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We generated iPS cells from human dermal fibroblasts (HDFs) of Fabry disease using a Sendai virus (SeVdp)
vector; this method has been established by Nakanishi et al. for pathogenic evaluation. We received SeVdp
vector from Nakanishi and loaded it simultaneously with four reprogramming factors (KIf4, Oct4, Sox2,
and c-Myc) to HDFs of Fabry disease; subsequently, we observed the presence of human iPS-like cells. The
Sendai virus nucleocapsid protein was not detected in the fibroblasts by RT-PCR analysis. Additionally, we
confirmed an undifferentiated state, alkaline phosphatase staining, and the presence of SSEA-4, TRA-1-60, and
TRA-1-81. Moreover, ultrastructural features of these iPS cells included massive membranous cytoplasmic bodies
typical of HDFs of Fabry disease. Thus, we successfully generated human iPS cells from HDFs of Fabry disease that
retained the genetic conditions of Fabry disease; also, these abnormal iPS cells could not be easily differentiated
into mature cell types such as neuronal cells, cardiomyocytes, etc. because of a massive accumulation of membra-

nous cytoplasmic bodies in lysosomes, possibly the persistent damages of intracellular architecture.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Fabry disease is characterized by a deficiency of alpha-galactosidase,
which results in the accumulation of globotriaosylceramide (Gb3) in the
kidney, heart and other tissues throughout the body. Takahashi et al.
established a method for generating iPS (induced pluripotent stem)
cells from somatic cells (e.g., fibroblasts, lymphocytes) by introducing
reprogramming factors (e.g., KIf4, Oct4, Sox2, c-Myc) using a retroviral
vector [1]. These cells were maintained in a pluripotent undifferentiated
state with the ability to self-propagate. iPS technology is expected to
aid in developing novel drugs, regenerative medicine and analysis of
disease states.

Recently, a number of procedures for generating iPS cells have
been introduced; these procedures involve chemicals and plasmid
(such as Sendai virus vector), episomal, or viral (such as retrovirus or
lentivirus) vectors. Each procedure has advantages and disadvantages.

* Corresponding author at: Department of Genetics and Genome Science, Tokyo Jikei
University School of Medicine, Nishishinbashi 3-25-8, Minato-ku, Tokyo 105-8461,
Japan. Fax: + 81 0443229991.

E-mail address: yosh@sepia.ocn.ne.jp (Y. Eto).

1096-7192/% - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ymgme.2013.06.003

Viral vectors create a risk of malignant transformation, whereas plasmid
vectors, such as Sendai viral vector, or episomal vectors create less risk
of malignant transformation. Sendai virus, a negative-strand RNA virus
(Fig. 1), can infect various mammalian cells. The Sendai virus genome is
replicated in the cytoplasm and has no genomic venomousness with
high security. Moreover, Nishimura et al. [2] established that siRNA
can erase the genomic RNA of the Sendai virus from SeVdp-iPS cells,
making it a highly safe vector. Recently, the generation of induced
pluripotent stem cells has been reported from both mouse and human
somatic cells with different genetic diseases using defined factors
[3-9]; this advance may provide information regarding the pathogenesis
and treatment of human diseases. To generate iPS cells from these
diseased cells, such as lysosomal storage disease cells, is a challenge
because these cells are already damaged by the accumulation of inclu-
sion bodies in the lysosomes [4]. However, there have been few studies
on the morphological characteristics of lysosomal storage diseases. In
this study, we generated iPS cells from human fibroblasts of Fabry
disease using the established SeVdp vector. The purpose of this study
was to compare the heart disease state in iPS cells generated with the
SeVdp vector and in iPS cells generated with a retroviral vector. This
paper is the first to present the detailed morphological features of iPS
cells of lysosomal storage diseases, particularly human Fabry iPS cells,
by electron microscopy.
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Fig. 1. Method to generate human iPS cells using SeVdp. On day 0, we seeded SNL feeder cells, then, on day 1, HDF from Fabry disease transfected four reprogramming factors using
SeVdp (MOI 3-10). On days 10-17, parallel with a subculture primary colony, we treated siRNA L527 for knock down genomic RNA of SeVdp vector. Keeping the cultivation, we

could confirm human iPS-like cells.

2. Material and methods
2.1. Cell culture and generation of iPS cells

To produce iPS cells from Fabry HDFs two viral vectors were used;
a retroviral vector according to Takahashi and Yamanaka [1] and the
Sendai virus vector [2]. Fabry iPS cells produced by a retroviral vector
expressing OCT3/4, SOX2, KL4 or Myc were also generated as previously
described [3,4]. The SeVdp vector, which simultaneously delivers four
Yamanaka factors (KIf4, Oct4, Sox2, and c-Myc) to generate human
iPS cells from wild type HDFs, and the siRNA L527 (5-GGUUCAGCAU
CAAAUAUGAAG-3, 3-UACCAAGUCGUAGUUUAUACU-5) were provided
by Nishimura et al. [2]. Fabry HDFs (GMO00107, 10 year old male,
W162X, nonsense mutation) were purchased from the Coriell Institute,
USA. SeVdp Fabry-hiPS cells were generated from Fabry HDFs using
the SeVdp vector according to the protocol described by Nishimura
etal. [2].

2.2. RT-PCR

Total RNA was extracted from cultured iPS cells using the RNeasy kit
(QIAGEN, Hilden, Germany). For reverse transcription, we used the
SuperScript I1 kit (Invitrogen) and Platinum Taq Polymerase (Invitrogen,
CA, USA) to form 2 pg of cDNA. PCR was performed according to the
established method [2].

2.3. Immunostaining and cytochemical staining

The immunostaining study was performed as previously described
[3.4].

The primary antibodies used were Ms X SSEA-4 IgG, Ms X TRA-1-60,
and Ms X TRA-1-81 (Millipore, MA, USA). Cytochemical staining
was performed using alkaline phosphatase (Sigma-Aldrich, MO, USA)
according to the manufacturer's recommendations.
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2.4. Electron microscopy

The iPS cells were doubly fixed with 2% glutaraldehyde/0.1 M
phosphate buffer (PB) (pH 7.2) and 1% osmium tetroxide/0.1 M PB
(pH 7.2) and were dehydrated with an ethanol gradient. Then, the
cells were embedded in epoxy resin. Ultra-thin sections were stained
with uranyl acetate and lead citrate and observed with a Hitachi H7500
electron microscope (Hitachi, Tokyo).

3. Results

3.1. Analysis of generated SeVdp Fabry-hiPS cells for the SeVdp-NP marker
of SeVdp infection and for the undifferentiated state

We generated iPS cells from Fabry HDFs (GM00107, Coriell, USA)
using the SeVdp vector installed with Klf4, Oct4, Sox2, and c-Myc.

40 cycles

N o
3 SeVdp-hiPS clone No. 3
E __A @
v % ¢
GREEXEE X RN RI

60 cycles

Fig. 2. RT-PCR analysis of SeVdp-NP gene. Analysis of RT-PCR for isolated SeVdp Fabry-hiPS
cells using SeVdp nucleocapsid protein (SeVdp-NP) marker gene. NAT1 is internal control.
SNL feeder is negative control, and HDF + SeVdp is positive control.
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Clone No. #12 #14 . # 19
AP '43"
SSEA-4
TRA-1-60
TRA-1-81

Fig. 3. Analysis of undifferentiated state of SeVdp Fabry-hiPS Sendai virus-free hiPS
cells were significant positive cells for alkaline phosphatase, SSEA-4, TRA-1-60, and
TRA-1-81 stains.

Five days after transfection, we confirmed the presence of primary
colonies similar to mouse iPS cells. The SeVdp vector RNA genome of
the primary colonies was erased with siRNA 527, and cultivation was
continued thereafter. We confirmed the generation of human iPS cells
(Fig. 1).

We performed RT-PCR for the Sendai viral nucleocapsid protein
(NP) gene, a marker for SeVdp infection, with 20, 40, and 60 cycles
(Fig. 2).

We could not detect the SeVdp-NP gene by RT-PCR analysis of
SeVdp-hiPS cells, indicating that siRNA L527 successfully knocked
down the Sendai virus genome in SeVdp Fabry-hiPS cells. Additionally,
the SeVdp Fabry-hiPS cells generated had high alkaline phosphatase
activity and were highly positive for SSEA-4, TRA-1-60 and TRA-1-81
(Fig. 3). These results indicate that SeVdp Fabry-hiPS cells with an
undifferentiated state were generated and were induced into putative
iPS cells.

3.2. Analysis of the ultrastructure in isolated RV and SeVdp Fabry-hiPS
cells

Electron microscopic analysis indicated that iPS cells produced by
retrovirus (RV) or SeVdp Fabry-hiPS both exhibited typical membranous
cytoplasmic body (MCB) structures in lysosomes; however, less packed
inclusion bodies or immature inclusions were observed in these cells
compared to Fabry HDFs (Fig. 4) because the Fabry HDFs contained
more densely packed MCBs.

These results also suggest that isolated Fabry-hiPS cells generated
from RV or SeVdp retain the typical pathological features of Fabry disease.
Morphological differences in Fabry-hiPS cells generated with retrovirus
or SeVdp virus were not observed.

4. Discussion

The SeVdp vector used in this study has several features: no genetic
toxicity with high security, wide host range (including human hemato-
poietic stem cells), efficient reprogramming ability, stable expression in
the cytoplasm and high security.

Fig. 4. Electron microscopic photographs of SeVdp Fabry-hiPS, RV Fabry-hiPS and HDF of Fabry disease. The upper panels show narrow expansion and the lower panels show wide
expansion. The bar indicates each size. We could demonstrate many typical membranous cytoplasmic body structures in lysosomes generated by SeVdp Fabry-hiPS cells and RV
Fabry-hiPS cells which are rather similar to those of HDF of Fabry disease, but look more like immature membranous cytoplasmic inclusion bodies, compared to those of HDF.
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