI7 genes are the first reported cases of allelic
deletions in DBA. From these results, we estimate that a sizable
number of Japanese DBA patients have a large deletion.

Based on our findings, the rate of large deletions was approxi-
mately 25.9% (7 of 27) in a category of unspecified gene mutations.
Such mutations have typically gone undetected by conventional
sequence analysis. We could not find any additional gene deletions
in the analyzed samples.

Confirmation of the gene copy number for DBA genes by
genome-wide SNP array

We performed genome-wide copy number analysis of the
27 DBA patients with a SNP array to confirm our s-g-PCR
results. SNP array showed that patient 3 had a large deletion in

— 192 —



— €61 —

Table 4. Characteristics of DBA patients tested

Patient Age at Sex Hb, g/dL Large deletion Large deletion Inheritance Malformations Response to first
no. diagnosis by s-g-PCR by SNP array steroid therapy
Patients with a large defetion in HP genes ; L , i L

3t 1y M Sporadic Short stature, thumb anomalies Response
e iy M . Sporadic - White spots, short s‘tat,u:re G Resporise
‘ 24*1? ‘ " 1mo F Sporadic Short stature, SGA Response
Ce0t T mo SR . Sporadic . . 8GA Lo NT

62*t . 1 mo Fo Sporadic Smalt ASD, short stature, SGA ﬁespohse
o oy Mo ‘Sporadic’ . Thumb anomalies, synostosis of radius and CUNTS
; . uina, Cohelia Lange-like face, cleft - e

. palate, underdescended testis, short
© . stature, cerebellar hypoplasia, fetal
72t Oy M Sporadic Thumb anomalies, flat thenar, testicular No
hypoplasia, fetal hydrops, short stature,
learning disability

Patients without a large deletion in RP genes: sEbe e Lo e S

5 1y F 3.1 ND ND ) ‘Sporadic Response
st ,‘1~m0 S SR s 1,;65 & S ND : . ND o stéfédmtz £ - Response

21" 1y F 2.6 ND Sporadic Response

Sy o 8. G Sporadic ~ Aesponse

o

Sporadlc‘
el N e
Sporadic Hypospadiasf underdescended testis, SGA

g
37"
45"

e

ASD, PFO, me!ahosis. undefdescended

testis, SGA, short stature

R P - 'meaicbécﬁy-‘ ;
un , syndactyly,

Response
Response ©

CONT

Rééponse
. Response.
Response

 Respons
Response

Response

ontracture, -

ND indicates not detected; NT, not tested; CR, complete remission; ASD, atrial septal defect; and PFO, persistent foramen ovale.
*Status data of Japanese probands 3 to 63 is from a report by Konno et al.®
tLarge deletions of the parents of 5 DBA patients (3, 24, 60, 62, and 72) were analyzed by s-q-PCR, but there were no deletions in DBA genes in any of the 5 pairs of parents.
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Figure 2. Detection of 7 mutations with a large
deletion in DBA patients. Genomic DNA of 27 Japanese
DBA patients with unknown mutations were subjected to
the DBA gene copy number assay. (A) Amplification curve
of s-q-PCR of a mutation with a large deletion. The
deleted gene can be easily distinguished. (B) Ct score
(cycles) of representative s-g-PCR with DBA genomic
s-q-PCR primers. Resuilts of the 2 gene-specific primer
pairs indicated in the graph are representative of at least
2 sets for each gene-specific primer (carried out in the
same run). **P < .001;*P <.01
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T 23 24 25 26 21 28

23 24 25 28 27 28

#60

"23 24 25 26 27 28

23 24 2526 27 28 29

22 23 24 25 26 27 28
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chromosome 1 (chl) spanning 858 kb (Figure 3A); patient
71 had a large deletion in ch3 spanning 786 kb (Figure 3B);
patients 14, 60, and 62 had a large deletion in chl5 spanning
270 kb, 260 kb, and 330 kb, respectively (Figure 3C); and
patient 72 had a large deletion in ch19 spanning 824 kb (Figure
3D). However, there were no deletions detected in chl9 in
patient 24 (Figure 3D). Genes estimated to reside within a large
deletion are listed in supplemental Table 1. Consistent with
these s-q-PCR results, 6 of 7 large deletions were detected and
confirmed as deleted regions, and these large deletions con-
tained RPL5, RPL35A, RPS17, and RPSI19 (Table 4 and
supplemental Table 1). Other large deletions in RP genes were
not detected by this analysis. From these results, we conclude
that the synchronized multiple PCR amplification method has a
detection sensitivity comparable to that of SNP arrays.
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Detailed examination of a patient with intragenic deletion in the
RPS19 allele (patient 24)

Interestingly, for patient 24, in whom we could not detect a large
deletion by SNP array at s-g-PCR gene copy number analysis,
2 primer sets for RPS19 showed a l-cycle delay (RPS19-36 and
RPS19-40), but 2 other primer pairs (RPS19-58 and RPS19-62)
did not show this delay (Figure 4A). We attempted to determine
the deleted region in detail by testing more primer sets on
RPSI9. We tested a total of 9 primer sets for RPS19 (Figure 4B)
and examined the gene copy numbers. Surprisingly, 4 primer
sets (S19-24, S$19-36, S19-40, and S19-44) for intron 3 of RPS19
indicated a l-cycle delay, but the other primers for RPSI9
located on the 5'untranslated region (5'UTR), intron 3, or
3'UTR did not show this delay (S19-57, S19-58, S19-28,
S19-62, and S19-65; Figure 4B-C). These results suggest that
the intragenic deletion occurred in the RPS19 allele. To confirm
this deleted region precisely, we performed genomic PCR on
RPS19, amplifying a region from the 5'UTR to intron 3 (Figure
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Figure 3. Results of SNP genomic microarray (SNP-

chip) analysis. Genomic DNA of 27 Japanese DBA
patients with unknown mutations was examined using a
SNP array. Six patients had large deletions in their
chromosome (ch), which included one DBA-responsible
gene. Patient 3 has a large deletion in ch1 (A), patient
71 has a deletion in ch3 (B), patients 14, 60, and 62 have
deletions in ch15 (C), and patient 72 has a deletion in
ch19 (D).
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4B). In patient 24, we observed an abnormally sized PCR
product at a low molecular weight by agarose gel electrophore-
sis (Figure 4D). We did not detect a wild-type PCR product from
the genomic PCR. This finding is probably because PCR tends
to amplify smaller molecules more easily. However, we did
detect a PCR fragment at the correct size using primers located
in the supposedly deleted region. These bands were thought to
be from the products of a wild-type allele. Sequencing of the
mutant band revealed that intragenic recombination occurred at a
homologous region of 27 nucleotides, from —1400 to —1374 in the
5’ region, to +5758 and +5784 in intron 3, which resulted in the
loss of 7157 base pairs in the RPSI9 gene (Figure 4E). The deleted
region contains exons 1, 2, and 3, and therefore the correct RPS19
mRNA could not be transcribed.

Genotype-phenotype analysis and DBA mutations in Japan

Patients with a large deletion in DBA genes had common
phenotypes (Table 4). Malformation with growth retardation
(GR), including short stature or SGA, were observed in all
7 patients. In patients who had a mutation found by sequencing,
half had GR (11 of 22; status data of DBA patients with
mutations found by sequencing are not shown). GR may be a
distinct phenotypic feature of large deletion mutations in
Japanese DBA patients. Familial mutations were analyzed
for parents for 5 DBA patients with a large deletion (patients
3, 24, 60, 62, and 72) by s-q-PCR. There are no large deletions
in all 5 pairs of parents in DBA-responsible genes. Four of
the 7 patients responded to steroid therapy. We have not
observed significant phenotypic differences between patients
with extensive deletions and other patients with regard to
blood counts, responsiveness to treatment, other
malformations.

or

Discussion

Many studies have reported RP genes to be responsible for DBA.
However, mutations have not been determined for approximately
half of DBA patients analyzed. There are 2 possible reasons for this
finding. One possibility is that patients have other genes respon-
sible for DBA, and the other is that patients have a complicated set
of mutations in RP genes that are difficult to detect. In the present
study, we focused on the latter possibility because we have found
fewer Japanese DBA patients with RP gene mutations (32.4%)
compared with another cohort study of 117 DBA patients and 9 RP
genes (approximately 52.9%).4 With our newly developed method,
we identified 7 new mutations with a large deletion in RPLS,
RPL35A, RPS17, and RPSI9.

The frequency of a large deletion was approximately 25.9%
(7 of 27) in our group of patients who were not found to have
mutations by genomic sequencing. Therefore, total RP gene
mutations were confirmed in 42.6% of these Japanese patients
(Table 5). Interestingly, mutations in RPS/7 have been observed at
a high rate (5.9%) in Japan relative to that in other countries
(1%).>13:16 Although the percentage of DBA mutations differs
among different ethnic groups,®'1® a certain portion of large
deletions in DBA-responsible genes are likely to be determined in
other countries by new strategies.

In the present study, we analyzed patient data to determine
genotype-phenotype relations. To date, large deletions have
been reported with RPS19 and RPL35A in DBA patients.36.13
RPSI19 large deletions/translocations have been reported in
12 patients, and RPL35A large deletions have been reported in
2 patients.!” GR in patients with a large deletion has been
observed previously with RPS/9 translocations,>!*2! but it
was not found in 2 patients with RPL35A deletion.® Interest-
ingly, all of our patients with a large deletion had a phenotype
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Figure 4. Resuit of s-q-PCR gene copy number assay A B
for patient 24. (A) Results of s-g-PCR gene copy number
assay for RPS19 with 4 primer sets. (Bi) The RPS19gene 6 e E4E5 E6 JUTR
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of GR, including short stature and SGA, which suggests that
this is a characteristic of DBA with a large gene deletion in
Japan. Our study results suggest the possibility that GR is
associated with extensive deletion in Japanese patients. Al-
though further case studies will be needed to confirm this
possibility, screening of DBA samples using our newly devel-
oped method will help to advance our understanding of the
broader implications of the mutations and the correlation with
the DBA genotype-phenotype.

Table 5. Total mutations in Japanese DBA patients, including large
gene deletions

Gene Mutation rate
RPS19 L 120176%)
APLS 7(10.3%)
RPLiT 3 (44%)
RPS17 4 (5.9%)
RPS10 " 1 (8%
RPS26 1 (1.5%)
RPL3SA - Y E%)
RPS24 o
RPS14 o

Mutations, n (%)
Total analyzed, N

68

20(42.6%)

+5758 +5784

|
I RPS19intron3

Copy number variation analysis of DBA has been performed by
linkage analysis, and the RPS/9 gene was first identified as a
DBA-susceptibility gene. Comparative genomic hybridization ar-
ray technology has also been used to detect DBA mutations in
RPL35A, and multiplex ligation-dependent probe amplification has
been used for RPS19 gene deletion analysis.>®1322 However, these
analyzing systems have problems in mutation screening. Linkage
analysis is not a convenient tool to screen for multiple genetic
mutations, such as those in DBA, because it requires a high level of
proficiency. Although comparative genomic hybridization technol-
ogy is a powerful tool with which to analyze copy number
comprehensively, this method requires highly specialized equip-
ment and analyzing software, which limits accessibility for research-
ers. Whereas quantitative PCR—based methods for copy number
variation analysis are commercially available (TagMan), they
require a standard curve for each primer set, which limits the
number of genes that can be loaded on a PCR plate. To address this
issue, a new method of analysis is needed. By stringent selection of
PCR primers, the s-q-PCR method enables analysis of many DBA
genes in 1 PCR plate and the ability to immediately distinguish a
large deletion using the s-q-PCR amplification curve. In our study,
6 of 7 large deletions in the RP gene detected by s-q-PCR were
confirmed by SNP arrays (Figure 3). Interestingly, we detected
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1 large intragenic deletion in RPS19, which was not detected by the
SNP array. This agreement between detection results suggests that
the s-q-PCR copy number assay could be useful for detecting large
RP gene deletions.

In the present study, 7 DBA patients carried a large deletion in
the RP genes. This type of mutation could be underrepresented by
sequencing analysis, although in the future, genome sequencing
might provide a universal platform for mutation and deletion
detection. We propose that gene copy number analysis for known
DBA genes, in addition to direct sequencing, should be performed
to search for a novel responsible gene for DBA. Although at
present, it may be difficult to observe copy numbers on all
80 ribosomal protein genes in one s-g-PCR assay, our method
allows execution of gene copy number assays for several target
genes in 1 plate. Because our method is quick, easy, and low cost, it
could become a conventional tool for detecting DBA mutations.
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CLINICAL AND LABORATORY OBSERTON

A Novel Mutation of Ribosomal Protein S10 Gene in a
Japanese Patient With Diamond-Blackfan Anemia

Makoto Yazaki, MD,* Michi Kamei, MD,t Yasuhiko Ito, MD,T Yuki Konno, MD,}
RuNan Wang, MD,} Tsutomu Toki, MD,} and Etsuro Ito, MD }

Summary: Diamond-Blackfan anemia (DBA) is an inherited bone
marrow disease. The condition is characterized by anemia that
usually presents during infancy or early childhood and congenital
malformation. Several reports show that DBA is associated with
mutations in the ribosomal protein (RP) genes, RPS19, RPS24,
RPS17, RPL35A, RPL5, RPLII, and RPS7. Recently, 5 and 12
patients with mutations in RPSI0 and RPS26, respectively, were
identified in a cohort of 117 DBA probands. Therefore, we
screened the DBA patients who were negative for mutations in
these DBA genes for mutations in RPS10 and RPS26. The present
case report describes the identification of the first Japanese DBA
patient with a novel mutation in RPSJ70.

Key Words: Diamond-Blackfan anemia, ribosomal protein genes,
mutation in RPST0

(J Pediatr Hematol Oncol 2012;34:293-295)

iamond-Blackfan anemia (DBA) is an inherited bone

marrow disease. The condition is characterized by
anemia that usually presents during infancy or early
childhood, congenital malformation, and an increased in-
cidence of cancer.! In 1999, it was reported that DBA is
associated with mutations in the ribosomal protein (RP)
gene, RPS19.4 This mutation was identified in 25% of DBA
probands and prompted the search for other RP gene
mutations. Subsequently, DBA patients with mutations in
RPS24, RPS17, RPL35A4, RPL5, RPLI1, and RPS7 were
reported, suggesting that DBA is a disorder of ribosomal
biogenesis and/or function.>7 Recently, Doherty et al® re-
ported 3 distinct mutations of the RPSI0 in 5 patients from
a cohort of 117 DBA probands. Therefore, we screened the
Japanese DBA patients who were negative for mutations in
these RP genes for mutations in RPS70 and RPS26. Here,
we report the first Japanese DBA patient with a novel
mutation in RPS/0.
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CASE REPORT

A 6-year-old boy was referred to our hospital with anemia
with no other significant cytopenia. He was an only child with no
family history of anemia. He has no congenital malformations
described in “classical DBA,” apart from bilateral lymphangioma
of the foot. His white blood cell count was 4.3 x 10°/L, the eryth-
rocyte count was 2540 x 10°/L, the hematocrit was 24.6%, hemo-
globin concentration was 8.3 g/dL, the mean corpuscular volume
was 96.9f], the mean corpuscular hemoglobin was 32.7pg, the
platelet count was 278x 10°/L, and the reticulocyte count was
1.5%. The fetal hemoglobin was 1.4%. The serum iron was 93 pg/
dL, the serum unsaturated iron-binding capacity was 184 pg/dL,
and the serum ferritin was 9 ng/mL. The serum vitamin B12 was
850 pg/mL and the serum folic acid was 6.8ng/mL. The serum
aspartate aminotransferase was 17U/mL, the alanine amino-
transferase was 10U/mL, and the lactate dehydrogenase was
201 U/mL. The erythropoietin level was 1170mU/L. The serum
total bilirubin was 0.5mg/dL. The direct and indirect Coombs’
tests were negative. The anti-B19 parvovirus immunoglobulin M
and immunoglobulin G antibodies were negative. Bone marrow
aspiration showed that the cellularity was slightly hypoplastic
(78500/1L), with a paucity of erythroid cells (16.8%; macrocytic-
basophilic erythroblasts, 0.4%, noromocytic-basophilic eryth-
robalasts, 1.2%, noromocytic-polychromic erythroblasts, 10.4%,
normocytic-orthochromic erythroblasts, 4.8%), but the morphol-
ogy was normal. Tt showed that myeloid cells (34.4%) have no
abnormalities associated with myelodysplastic syndromes. Lym-
phoid cells (38%) and megakaryocytes were normal. Cytogenetic
analysis showed no chromosomal abnormality. On the basis of
these findings, DBA was diagnosed in this patient.! The patient
responded to oral steroids but not to cyclosporine. A small dose of
prednisolone (0.18 to 0.23mg/kg/d) were given to maintain an
erythrocyte count of 2500 x 10°/L, a hemoglobin concentration of
8.0 g/dL, and his daily activities. The most distressing complication
has been obesity. He has never received blood transfusion.

At 22 years of age, analysis of RP genes was performed. In-
formed consent was obtained according to the guidelines set out by
Hirosaki University Graduate School of Medicine. Initially, the
patient was screened for mutations in the 8 genes known to be
associated with DBA, RPSI9, RPS24, RPSI7, RPL5, RPLII,
RPL354, RPSI0, and RPS26, using high-resolution amplicon
melting analysis. He was also screened for RPS/4 mutations, which
are a causative gene for 5g-syndrome. The results showed a sepa-
rated signal derived from the heteroduplex polymerase chain re-
action product from the third exon of RPS/0. Direct sequencing
analysis of the polymerase chain reaction product and the cloned
amplicon identified a heterozygous mutation (283_306delinsTGCC)
(Fig. 1). This mutation resulted in a frameshift at codon 95 and a
“stop” at codon 100 (Fig. 2).

DISCUSSION
Nine RP genes, RPS19, RPS24, RPSI7, RPLS,
RPLII, RPL35A, RPSI4, RPSI0, and RPS26, were
screened in 64 Japanese probands with DBA. Screening
identified 8, 6, and 3 patients with mutations in RPSJ9,
RPLS5, and RPLII, respectively, and a single patient
each with a mutation in RPSI7, RPSI0, and RPS26° and
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5 Direct sequence

FEBLOU LY G LAT BCT b

5 Sequence of the cloned mutant allele

AL G G

W
CGCCGTAGCCGTCCAGAGACTGGC>TGCC

FIGURE 1. Sequence changes and frameshift in the RPS70. Direct sequencing showed a separated signal derived from the heteroduplex
polymerase chain reaction product from the third exon of RPS70. Sequencing of the cloned mutant allele identified a heterozygous

mutation (¢.283_306delinsTGCC) and frameshift.

(unpublished data). In total, 20 (31.3%) of the Japanese
DBA patients had mutations in RP genes. This is a slightly
lower frequency than that reported in Western countries,
although the data from both populations are based on rel-
atively low numbers of patients, and data showing sig-
nificant differences between populations are lacking.

The RPSP10 gene is located on chromosome 6 and
contains 6 exons, with the start codon in exon 2. RPSI0
encodes a protein of 165 amino acids, which is a component
of the 408 ribosomal subunit. To our knowledge, this is the
first report of a Japanese DBA patient with a mutation in
RPS10. The mutation (283_306delinsTGCC) results in a
frameshift at codon 95 and the premature termination of
codon 100. This novel mutation has not been reported in
the literature. Doherty et al® identified 3 heterozygous se-
quence changes in RPSI0 in 5/117 probands, with no evi-
dence of mutations in any of the known DBA genes. One
sequence change was a missense mutation 3G > A (Metl to
Tle), which eliminates the start codon. The next downstream
start codon is located at nucleotide position 61 to 63 and is
predicted to start translation of a truncated protein. Another
mutation was ¢.260.261insC, which results in a frameshift

. Deletion
283

at codon 87 and a “stop” at codon 97. Three other pro-
bands contained a common nonsense mutation, ¢.337C > T,
causing an Argl13 “stop.” In our case, the mutation seems
to be the result of both a deletion and an insertion. These
mutations are very rare in DBA. To understand the mech-
anism of mutagenesis, we examined RPSI( psuedogenes
(PRSIOPI to RPSI0P3I) to see if this mutation arose from
interlocus gene conversion. However, we could find no evi-
dence that the mutation arose due to gene conversion. The
authors estimated that RPSJ/0 mutations were present in
about 2.6% of the DBA population. Although more in-
formation is needed to estimate the incidence of RPSI0
mutations in Japanese DBA patients, the frequency of
RPS10 mutations in the Japanese population was similar to
that in Western countries. All the RPS70 mutations observed
in patients with DBA, including our case, are nonsense or
frameshift mutations. Nonsense and frameshift mutations
are likely to be pathogenic in the majority of cases; however,
determining the pathogenicity of a particular missense mu-
tation may be difficult.

The RPS19 protein plays an important role in 18S
rRNA maturation in both yeast and human cells.'®'3 Other

306

ACCCTACGCCGTAGCCGTCCAGAGACTGGCAGGCCTCGGCCT

AAA

T LR RSRPE TG RPRPK

\ g

Insertion

ACCCTATGCCAGGCCTCGGCCTAA

T LC QA S A

* (stop)

FIGURE 2. Deletion and insertion of this patient in RSP70. The ¢.283_306delinsTGCC mutation resulted in a frameshift at codon 95 and

a “stop” at codon 100.
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studies demonstrate alterations of pre-RNA processing and
small or large ribosomal subunit synthesis in human cells
with RPS24, RPS7, RPL35A, RPL5, and RPLII defi-
ciency. 16 Increased apoptosis has been demonstrated in
hematopoietic cell lines and bone marrow cells deficient in
RPSI9 and RPL35A.M41718 Imbalances in p53 family pro-
teins have been suggested as a mechanism of abnormal em-
bryogenesis and anemia in zebrafish upon perturbation of
RPS19 expression.!® Also, the DBA phenotype in mice was
ameliorated by knockdown of p53.2% We hope to use hema-
topoietic progenitor cells to investigate why mutations in
RPS10 affect erythropoiesis in DBA patients.

Patients with “classical DBA” fulfill all the major diag-
nostic criteria, including anemia presenting before the first
birthday.! However, a definitive diagnosis of DBA is often
difficult because of incomplete phenotypes and a wide variation
in clinical expression. This particular patient presented with
macrocytic anemia at 6 years of age, with no family history and
none of the congenital anomalies described for “classical
DBA.”” The identification of pathogenic mutations in RPSI0
provides a definitive diagnosis of DBA in this patient.
Although the use of molecular diagnostic techniques is essential
to establish a definitive diagnosis and research the cause of
DBA, such a diagnosis in only obtained for 30% to 40% of
patients. Therefore, it is important to identify all genes that
cause DBA if we are to improve the efficiency of molecular
diagnostic techniques and understand the pathogenesis
of DBA.
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Table 1 Summary of sequence changes in 8 RP genes in DBA probands

American et al Czech Italia Japan
No of probands 272 28 128 76
RPS19 25% 21% 28% 10.5%
RPLS 6.6% 21% 9.3% 7.9%
RPS10 6.4% ND ND 1.3%
RPLI11 4.8% 7% 9.3% 5.3%
RPS35A 3.5% ND 0 0%
RPS26 2.6% ND ND 1.3%
RPS24 2% ND 1.6% 0%
RPS17 1% 3.6% ND 1.3%
Total 52.9% 52.6% 48.2% 27.6%
Table 2 Characteristics of Japanese DBA patients with mutations in RPS79
Patient Malformation status %:sstps?el:gigtth erapy Present therapy
1 proband growth retardation response CR
1 daughter None response CR
25 proband thmub anomaly, growth retardation etc. ND ND
28 proband thmub anomaly, CHD etc. response Steroid dependent
30 proband thumb anomaly, growth retardation response Steroid dependent
30 father growth retardation NA CR
43 proband thumb anomaly response Steroid dependet
44 proband SFD response CR
59 proband None response Steroid dependet
70 proband thumb anomaly ND Transfusion dependent

ND; not done, NA; not available, CR; complete remission
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