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1.

Introduction

Sideroblastic anemia is characterized by anemia with the emergence of ringed sideroblasts in t
he bone marrow. There are two forms of sideroblastic anemia, i.e., congenital sideroblastic ane
mia (CSA) and acquired sideroblastic anemia. Most of acquired sideroblastic anemia cases wer
e observed in myelodysplastic syndrome (MDS), and occasionally associated with alcoholism o
r certain drugs. On the other hand, CSAs are very uncommon genetic disorders. To date, mut
ations of genes involved in heme biosynthesis, Fe-S cluster biogenesis, or the biology of mito
chondria have been reported in CSA. Impaired function of these genes is speculated to result
in disutilization of iron, leading to accumulation of iron in mitochondria. in 1945, Coorey in
itially reported X-linked form of microcytic/hypochromic anemia. In the next year, Rundles and
Falls reported 2 pedigrees including the initial pedigree. Thus, the disease was called as Rund
les and Falls syndrome [1]. Later, it has been demonstraied that the disease was caused by
mutation of erythroid-specific 5-aminolevulinate synthase (ALAS2), the first enzyme of heme sy
nthesis in erythroid cells [2]. Whereas the most common form of CSA is caused by the mutati
on of ALAS2, other causative genes have been reported, such as genes involved in Fe-S clus
ter biogenesis/transport, mitochondrial transporter, mitochondrial DNA, mitochondrial tRNA (Tabl
e 1). However, there is still significant number of “genetically undefined” CSA cases. CSAs als
0 occur as a part of several genetic syndromes associated with abnormalities in various non-he
matopoietic organ systems (e.g., manifested by ataxia, mitochondrial myopathy, diabetes mellitu
s, exocrine pancreatic insufficiency), depending on the genes mutated. In such syndromic CSAs,
the anemia may be mild and of secondary importance or severe. Whereas no specific therapy
has been available for most of syndromic CSAs, some cases could respond to the treatment,
as represented by XLSA due to ALAS2 mutation. Therefore, it is important to make a precise
diagnosis for all CSA cases based on genetic analysis for CSA.
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inheritance Chromosome  Gene Mutation type  Treatment

ALSA X-linked Xpt1.21 ALAS2 M, N Pyridoxine
XLSA/A X-linked Xp13.3 ABCB7 M -
SA/GLRX5 AR 14g32.13 GLRX5 M, 8 ?
SA/S1.C25A38 AR 3p22.1 SLC25A38 M,N, S ?

PMPS Maternal®  Mitochondria  Mitochondrial D -

TRMA AR 1024.2 SLC18A2 M, N Thiamine
MLASA/PUST AR 12g24.33 PUSH M, N -
MLASA/YARS2 AR 12pt11.21 YARS2 M -

Abbreviations: M, Missense; N, Nonsense; S, Splicing; D, Deletion;

XLSA, X-linked sideroblastic anemia; XLSA/A, X-linked sideroblastic anemia with ataxia;

PMPS, Pearson Marrow Pancreas Syndrome; TRMA, Thiamine-responsive megaloblastic anemia;
MLASA, Mitochondrial myopathy and sideroblastic anemia.

* Sporadic cases are also reporied.

Table 1. Genetic features of congenital sideroblastic anemia

2. Diagnosis
1) Definition

Anemia characterized by the emergence of ringed sideroblasts in the bone marrow

2) Diagnostic criteria
Ringed sideroblasts, > 15% of nucleated erythroid cells (FAB classification)

Increased serum ferritin, unsaturated iron binding capacity (UIBC)

Above 2 criteria plus confirmation of mutations of causative gene (i.e. ALAS2)
Presence of family history strongly suggest CSA

Most prevalent type (XLSA) is characterized by microcytic’hypochromic anemia in a boy

Definition of ringed sideroblasts (revised WHO classification):
10 or more granules in a perinuclear position, surrounding the nucleus or encompassing at
least one third of the nuclear circumference.

3) Flowchart for diagnosis

CSA is initially suspected by the emergence of ringed sideroblasts in the bone marrow, yo
ung onset and the presence of family history, and subsequently need to be confirmed by
genetic analysis. If the family history is not obvious, genetic analysis should be conducted
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based on non-hematopoietic cells (i.e. oral mucosa) to assess the presence of germ-line
mutation. Among CSAs, XLSA is the most frequently observed. Thus, if the case is young
male and responds to vitamin B6 therapy, genetic analysis is strongly recommended. In
XLSA cases, it is possible to analyze the enzymatic activity of mutated ALAS2 protein.

4) Differential diagnosis
It is important to exclude acquired sideroblastic anemia (below)
Drug (Anti-tuberculosis), Toxicity (Lead poisoning), Alcohol, Myelodysplastic syndrome

Generally, acquired sideroblastic anemia could be distinguished based on the age of onset

and the absence of family history [3]. However, it is' occasionaily difficult to distinguish wit
h the hereditary cases. Acquired sideroblastic anemia due to alcohol and drug should be s
uspected based on life history and present illness. Drug-induced sideroblastic anemia is typ
ically caused by the inhibition of vitamin B6, which acts as coenzyme for ALAS2. The inhib
ition of vitamin B6 by certain drug can led to decreased ALAS2 enzymatic activity and ons
et of sideroblastic anemia. Isoniazid is one of the major causative drugs to interfere with vi
tamin B6 metabolism. If multi-lineage dysplasia or chromosomal abnormality is also observ
ed in addition to the emergence of ringed sideroblasts, the case could be diagnosed as m
yelodysplastic syndrome. On the other hand, if the case only shows anemia without chrom
osomal abnormality, and responds to vitamin B6 supplementation, genetic analysis should

be conducted.

3. Epidemiology
4) Incidence
Because of its rarity, the detailed and comprehensive epidemiological data for CSA has not

been available. Regarding most frequent form CSA (XLSA), 94 pedigrees and 57 mutation
s have been reported (Table 2). According to a relatively large cohort in the USA (n = 83),
mutations of ALAS2, SLC25A38, mitochondria DNA, and PUS7 were identified in 37, 15,
2.5, and 2.5%, respectively [4]. On the other hand, Japan Public Health Center-based pro
spective study for “Establishment of diagnostic criteria and therapeutic approach for conge
nital sideroblastic anemia” has reported that genetically identified cases were exclusively X
LSA, whereas no mutation was observed for SLC25A38, PUS1, ABCB7, GLRX5, SLC19

A2 (Tables 3, 4) [5].

2) Prognosis
Because of its rarity, the detailed data for prognosis of CSA has not been available.
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Table 2. Amino acid substitution of ALAS2 in patients with XLSA

In vitro
Increment
i tic activity
Age Position Hbat | MCVat of Hb enzyma A
poaee | at |Gender | ofaLasz | SPSBT | onset | onset | bywitse |..oTMutantRrOtein
diag mutation {g/ah {th treatment .
{ardl) wio PLP with PLP
1 0 M Ri70C NID 4.8 52.5 17 64.1% 725%™
2 20 M R411C N/D 4.8 52.5 5.2 11.8% | 251%™
3 68 M R452C - 6.0 67.3 No effect | 89.9% | 94.0% ™2
4 17 M D1gov NID 8.9 66.9 No effect | 98.6% | 98.5% ™20
5 36 M R452C - 7.4 70.0 Noeffect |99.9% | 94.0% "%
6 36 M M5671 NID 8.5 64.4 3.4 38.14% 252%™
7 14 M V5624 - 8.1 61.2 47 150.6% | 116.9% ™
8 31 M R170L - 44 50.8 8.1 31.1% | 60.8%*
9 3 M R452C - 5.4 54.4 2.9 11.8% 251% 7119
10 62 M R170L ND 8.0 73.9 No effect | 31.1% | 60.8%™

*% of WT, ™ presentstudy

Table 3. XLSA identified in Japanese population, based on study for “Establishment of di

agnostic criteria and therapeutic approach for congenital sideroblastic anemia”
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A Gene mutation
Case e at Gender | Famity Hb | MCV | Response
number (;_3 history sLC siLC {aidly ) to Vit B6
awasz | L | oirxs | ascar | SEC | pust | sFast
Extl

1 “ | om iy 71 | 600

122 § 19 | W intron B 78 | 739

13 4 M <o . . ; ; ; 66 | 736

14 0 M T A . . . . . 139 |ss0

15 20 | M « | Intron 76 820 «

16 0 M 68 | 881 ND

17 2 | ™ ND | ND | WD | MD D | ND | ND 112 | 89 +

18 | 3 | M ND | ND | D | ND D | D | ND | 108 | 6737 o+

19 18 F + - - - - - - - 83 | %62 +

N/D: not done, *Vit B6 was not administered due to PMPS

Table 4. CSA (other than XLSA) identified in Japanese population, based on study for “E

stablishment of diagnostic criteria and therapeutic approach for congenital sideroblastic a

nemia”

4. Pathophysiology
Several genes with distinct function have been reported to be involved in the pathogenesis of
CSA. As abnormal accumulation of intramitochondrial iron is one of the peculiar characteristics
of this disease, a great deal of attention has been focused on alterations in genes related to
intramitochondrial heme-iron metabolism, including 1) heme biosynthesis, 2) mitochondrial prot
ein synthesis, and 3) iron-sulfur [Fe-S] cluster metabolism.

In erythroid cells, heme biosynthesis is initiated by the condensation of glycine and succinyl
CoA to form aminolevulinic acid (ALA), which is catalyzed by ALAS2. Thus, mutation of ALAS
2 results in the defect of heme biosynthesis, which subsequently could cause iron utilization.
SLC25A38 encodes an erythroid-specific protein of the inner mitochondrial membrane, and has

been predicted to be involved in mitochondrial import of glycine [6]. Thus, similar to XLSA, th
e SLC25A38 mutation could lead to the defect of heme biosynthesis and cause CSA. On the

other hand, mutations for SLC719A2, which encodes the high-affinity thiamine transporter, cause
s mitochondrial iron overload [7]. Although it is not clear how mutations of SLC79A2 contribute
to sideroblast formation, it has been speculated that the impairment of thiamine-dependent ge
neration of succinyl-CoA, which is required for heme synthesis, is the cause of the ringed side
roblast abnormality [7]. However, in CSA cases with SLC19A2 mutation, serum protoporphyrin

concentration did not decrease and the anemia is macrocytic. Thus, further examinations are r
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equired fo reveal if the CSA of SLC79A2 mutation could result from the defect of heme biosy
nthesis, similar to XLSA.

Pearson marrow-pancreas syndrome (PMPS) is a rare syndromic disorder, presenting with si
deroblastic anemia, accompanied by metabolic acidosis, ataxia, and endocrine pancreas dysfun
ction [8]. The disease is usually fatal, and patients die during infancy [8]. The mechanism of ri
nged sideroblast formation in PMPS remains unclear. It has been speculated that the defect o
f mitochondrial respiratory function by mitochondrial DNA mutation/deletion may deteriorate cyto
chrome ¢ (complex V) function, which functions to keep iron in the reduced (Fe*) state. As ir
on should be in the reduced state (Fe**) when incorporated into PPIX by FECH in the final st
ep of heme synthesis, the mitochondrial DNA defect may result in insufficient iron utilization in

mitochondria. On the other hand, the association of CSA with defective mitochondrial protein

expression can be seen most directly by the mitochondrial myopathy with lactic acidosis and e
ded sideroblasts (MLASA) phenotype, which results from mutations in genes encoding pseudou
ridine synthase 1 (PUST), which functions in pseudouridine modification of tRNAs. Whereas it
has been assumed that the PUST mutation may lead to aberrant translation, the molecular me
chanism of how the mutation directly affect iron metabolism remains unknown [9]. Nevertheles
s, insufficient iron utilization would cause iron overload, leading to the emergence of ringed sid
eroblasts as well as the onset of anemia by inducing apoptosis [10].

ABCB7 and GLRX5 (Glutaredoxin5) are both involved in iron-sulfur [Fe-S] cluster metabolism

[11,12]. Whereas ABCB7 transports the [Fe-S] cluster to the cytosol, GLRXS5 is involved in th
e [Fe-S] cluster biogenesis. Thus, it has been speculated that the mutations for ABCB7 and G
LRX5 deteriorate efficient iron utilization in mitochondria by presumably distinct mechanisms. D
ecreased level of [Fe-S] by the GLRX5 mutation cluster in the iron-regulatory protein 1 (IRP1)
blocked ALAS2 translation by binding to the iron-responsive element (IRE) located in the 5'-u

ntranslated region of ALAS2 mRNA, whereas similar effect was not observed in by ABCB7 mu
tation.

5. Clinical and laboratory features
2) Anemia
Patients present mild to moderate anemia depending on the genes mutated. Even among
the same causative gene, anemia severity could be different based on the position of mut
ation.

2) Hemochromatosis
Severity of hemochromatosis could be different depending on the genes mutated as well
as the total amount of transfused red blood cells. With the presence of HFE gene mutatio
n, the hemochromatosis could be rapidly progressive. But the frequency of the HFE mutati
on is relatively low in Japanese population.
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3) Other complications
In case of CSA other than ALAS2 or SLC25A38 mutation, systemic symptoms, such as at
axia, metabolic acidosis, exocrine pancreatic dysfunction, insulin dependent diabetes mellitus,
neurologic symptoms, could be observed.

4) Characteristics of each CSA type
XLSA: Microcytic/hypochromic anemia and systemic iron overload are observed. In most XL
SA cases, missense mutations of ALAS2 may alter the structure of ALAS2 protein, which
decrease the binding affinity between ALAS2 and vitamin B6. Thus, administration of pyrid
oxal 5'-phosphate (PLP, vitamin B6) is effective for the majority of XLSA cases.
CSA due to GLRX5 mutation: By a consequence of decreased [Fe-S] cluster biosynthesis,

iron overload in mitochondria is observed, though the proportion of singed sideroblasts ma

y not obviously high. In addition, moderate anemia, hematosplenomegary and systemic iro
n overload could be observed.

XLSA with ataxia (XLSA/A): XLSA/A patients present with anemia with motor delay and evi

dence of spinocerebellar dysfunction, including early onset (< 1 year old) ataxia associated
with severe cerebellar hypoplasia. Ataxia is not progressive or could be slowly deteriorati
ng. Anemia is typically mild and microcytic/hypochromic, which do not respond to PLP the
rapy. The disease is caused by the mutation of mitochondrial transporter ABCB7.

CSA due to SLC25A38 mutation: SLC25A38 encodes an erythroid-specific protein of the in

ner mitochondrial membrane, and has been predicted to be involved in mitochondrial impo

rt of glycine. The disease is the second most cbmmon, and the pattern of inheritance is a
utosomal recessive. Most cases show severe microcytic/hypochromic anemia and systemic
iron overload, resembling XLSA. Thus, if ALAS2 mutation is not detected in patients with
above XLSA-like symptoms, genetic analysis for SLC25A38 should be conducted.
Pearson_marrow pancreas syndrome (PMPS): A patient with PMPS presents metabolic aci

dosis, ataxia, exocrine pancreatic dysfunction, and typically dies during infancy. Anemia is
normocytic, and often accompanied by neutropenia and thrombocytopenia. The disease is
caused by the deletion of mitochondrial DNA, and is usually sporadic.

Thiamine-responsive megaloblastic anemia (TRMA): TRMA is considered as a systemic di
sorder presenting insulin-dependent diabetes mellitus and sensorineural hearing loss. The
disease is very rare and often diagnosed during infancy. The pattern of inheritance is auto
somal recessive. Anemia is typically macrocytic, which could be responded by thiamine. T
he disease is caused by the mutation of thiamine transporter SLC719A2.

Mitochondrial myopathy and sideroblastic anemia (MLASA): MLASA is a very rare with a

utosomal recessive inheritance. The patient presents myopathy, lactic acidosis and sideobl
astic anemia, caused by the mutation of PUST gene.
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6. Treatments
1) Drug
(A) Vitamine supplementation
Pyridoxal 5'-phosphate (PLP, vitamin B6) : A majority of XLSA cases responds to PLP
treatment at a dose of 50-100mg/day. Table 2 shows mutations of ALAS2, and PLP-r
esponsive mutation is highlighted by gray-shade.

Thiamine (vitamin B1) : Thiamine (25-75mg/day) is effective for a patient with TRMA.

presents metabolic acidosis, ataxia, exocrine pancreatic dysfunction, and typically dies
during infancy. Anemia is normocytic, and often

There is no specific drug therapy available for the rest of CSA types.

(B) lron chelation therapy
The risk of hemochromatosis is high in transfusion dependent cases. Thus, iron chelatio
n therapy is considered based on serum ferritin level or the presence/absence of target
organ damage induced by systemic iron overload (i.e. heart, liver or pancreas).

2) Transfusion

Transfusion should be considered for severe anemic cases.

3) Hematopoietic stem cell transplantation (HSCT)
Three CSA cases have been treated by HSCT [13]. In all cases, the treatment was considered
effective, with noticeable hematopoietic recovery. However, as it is probable that the candidate
CSA cases for HSCT would often be accompanied by hemochromatosis, it is important to
consider the HSCT protocol, such as conditioning regimen.

7. Perspectives
It is important to conduct genetic analysis for all CSA cases, as some cases could be treated
by specific therapy such as vitamin B6. However, due to its rarity, it is necessary to establis
h a genetic analysis center for CSA, which would yield the detailed and comprehensive epide
miological data for CSA in Japan. In the future, it would be also important to detect the causati
ve genes for yet genetically undefined CSA cases, by establishing gene analysis systems espe
cially based on next generation sequencer.
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