showed a retarded band (lane 3): this band was super-shift-
ed by the addition of anti-FLAG antibody (lane 4), or unde-
tectable with non-labeled WT probe (lane 5), whereas the
non-labeled GGTA probe (flane 6) or delGATA probe (lane
7) could not compete for the labeled WT probe.
Furthermore, the retarded band was not detectable when
labeled GGTA probe (lane 8) or delGATA probe (lane 9) was
incubated with the nuclear extracts of HEK293 cells
expressing FLAG-fused GATAL. These results suggest that
either the GGTA mutatdon or the delGATA mutation may
impair the binding of GATA1 to ALAS2int1GATA.

‘We then examined the influence of the point mutation
or deletion of ALAS2int1 GATA on the enhancing activity
of the first intron of the ALAS2 gene (Figure 6A). The
GGTA mutation decreased the enhancing activity of the
first intron, ChIP-peak or ChIPmini in K562 cells to 17.0%,
18.5% or 12.9%, respectively, of that of the WT construct.
The delGATA mutation decreased the enhancing activity
of the first intron of ALAS2, ChiP-peak or ChiPmini in
K&62 cells to 10.5%, 15.7 % or 12.6%, respectively, of that
of the WT construct. In contrast, the relative luciferase
activity of the construct carrying each mutation was only
marginally different from that of WT intron 1, ChIP-peak
or ChIPmini in HEK293 cells (Figure 6A), thereby confirm-
ing that ALAS2int1 GATA functions as an erythroid-specif-
ic enhancer.

There are several potential ¢is-elements at the flanking
regions of ALAS2int1 GATA, such as EKLF and Sp1, each

of which may be involved in the erythroid-specific tran-
scriptional regulation of the ALAS2 gene.'*™ We thus ana-
lyzed the roles of these ds-elements in the enhancer activ-
ity of ALAS2int1GATA using deletion mutants at the §'- or
3'-flanking region of ChIPmini, constructed in pGL3-
AEpro(-267)+ChIPmini(D). Deletion of the EKLF1 element
at the 5’-flanking region or both E-box and Sp1 elements
at the 3'-Hlanking region did not significantly influence the
enhancer activity of ChIPmini (Figure 6B). It should be
noted that the Sp1 site overlaps with the 3"-portion of the
AP-1 site and the 5-portion of the E-box (Figure 6C).
Moreover, deletion at the §-flanking region of ChiPmini
(“delEKLF2”, “delAP2” and “delOctT3”) marginally
decreased the enhancer activity (Figure 6B), but the change
was not statistically significant. In contrast, deletion of the
AP-1 element at the 8"-Hanking region (“delAP1” in Figure
6B) significantly decreased the enhancer activity, by about
40% of the activity of ChIPmini(WT). The significant
decrease of enhancer activity was observed only in
ChIPmini(GGTA), ChIPmini{delGATA) and delAP1, com-
pared to the activity of ChIPmini(WT) (*P<0.05 and
*P<0.01 in Figure 6B). We next constructed another
reporter vector that carries an internal deletion of the 5
portion of the AP-1 element with an intact Spl site
(“lackAP1” in Figure 6B). Internal deletion of the AP-1 ele-
ment alone in ChiPmini decreased the enhancer activity,
although not to a statistically significant degree. Thus, the
entire AP-1 element seems to be important for the

ALASRInt1GATA
wt probe: GAGCCTGCAGACCACAGATAAAGTTGCCAGAGTTTA
GGTA probe: GAGCCTGCAGACCACAGGTAAAGTTGCCAGAGTTTA
delGATA probe: TTGGGGCTGAGCCTGCAGGGGTCTGACCACTCCCCA

A
B antibody - - - F - - - -
competitor - - - - wt é‘}@%" .
probe wi

nuclear extracts = 293

&
&
293(GATA1-FLAG)

<

- Figure §. Effects of the mutations of

ALAS2iInt1GATA on GATALl-binding
activity. (A} DNA probes used in the
EMSA. The nucleotide sequences in
> the antisense strand of the probes are
shown. The position of each probe is
also indicated in Figure 1B as the solid
horizontal bar. ALAS2Int1GATA is

1t 2 3 45 6 7 8

boxed in the sequence of the wt probe,
and the single nucleotide transition
(GGTA mutation) is undetlined in the
sequence of the GGTA probe. The
delGATA probe represents the 5'- and
3'flanking sequences of the deleted
35-bp segment (see Figure 3B) (B)
Effect of each mutation of
ALAS2intlGATA on GATAL-binding
activity. Wild-type probe (lanes 3-7) or
each mutant probe (lanes 8, 9} was
incubated with the nuclear extracts
prepared from HEK293 cells transfect
ed with the GATAL-FLAG expression
vector. An excess amount of unlabeled
wild-type probe (lane 5), each of the
unlabeled mutant probes (lanes 8, 73,
or anti-FLAG antibody (lane 4) was
included in the reaction mixture. Lane
2 shows the negative control with

: nuclear extracts from HEK2383 cells
g transfected with mock vector.
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Figure 8. ldentification of cis-ele-
ments essential for the ery-
throid-specific enhancer activity
of ChiPmini. (A) Effect of each
mutation of ALAS2int1GATA on
the enhancer activity of ALAS2
ChiPmini. The region correspon-
ding to +intronl, ChiP-peak or
ChiPmini, derived from proband
1 or proband 3, was subcloned
into pGL3-AEpro(-267) to con-
struct the reporter vector con-
taining the GGTA mutation orthe
deletion of ALAS2intlGATA,
respectively. (B) Effect of the
deletion at the 5% or 3-flanking
region of ALAS2int1GATA on the
enhancer activity of ChiPmini.
The &'~ and 3“flanking regions of
ALASZInt1GATA contain poten-
tial transcription factor-binding
sites {cis-elements), and a por
tion of each flanking region was
deleted, as schematically shown.
The enhancer activity of each
deletion mutant was determined
in K662 erythroleukemia cells.
(C) The nucleotide sequence of
the 3'-flanking region of
ALAS2int1GATA. Note that the
Spl site overlaps the AP-1 site
and E-box. Each number, *1, *2
or *3, indicates the nucleotide at
the 3 end of the deletion
mutant, delAP1, delSP1 or delk-
box, respectively. Thus, deiSP1
also lacks the 3°' portion of the
AP-1site. () Effect of deletion of
the 5'- and 3“-flanking regions of
ALAS2int1GATA on the enhancer
activity of ChlPmini. The con-
struct, delEKLF2/delSP1, lacks
two EKLF sites in the 5'-flanking
region and both the S5p1 element
and E-box in the 3'-flanking
region. The AP-1 element at the

“flanking region was deleted
from delEKLF2/delSP1, yielding
delEKLF2/delAP1. Results are
expressed as relative activity
compared to that of pGL3-
AEpro(-267), and are presented
as the mean 1 SD of at least
three independent experiments,
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enhancer activity of ChIPmini (WT) (Figure 6B).

Consequently, we constructed delEKLF2/delSP1 and
delELKLF2/delAP1, each of which lacks EKLF elements at
thee 5-flanking region and the Sp1 element or the AP-1 ele-
ment at the 3-flanking region, respectvely (Figure 6D).
The deletion mutant, delEKLF2/delSP1, still retained
ershancer activity at about 80% of that of ChIPmini(WT),
whereas delEKLF2/delAP1 showed decreased enhancer
activity similar to the activity of ChIPmini(GGTA). These
data indicate that ALAS2int1GATA and its fHanking
region, especially the AP-1 element, are critically impor-
tant for the erythroid-specific enhancer activity of
ChlPmini.

Taken together, these results suggest that the ChIPmini
region acts as an erythroid-specific enhancer for the
ALAS2 promoter, and that both the GGTA mutation and
the delGATA mutation represent loss-of-function muta-
ticns of ALAS2int1 GATA.

Discussion

In the present study, we identified an erythroid-specific
enhancer region in the first intron of the human ALAS2
gene (a 130 bp region referred to as ChlPmini), a region
which contains ALAS2int1GATA, a functional GATAL-
binding site. We also identified the GGTA mutation and the
delGATA mutation at ALAS2int1GATA, each of which is
associated with XLSA or CSA. Moreover, we confirmed
that each mutation diminished the binding of GATA1 tran-
scription factor to ALAS2intl (Figure 5B) and decreased
enthancer activity of ChiPmini (Figure 6A). Thus, the GGTA
routation and delGATA mutation are loss-of funcrion muta-
tions of the ALAS2 gene. In fact, the expression of ALAS2
mRNA in bone marrow erythroblasts was lower in
proband 3 (Figure 4B} than in normal controls. Thus, each
loss-of function mutation may lead to decreased wanscrip-
tdon of the ALAS2 gene, thereby causing sideroblastic ane-
mia in male patients. Such a molecular basis is consistent in
part with the lack of pyridoxine responsiveness in these
patients (see “Patients” section).

The intronic enhancer, ChIPmini, increased ALAS2 pro-
moter activity most efficiently in erythroid cells when it
was present downstream of the promoter (Figure 2B).
ChiPmini contains potential ¢is-acting elements, including
wwo EKLE-binding sites, each of which overlaps with the
Sp1-binding site or p300-binding site, AP-2 site, OctT3 site
Runx site, AP-1 binding site, Sp1 site, and E-box (Figure 1B).
Further analysis using deletion rmutants of ChIPmini
rewealed that the potential AP-1 binding site at the 3'-Hank-
ing region might be involved in the erythroid-specific
ervhancer activity of ChiPmini (Figure 6B). These results
suggest that ALAS2int1 GATA and its 3-flanking region are
essential for the erythroid-specific enhancer activity of
ChlIPmini. In fact, EKLF* and AP-1¥ are involved in ery-
throid-specific gene expression. It is interesting that the
inclusion of the whole first intron of the ALAS2 gene in a
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Pathophysiology and genetic mutations in congenital
sideroblastic anemia
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Abstract Sideroblastic anemias are heterogeneous congenital and acquired disorders characterized by anemia and the presence of
ringed sideroblasts in the bone marrow. Congenital sideroblastic anemia (CSA) is a rare disease caused by mutations of
genes involved in heme biosynthesis, iron—sulfur [Fe-S] cluster biosynthesis, and mitochondrial protein synthesis. The
most common form is X-linked sideroblastic anemia, due to mutations in the erythroid-specific 6-aminolevulinate
synthase (ALAS2), which is the first enzyme of the heme biosynthesis pathway in erythroid cells. Other known etiologies
include mutations in the erythroid specific mitochondrial transporter (SLC25A38), adenosine triphosphate (ATP) binding
cassette B7 (ABCB7), glutaredoxin 5 (GLRXS5), thiamine transporter SLCI9A2, the RNA-modifying enzyme
pseudouridine synthase (PUSI), and mitochondrial tyrosyl-tRNA synthase (YARS2), as well as mitochondrial DNA
deletions. Due to its rarity, however, there have been few systematic pathophysiological and genetic investigations
focusing on sideroblastic anemia. Therefore, a nationwide survey of sideroblastic anemia was conducted in Japan to
investigate the epidemiology and pathogenesis of this disease. This review will cover the findings of this recent survey
and summarize the current understanding of the pathophysiology and genetic mutations involved in CSA.

Key words ALAS2, congenital sideroblastic anemia, heme, iron, mitochondria.

Sideroblastic anemias are a group of disorders that have
common features of mitochondrial iron accumulation in bone
marrow erythroid precursors (ringed sideroblasts), ineffective
erythropoiesis, increased levels of tissue iron, and varying pro-
portions of hypochromic erythrocytes in the peripheral blood."?
In adults, these syndromes are commonly found in association
with myelodysplastic syndrome, in which their pathogenesis is
obscure. Sideroblastic anemia also occurs after exposure to
certain drugs or alcohol and in association with copper defi-
ciency."® In contrast, congenital forms of sideroblastic anemia
have been reported, which involve mutations in genes associated
with mitochondrial iron-heme metabolism."?%3

Given that congenital sideroblastic anemias (CSA) are very
uncommon genetic disorders, and their genetic and patholo-
gical features have not yet been fully elucidated, we recently
conducted a nationwide survey of congenital and acquired
sideroblastic anemia in Japan.’ Here, we present a review of the
findings of that recent survey and also the current understanding
of the pathophysiology and genetic mutations involved in CSA.

Genetic features and pathophysiology of CSA

The pathogenesis of most sideroblastic anemias is not well
understood."> Because abnormal accumulation of intra-
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mitochondrial iron is one of the peculiar characteristics of this
disease, a great deal of attention has been focused on alterations
in genes related to intra-mitochondrial heme-iron metabolism,
including (i) heme biosynthesis; (ii) iron—sulfur [Fe-S] cluster
biosynthesis; and (iii) mitochondrial protein synthesis (Fig. 1).
Several genes responsible for CSA have been identified
(Table 1)."***% Here, we describe the suggested roles of these
genes in the pathophysiology of sideroblastic anemia.

Defects of heme biosynthesis

In the most frequent form of X-linked sideroblastic anemia
(XLSA), the defect involves the &-aminolevulinate synthase
(5-aminolevulinate synthase 2; ALAS2), which is located at
Xp11.21 and encodes the first enzyme of the heme biosynthetic
pathway in erythroid cells.*'" The reaction involves condensation
of glycine with succinyl-coenzyme A to yield 5-aminolevulic
acid (ALA), which requires pyridoxal 5’-phosphate (PLP;
vitamin B6) as a cofactor to stimulate the enzymatic activity of
ALAS2." It was reported that ALAS?2 activity is decreased in the
bone marrow of CSA patients, suggesting that impaired heme
biosynthesis may induce the onset of sideroblastic anemia. With
the exception of several nonsense mutations in clinically affected
female carriers, the patients are male and present at a wide variety
of ages,” but typically before the age of 40.°> Mutations of
ALAS2 in XLSA are heterogeneous, and are usually missense
mutations of conserved amino acids that lead to loss of func-
tion.***7® To date, more than 60 different mutations in ALAS2
have been reported in patients with XLSA.>*'3 Missense
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Fig.1 Genes mutated in various types of congenital sideroblastic
anemia. The pathogenic genes can be classified as those involved in (i)
heme biosynthesis; (ii) iron—sulfur [Fe-S] cluster biosynthesis; and
(iii) mitochondrial protein synthesis. ABCB7, adenosine triphosphate
(ATP) binding cassette B7; ALA, 5-aminolevulinic acid; ALAS2,
erythroid-specific 8-aminolevulinate synthase (5-aminolevulinate
synthase 2); FECH, ferrochelatase; GLRXS, glutaredoxin 5; mtDNA,
mitochondrial DNA; PLP, pyridoxal 5’-phosphate (vitamin B6);
PMPS, Pearson marrow—pancreas syndrome; PUS1, pseudouridine
synthase 1; SLC19A2, high-affinity thiamine transporter SLC19A2;
SLC25A38, mitochondrial carrier protein SLC25A38; YARS2,
tyrosyl-tRNA synthase, mitochondrial 2.

mutations of ALAS2 are commonly observed from exon 5
through 11, encompassing exon 9, which contains the lysine
responsible for PLP binding." In contrast, mutations of ALAS2
regulatory region, such as the promoter's and intron 1,'¢V7
have also been reported, which lead to decreased ALAS2
expression.'>"7 Taken together, the decrease in ALAS2 expres-
sion level, as well as the defects in catalysis, substrate or cofactor
affinity, and protein processing of ALAS2 have been implicated
in the pathogenesis of XLSA, and supplementation with PLP
may contribute to mitigation of these impairments.

Recently, it has become evident that there is a subset of patients
with severe hypochromic anemia resembling XLSA but lacking

Table 1 Genetic features of congenital sideroblastic anemia

ALAS2 mutations and who are unresponsive to PLP. Guernsey
et al. carried out genome-wide scans in subjects with familial or
sporadic CSA, and identified several mutations of the SLC25A38
gene,"® which was confirmed in a subsequent study.'® The patterns
of mutation vary, including nonsense, frameshift, splice acceptor
site, and missense mutations, and the mode of inheritance is
autosomal recessive. SLC25A38 encodes an erythroid-specific
protein of the inner mitochondrial membrane, and has been pre-
dicted to be involved in mitochondrial import of glycine, which is
essential for ALA synthesis,'® suggesting that dietary supplemen-
tation with glycine may ameliorate SLC25A38 anemia. More
importantly, because ALAS?2 catalyzes glycine and succinyl-CoA
to ALA, supplementation with ALA may lead to improvement of
CSA involving ALAS2 and SLC25A38 mutations.

Defects of [Fe-S] cluster biosynthesis

Identification of the genetic basis of XLSA pointed to impaired
heme synthesis as the key pathogenetic mechanism of
sideroblastic anemia. In contrast, two subsequently recognized
forms, X-linked sideroblastic anemia with ataxia (XLSA/A) and
glutaredoxin 5 (GLRXS5) deficiencies, are due to mutations of
proteins involved in the [Fe-S] pathway, an important pathway of
mitochondrial iron utilization (Fig. 1).%

X-linked sideroblastic anemia with ataxia is a rare type of
sideroblastic anemia inherited in an X-linked manner similar to
XLSA. XLSA/A patients present with mild anemia and elevated
red blood cell protoporphyrin IX (PPIX), with motor delay and
evidence of spinocerebellar dysfunction, including early onset
ataxia associated with severe cerebellar hypoplasia.?"# Systemic
iron overload has not been reported in this disease. From the
results of molecular analysis, XLL.SA/A is due to mutations in the
adenosine triphosphate (ATP) binding cassette B7 (ABCB7)
gene, which is located at Xp13.3 and encodes an essential com-
ponent of the [Fe-S] cluster machinery. Mutations are missense
and loss of function,”' whereas nonsense mutations have not been
reported, perhaps because a complete loss of ABCB7 would be
incompatible with life, as occurs in Abcb7-deficient mice.” The
ABCBT7 protein is localized to the inner mitochondrial mem-
brane, and it has been suggested to be involved in transport of the
[Fe-S] cluster to the cytosol based on analysis of the yeast
ortholog ATM1.* When ABCB7 activity is impaired, iron

Inheritance Chromosome Gene Mutation type Treatment
XLSA X-linked Xpll.21 ALAS2 M, N Pyridoxine
XLSA/A X-linked Xpl13.3 ABCB7 M -
SA/GLRXS AR 14g32.13 GLRX5 M, S ?
SA/SLC25A38 AR 3p22.1 SLC25A38 M, N, S ?
PMPS Maternal® Mitochondria Mitochondrial D -
TRMA AR 1q24.2 SLC19A2 M, N Thiamine
MLASA/PUS1 AR 12q24.33 PUSI M, N -
MLASA/YARS2 AR 12p11.21 YARS2 M -

*Sporadic cases are also reported. D, deletion; M, missense; MLASA, mitochondrial myopathy and sideroblastic anemia; N, nonsense; PMPS,
Pearson marrow—pancreas syndrome; S, splicing; TRMA, thiamine-responsive megaloblastic anemia; XLSA, X-linked sideroblastic anemia;

XLSA/A, X-linked sideroblastic anemia with ataxia.

© 2013 The Authors
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remains trapped in mitochondria and the level of [Fe-S] cluster-
dependent enzyme activities is decreased in the affected cells.
Furthermore, it was shown that the interaction of ABCB7 with
ferrochelatase (FECH) increases the activity of FECH, which is
the final enzyme in the heme biosynthetic pathway. Therefore,
similar to ALAS2- and SLC25A38-associated sideroblastic
anemia, a decreased level of heme likely contributes to the patho-
genesis of ring sideroblast formation.

Another type of sideroblastic anemia is due to mutations of
GLRXS5, a gene that encodes a mitochondrial protein involved in
[Fe-S] cluster biogenesis.?® The single patient described had a
homozygous GLRXS splicing mutation that strongly reduced
mRN A and protein levels,** and presented mild anemia until the
fifth decade, when anemia worsened, with a relatively low
number of ring sideroblasts in the bone marrow, and other iron-
related complications were diagnosed. Wingert et al. previously
showed GLRXS to be mutated in the zebrafish hypochromic
microcytic anemia mutant shiraz.”® The study demonstrated that
loss of the Fe-S cluster in the iron-regulatory protein 1 (IRP1)
blocked ALAS?2 translation by binding to the iron-responsive
element (IRE) located in the 5’-untranslated region of ALAS2
mRNA. These findings were substantially confirmed in fibro-
blasts derived from patients or in erythroblasts in which GLRX5
expression had been reduced by siRNAs.”

Therefore, the pathological link between [Fe-S] biosynthe-
sis defect, caused by ABCB7 and GLRXS mutations, and
sideroblastic anemia may be attributable to a secondary defect of
heme biosynthesis in erythroblasts.

Abnormal mitochondrial protein synthesis

Pearson marrow—pancreas syndrome (PMPS) is a rare syndromic
disorder, presenting with sideroblastic anemia, accompanied by
metabolic acidosis, ataxia, and endocrine pancreas dysfunction.”
The disease is usually fatal, and patients die during infancy.
Erythropoiesis in PMPS is macrocytic and non-megaloblastic. In
addition to ringed sideroblasts, bone marrow aspiration speci-
mens characteristically show vacuolization of early erythroid and
myeloid progenitors. PMPS is usually sporadic, but individuals
with PMPS may be born to mothers with milder mitochondrial
phenotypes. The mechanism of ring sideroblast formation in
PMPS remains unclear. Nearly half of all patients with PMPS can
be shown to have heteroplasmy for a 4977 bp deletion in the
mitochondrial genome,” and the canonical deletion may result in
deficiency of mitochondrially encoded subunits of respiratory
complex I (NADH dehydrogenase), complex IV (cytochrome ¢
oxidase), and complex V (ATP synthase), as well as mt-tRNA
genes. Iron should be in the reduced state (Fe?) when incorpo-
rated into PPIX by FECH in the final step of heme synthesis.® It
is speculated that cytochrome ¢ oxidase functions to keep iron in
the reduced state, and therefore the defect of cytochrome ¢ enzy-
matic activity may result in defects of heme biosynthesis, leading
to the appearance of ringed sideroblasts.! As indicated in toxic
sideroblastic anemia associated with the antibiotic chlorampheni-
col, an inhibitor of bacterial ribosomal translation, which is
closely structurally related to mammalian mitochondrial ribo-
somes, mutations of mt-tRNAs may also lead to global
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mitochondrial impairment by suppressing translation of multiple
mitochondrial DNA-encoded proteins.'>*°

The association of CSA with defective mitochondrial protein
expression can be seen most directly in the mitochondrial myo-
pathy with lactic acidosis and ringed sideroblasts (MLASA) phe-
notype, which results from mutations in genes encoding either of
two proteins, pseudouridine synthase (PUSI) or mitochondrial
tyrosyl-tRNA synthase (YARS2). Patients with MLASA due to
PUSI! mutation typically present with lactic acidosis and
mitochondrial myopathy associated with decreases in respiratory
complexes I and IV.*'*2 PUS1 functions in pseudouridine modi-
fication of tRNAs.* Pseudouridine is known to affect the struc-
ture of tRNA and to strengthen base pairing. Thus, failure of
pseudouridine modification may lead to aberrant translation. In
contrast, MLASA due to YARS2 has been identified in patients of
Lebanese origin.?*** Although the mechanisms by which ringed
sideroblasts occur in these cases have not been elucidated mainly
due to the limited number of patients, it is speculated that the
reduced aminoacylation activity of mutant YARS2 enzyme may
lead to decreased mitochondrial protein synthesis, resulting in
mitochondrial respiratory chain dysfunction.® In both PUS1 and
YARS?2 mutations, there may be defects in the mitochondrial
respiratory chain, likely generating an environment that retards
iron access to FECH in the reduced form, similar to PMPS.

Thiamine-responsive megaloblastic anemia (TRMA) repre-
sents sideroblastic anemia with systemic symptoms, including
diabetes and deafness. Mutations in the high-affinity thiamine
transporter SLC19A2 are the basis of the disorder, which is
responsive to thiamine sup plementation.**® Although it is not
clear how mutations of SLCI9A2 are involved in sideroblast
formation, it is speculated that the impairment of thiamine-
dependent generation of succinyl-CoA, which is required for
heme synthesis, is the cause of the ringed sideroblast abnormal-
ity, but thiamine is also an essential cofactor in the de novo
synthesis of ribose, which is essential for protein synthesis. The
link between TRMA and mitochondrial protein synthesis must be
experimentally validated in future studies.

Epidemiological characteristics of causative genes
for CSA

‘We recently conducted a nationwide survey of sideroblastic
anemia in Japan to investigate the epidemiology and pathogen-
esis of the disease.® As of 31 January 2012, detailed data were
available for 148 sideroblastic anemia patients, including 18
cases of CSA, as well as secondary cases such as myelodysplastic
syndrome.® With the extension of the study, we further identified
one additional case of CSA. Among 19 cases of CSA, 11 cases
were diagnosed as XLSA due to ALAS2 missense mutation (n =
10) and presumably due to a partial duplication of the coding
region in the ALAS2 exon 11 (n = 1). Whereas the causative gene
mutations were not identified for the remaining eight cases based
on the standard detection strategies, novel mutations in the
intronic enhancer region of the ALAS2 gene have recently been
identified in four of the eight cases.”” Thus, in total, 15 of 19
cases (78.9%) were considered to be attributable to mutations

© 2013 The Authors
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involving the ALAS2 gene in the Japanese population. In contrast,
Bergmann et al. recently reported genetic analysis of a relatively
large cohort (n = 83) of CSA cases in the USA.% In that study,
mutations of ALAS2, SLC25A38, mitochondria DNA, and PUS!
were identified in 37%, 15%, 2.5%, and 2.5%, respectively,® and
the remaining cases (43%) remained genetically undefined.® The
observation that XLSA due to ALAS2 mutation represents the
most common form of CSA is consistent with our observations.
The most significant difference, however, was that whereas muta-
tions of the SLC25A 38 gene were frequently found in their study,?
it was not detectable in our study.® To our knowledge, mutations
of the SLC25A38 gene have not been reported in Asia, although
they have been widely reported in the USA, Canada, and
Europe.®'®"° Taken together, it is suggested that the causative
genes for CSA differ among races and regions.

Conclusion

Several recent advances have been made with regard to applying
molecular genetics to the study of CSA, represented by next-
generation sequencing techniques. Although CSA is a rare
hematological disorder, it is important to identify the gene muta-
tions that are responsible for genetically unclassified CSA cases.
Analyzing their function, based on model organisms ranging
from yeast to zebrafish to mice, will improve our knowledge of
mitochondrial iron metabolism.
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Variant ALDH2 is associated with accelerated progression of bone
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Fanconi anemia (FA) is a severe hereditary disorder with defective DNA damage response
and repair. It is characterized by phenotypes including progressive bone marrow failure
(BMF), developmental abnormalities, and increased occurrence of leukemia and cancer.
Recent studies in mice have suggested that the FA proteins might counteract aldehyde-
induced genotoxicity in hematopoietic stem cells. Nearly half of the Japanese population
carries a dominant-negative allele (rs671) of the aldehyde-catalyzing enzyme ALDH2
(acetaldehyde dehydrogenase 2), providing an opportunity to test this hypothesis in
humans. We examined 64 Japanese FA patients, and found that the ALDH2 variant is
associated with accelerated progression of BMF, while birth weight or the number of
physical abnormalities was not affected. Moreover, malformations at some specific
anatomic locations were observed more frequently in ALDH2-deficient patients. Our
current data indicate that the level of ALDH2 activity impacts pathogenesis in FA,
suggesting the possibility of a novel therapeutic approach. (Blood. 2013;122(18):3206-3209)

Introduction

Fanconi anemia (FA) is a genomic instability disorder with phe-
notypes including progressive bone marrow failure (BMF), devel-
opmental abnormalities, and increased occurrence of leukemia and
cancer.! To date, 16 genes have been implicated in FA, and their
products form a common DNA repair network (“FA pathway™).2
Because FA cells are hypersensitive to DNA interstrand cross-
links (ICLs), the FA pathway has been considered to be involved
in the repair of ICLs.>* However, it remains unclear what type
of endogenous DNA damage is repaired through the FA pathway.
Recent studies have suggested that FA cells are also sensitive
to aldehydes,® which may create DNA adducts including ICLs
or DN A-protein crosslinks. Furthermore, double knockout mice
deficient in Fancd2 and Aldh2, but neither of the single mutant
mice, display an accelerated development of leukemia and BMF.>S
On the other hand, Fanc-deficient mice in general do not fully
recapitulate the human FA phenotype, including overt BMEF.’
Thus, the role of aldehydes in the pathogenesis of human FA is
still uncertain.

ALDH? deficiency resulting from a Glu504Lys substitution
(rs671, hereinafter referred to as the A allele) is highly prevalent in

East Asian populations. The A allele (Lys504) acts as a dom-
inant negative, since the variant form can suppress the activity
of the Glu504 form (G allele) in GA heterozygotes by the for-
mation of heterotetramers.® Individuals with the A variant ex-
perience flushing when drinking alcohol, and have an elevated
risk of esophageal cancer with habitual drinking.® Because the
frequency of the A allele is close to 50% in the Japanese pop-
ulation at large, some Japanese FA patients are expected to be
deficient in ALDH2. We thus set out to determine the ALDH2
status in a collection of Japanese FA patients.

Study désign

The onset of BMF was defined according to the criteria used in the Inter-
national Fanconi Anemia Registry (IFAR) study.’® Criteria for diagnosis of
aplastic anemia and other conditions are described in supplemental Methods
(available on the Blood Web site). We observed physical abnormalities char-
acteristic of FA, including skin abnormalities (hyperpigmentation and café¢
au lait spots), low birth weight, growth defects, and malformations affecting
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Table 1. Summary of genotypes and clinical characteristics of the
patients studied

ALDH2 genotype

Total GG GA AA
No. of cases 64 36 25 30
Mutated FA gene*
FANCA 39 261 1% 2
FANCG 15 7 8 —
FANCI 2 —_ 2 —
FANCM 1 — 1 —
FANCP.... 2 o 1 1
Unknown 5 3 2 —
Disease ©
Aplastic anemia 2 2 — e
Severe aplastic anemia 40 21 19 - Sy
MDS/AML 22 13 6 3t
Tongue cancer 2 1 b —
Median months of
onset (range)
CBMF §2(0-297) - 72 (27-297) 28.(7-87) . 0(0-7}
MDS/AML 118 (4-384) 156 (61-384) 85 (41-192) 4 (4-12)
No. of cases with 5891} 33 (92) 2392 267
'sﬁc’r(%)‘t A ) G

Median months at 118 (12-448) 130 (52-448) 86 (28-248) 25 (13-36)

SCT (range)

-, no case was found.

*Mutations found in the patients were listed in supplemental Table 1. Some of
them were presumptive because their functional significance has not been determined.

tSomatic mosaicism due to reversion was confirmed in 2 cases and suspected
in 1 case.

tin these cases, onset of severe aplastic anemia and MDS was essentially
simultaneous.

skeletal systems and deep organs. Extensive malformation was defined
as the involvement of at least 3 sites including at least 1 deep organ.'’
Mutation analysis of FANCA/FANCC/FANCG genes,'? ALDH2 genotyping,'
multiplex ligation-mediated probe amplification (MLPA) test for FANCA
(Falco), and whole-exome sequencing (WES)'* were done as previously
described. Details are provided as supplemental Methods. Development of
BMEF or acute myeloid leukemia (AML)/myelodysplasia (MDS) was analyzed
by the Kaplan-Meier method or the cumulative incidence method,'>' respec-
tively, since competing events (eg, death and stem cell transplantation [SCT])
existed in AML/MDS but not in BMF. This study was approved by the
Research Ethics Committee of the Tokai University Hospital and Kyoto
University. We obtained family informed consent from all subjects involved
in this work in accordance with the Declaration of Helsinki.

Results and discussion

All of the patients in this study (n = 64; supplemental Table 1)
were referred to the Tokai University Hospital because of pancy-
topenia, in some cases with MDS or leukemia. The clinical
diagnosis of FA was made based on clinical presentation and
diepoxybutane (DEB)-induced chromosome fragility tests in periph-
eral blood lymphocytes,'” except for 3 cases in which the DEB test
was negative due to FANCA reversion mosaicism (supplemental
Tables 1-2). Most of the patients underwent allogeneic SCT,
indicating that our patients probably represent an FA population with
relatively severe hematologic symptoms.

To determine which FA gene was mutated in each of these
patients, we applied combinations of polymerase chain reaction—
based methods (n = 26), the MLPA test for FANCA mutations

ALDH2 VARIANT IMPACTS BONE MARROW FAILURE IN FA 3207

(n = 44), and WES (n = 29). In our WES analysis, >90% of the
50-Mb target sequences were analyzed by >10 independent
reads (data not shown). Fifty-nine patients were found to have
a mutation in FA genes in at least 1 allele, but 5 of them were
mutation-free in the known 16 FA genes, even after WES
(Table 1; supplemental Table 1). These unclassified cases might
be caused by large deletions or intronic mutations that are dif-
ficult to detect with these methods,'® or possibly mutations in a
novel FA gene.

We determined the ALDH?2 genotype in our series of 64 patients
(Table 1; supplemental Table 1). The distribution of the ALDH2
variant alleles appeared not significantly different from the
reported allele frequencies in the healthy Japanese population.'?
The occurrence of leukemia and/or MDS was also not signif-
icantly different between patients with GA and GG genotypes.
Strikingly, however, we found that progression of BMF was ac-
celerated in heterozygous carriers of the variant A allele compared
with homozygous GG patients (Figure 1A-B). Moreover, the 3
individuals carrying AA alleles developed MDS with BMF at a
very young age (Figure 1A-B). None of these 3 patients belonged
to FA-D1 or FA-N, the FA subgroups with severe symptoms. *°
Patient number 3 had biallelic frameshift mutations (S115AfsX11)
in FANCP/SLX4. By contrast, of the FA-P patients that have pre-
viously been reported, none have displayed particularly severe
symptoms.""'23

FA is a heterogeneous disorder, and our cohort of patients is
quite heterogeneous in terms of complementation groups and types
of mutations (Table 1). To reduce some of the variability, we selected
only the FANCA patients having nonsense, frameshift, or large
deletion mutations identified at both alleles, (n = 12; supplemental
Table 1), and repeated the analysis. A patient with probable FANCA
reversion (patient number 55) was excluded. In this subset of patients,
a highly significant statistical difference was reproduced in BMF
progression (Figure 1C) but not in AML/MDS development (data
not shown).

‘We could not detect any significant difference in terms of the
percentage of birth weight (Figure 1D) or number of physical abnor-
malities (Figure 1E) that comrelated with the ALDH2 genotypes.
However, a significant difference was observed in the incidence of
each class of malformations in the case of radial, cardiovascular,
skeletal, or kidney anomalies, and in the incidence of extensive
malformation (Figure 1F).

In conclusion, our current data indicate that endogenous aldehydes
are an important source of genotoxicity in the human hematopoi-
etic system, and the FA pathway counteracts them. If the FA pathway
is compromised, hematopoietic stem cells (HSCs) likely accumu-
late aldehyde-induced DNA damage, resulting in BMF due to p53/
p21-mediated cell death or senescence.%** Consistent with this
model, a recent study showed that the HSCs in aldh2/fancd2 double
knockout mice accumulate more DNA damage than HSCs in either
of the single knockout mice.® Because some ALDH2-proficient FA
patients developed BMF early, other modifier genes or environ-
mental factors might affect levels of aldehydes or other genotoxic
substances. Interestingly, our data predict that Japanese FA patients
in general develop BMF at an earlier age compared with patients
of other ethnic origins. We need to establish a Japanese FA registry
similar to IFAR to test whether this is true or not. Finally, it seems
worth considering ALDH?2 agonists such as Alda-1 as protective drugs
against BMF in FA patients. Alda-1 can stimulate the enzymatic
activity of both the normal and variant ALDH2,%® suggesting that
Alda-1 or a similar drug could be beneficial even for ALDH2-
proficient FA cases.
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Figure 1. Effects of the ALDH2 deficiency on Japanese
FA patients. (A-B) Cumulative incidence of BMF (A) or
MDS/AML. (B) were analyzed in 64 FA subjects. Num-
bers of AA, GA, and GG patients were 3, 25, and 36,
respectively. (C) Cumulative incidence of BMF was
analyzed in patients with confirmed biallefic FANCA mu-
tations having protein truncations and/or large deletions
(n = 12). Numbers of AA, GA, and GG patients were 1,
5, and 6, respectively. P values shown were calculated by
the Gray test. In panel A, P values between genotypes
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500 AA), 1.259 X 107¢ (GA vs AA), respectively. In (B),
the difference between GG and GA subjects was not
significant (P = .4564479), whereas other statistical com-
parisons were highly significant (GG vs AA, 2.911 X 10779,
GA vs AA, 8.813 X 1078). In panel C, the P values
between GG and GA, GG and AA, or GA and AA were
calculated as 0.001228433, 0.01430588, 0.02534732,
respectively. (D) Percentage of birth weight or (E)
total number of physical abnormalities (shown in sup-
plemental Table 1) in 64 FA patients with 3 ALDH2
genotypes. Birth weight was nommalized to mean weight at
gestational age in Japan. Mean and SEM are indicated.
Birth weight records were missing for 3 patients (sup-
plemental Table 1). There was no significant difference
between the ALDH2 genotypes (Kruskal-Wallis test). (F)
Frequency (percentage) of cardiovascular, radial, thumb,
skeletal, kidney, and extensive malformations in each
ALDH2 genotype. P values were calculated by the
Cochran-Armitage test for trend, which detects statistical
significance of effects across the genotypes. The error
bars represent 95% confidence intervals.
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Abstract The congenital dyserythropoietic anemias
(CDAs) are a heterogeneous group of genetic disorders of
red cell production. They are characterized by ineffective
erythropoiesis and dyserythropoiesis. Here, we present the
clinical description and mutation analysis of a Japanese
female with CDA type 1. She has long been diagnosed with
unclassified congenital hemolytic anemia from the neonatal
period. However, bone marrow morphology and genetic
testing of the CDAN] gene at the age of 12 years con-
firmed the afore-mentioned diagnosis. Thus, we should be
aware of the possibility of CDA if the etiology of con-
genital anemia or jaundice cannot be clearly elucidated.

Keywords Congenital dyserythropoietic anemia -
CDAN] gene - Congenital hemolytic anemia

Introduction

The congenital dyserythropoietic anemias (CDAs) com-
prise a group of very rare hereditary disorders character-
ized by ineffective erythropoiesis and distinct
morphological abnormalities of the erythroblasts in the
bone marrow [1]. Morphological analysis is the first step in
the diagnosis of all types of CDA, followed by confirma-
tory tests [2]. The diagnosis of CDAs can be delayed due to
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their rarity and lack of information (especially in non-
severe cases) [3-5].

On the basis of the dysplastic changes observed in bone
marrow erythroblasts by light and electron microscopy, the
mode of inheritance and the associated dysmorphism,
CDAs have been divided into 3 major types: CDA types 1,
2, and 3. Responsible genes have been identified for CDA
type 1 (CDANI) [6] and CDA type 2 (SEC23B) [7], not for
CDA type 3.

In this brief report, we describe a unique case of CDA
type 1 previously diagnosed as unclassified congenital
hemolytic anemia. Marked erythroid dysplasia and the
detection of a novel mutation in the CDANI gene aided in
accurately diagnosing the condition.

Case report

A 12-year-old female was referred to our hospital for
further evaluation of persistent anemia after gastroen-
teritis. She had no family history of hemolytic anemia,
was born at 39 weeks’ gestation, and weighed 2,085 g at
birth. Her initial symptom was severe jaundice at birth.
She received three exchange transfusions during infancy,
followed by erythropoietin administration for subsequent
anemia up to the age of 1 year. At the age of 8 years, she
experienced exacerbations of anemia, jaundice, and
splenomegaly following mild gastroenteritis. Evaluation
of her laboratory results at that point revealed low
hemoglobin levels (10.6 g/dl), elevated mean corpuscu-
lar volume (MCV 101.3 fl), elevated bilirubin levels
(total bilirubin 3.1 mg/dl, direct bilirubin 0.9 mg/dl),
and undetectable haptoglobin (<10 mg/dl). The clinical
and hematological features were suggestive of congeni-
tal hemolytic anemia; however, further investigation
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Fig. 1 Bone marrow
morphology. a Megaloblastic
changes, b nuclear bridging,

¢ nuclear lobulations, and

d multinuclearity (May-Giemsa
staining, x400)

[peripheral blood smear, osmotic fragility test, fraction
of hemoglobin, isopropanol test, and red blood cell
(RBC) enzyme activities] excluded the possibility of
disorders of red cell membrane, thalassemias, unstable
hemoglobinopathies, and red cell enzymopathies.

At the time of her first visit to our hospital, physical
examination revealed mild splenomegaly and conjunctival
pallor; she had no skeletal malformations (including
distal limb anomalies). Laboratory evaluation revealed
low hemoglobin levels (8.1 g/dl), normal MCV values
(93.9 fl), normal bilirubin levels (total bilirubin 1.0 mg/
dl, direct bilirubin 0.2 mg/dl), and mildly elevated serum
ferritin levels (400.8 ng/ml). The levels of serum vitamin
B12, folate, and iron were within the normal ranges.
Furthermore, peripheral blood smear revealed anisocyto-
sis and poikilocytosis (including teardrop-shaped poi-
kilocytes), and schistocytes. Bone marrow examination
revealed erythroid hyperplasia and marked erythroid

dysplasia; megaloblastic changes, nuclear bridging,
nuclear lobulations, multinuclearity were observed
(Fig. 1). No significant features of dysplasia were

observed in the myeloid or megakaryocytic lineages. To
confirm the diagnosis, we conducted a mutational anal-
ysis that revealed a novel heterozygous frameshift
mutation ¢.552_553 insG in exon 2, and another known
[6] heterozygous missense mutation ¢.A1910G in exon 12
of CDANI gene (Fig. 2); subsequently, we diagnosed her
as a case of CDA type 1. One year after the diagnosis,
her anemia resolved spontaneously (hemoglobin levels

CDAN1ex2 COANLex12
leu Asn Gly
leu Pro Gly Leu Ser Gly

CTGCLLGGA LTCAATGEGAGTY

Father
ey Pro Gly
lew Ala  Arg teu Asn Gly
CTGCLCLGGA CTCAATGGT
Mother
lew Pro  Gly Lteu Asn Gly
teu Al Amg Leu Ser Gly
CTELCLCGGA CTCAATGET
Patient L GCCCGG &

C.A1910G
p.N5985

p.P185fs

Fig. 2 The compound heterozygous mutation of the CDAN! gene

11.1 g/dl), but the ferritin levels remained relatively high
(342.1 mg/ml); this required meticulous observation and
follow-up.
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Discussion

We report a 12-year-old female diagnosed with unclassi-
fied congenital hemolytic anemia with recurrent episodes
of anemia and jaundice; subsequently, she was diagnosed
with CDA type 1. CDA type 1 is inherited as an autosomal
recessive disease. More than 150 patients have been
described, mainly patients from Western Europe, the
Middle East, India and Japan [8]. The anemia observed in
CDA type 1 varies from mild to severe. About 50 % of
neonates with CDA type 1 need at least one transfusion of
erythrocytes, and some remain transfusion-dependent in
the following years [9]. In most adolescents and adults, the
need for transfusions is limited to aplastic crisis, preg-
nancy, periods of severe infections, or major surgery [10].
The anemia seen in CDA type 1 is usually macrocytic; in
addition, peripheral blood smear showed other features of
anisocytosis, poikilocytosis, and basophilic stippling [2].
Moreover, light microscopy of the bone marrow in CDA
type 1 presents erythroid hyperplasia with abnormal pre-
cursors displaying a megaloblastoid appearance. Dysplastic
signs include markedly irregular nuclei with frequent
binucleate erythroblasts [11]. A particular diagnostic fea-
ture in CDA type 1 is thin, internuclear chromatin bridges
between nearly completely separated erythroblasts.

Nevertheless, CDA should be diagnosed only after
exclusion of other congenital anemias known to be asso-
ciated with ineffective erythropoiesis and dyserythropoiesis
[12]. Distinguishing CDA and the other congenital hemo-
lytic anemias only on the basis of clinical course, labora-
tory data, and peripheral blood smear can be challenging.
In CDA and the other congenital hemolytic anemia,
symptoms of anemia and jaundice vary from mild to
severe, with the most severe cases presenting in the neo-
natal period and milder cases presenting in adolescence or
later stages in life. Abnormally shaped RBCs can appear in
both the categories. Heimpel et al. [13] reported that in the
German CDA Registry, the age of the 21 patients at the
time of initial diagnosis of CDA type 1 ranged
0.1-45 years (median 17.3 years) and that 11 of 21 cases
were previously misdiagnosed as congenital hemolytic
anemia. Bone marrow examination might be often omitted,
not usually performed, in pediatric cases with hemolytic
anemia. In contrast, bone marrow examination is indis-
pensible in case of CDAs because CDAs are diagnosed
only after identifying distinct morphological abnormalities
of the erythroblasts in the bone marrow.

Approximately, 90 % of patients with bone marrow
evaluation suggesting CDA type 1 have mutations in
CDANI [6]. Most patients with a confirmed diagnosis of
CDA type 1 demonstrate mutations of at least one allele
from exons 6 to 28 within CDANI; more than 30 unique
mutations have been identified so far [6, 10, 13—-17]. The

@_ Springer

majority of mutations in CDANI are missense or nonsense,
and only two frameshift mutations are known [10]. To our
knowledge, ¢.552_553 insG in exon 2 is a novel frameshift
mutation in CDANI.

In summary, we report a Japanese female of CDA type
1. Bone marrow morphology and genetic testing in CDAN!
gene was the key to accurate diagnosis. Taken together,
when we encounter a patient whose clinical manifestations
and laboratory results suggest the possibility of congenital
hemolytic anemia but we cannot confirm the diagnosis, we
should consider the possibility of CDA and bone marrow
morphology and genetic testing should be conducted.
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