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Figure 2. Genomic position and LD blocks. (A) Genomic position of non-synonymous (ns)SNPs and regulatory ()SNPs in NFKBIE and RTKN2.
NFKBIE (top) and RTKN2 (bottom) correspond to transcripts NM_004556.2 and NM_145307.2, respectively. Exons are shown as boxes, where black
boxes represent coding regions and open boxes represent untranslated regions. Intron sequences are drawn as lines. Open triangles represents
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individuals of the GWAS. The diagrams show pairwise LD values as quantified using the D’ and r* values.

doi:10.1371/journal.pgen.1002949.g002

independent effects of each variant would be the first step. For this
purpose, a recent attempt to fine-map the known autoimmunity
risk loci in Celiac disease (MIM 212750) using an “Immunochip”
brought us several insights [34]. First, no stronger signals
compared to the GWAS signals were detected in most of the
known loci, while additional independent signals were found in
several loci. Second, none of the genome-wide significant common
SNP signals could be explained by any rare highly penetrant
variants. Third, although the fine-mapping strategy could localize
the association signals into finer scale regions, it could not identify
the actual causal variants due to strong LD among the variants,
indicating that an additional approach, such as functional
evaluation of candidate variants, is needed.

In the present study, we focused on common variants to find
causal variants. Instead of re-sequencing additional samples, we
utilized the 1000 Genome Project dataset, where the theoretically
estimated cover rate for common variants (frequency of >0.05) in
our population is >0.99 [12,35]. To fine-map the association
signals, we performed imputation-based association analysis,
where we could not find any association signals that statistically
exceeded the effect of landmark SINPs (rs2233434 for NFEBIE and
rs3125734 for RTEN2) in both gene regions (Figures S3 and S4).
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We also performed a conditional logistic regression analysis, and
found no additional independent signals of association when
conditioned on each landmark SNP (data not shown). Although
the imputation-based association tests may vyield some bias
compared to direct genotyping of the variants, these results
suggested that variants in strong LD with the landmark SNPs were
strong candidates for causal variants.

Following the analysis of nsSNPs, we evaluated ¢is-regulatory
effects of variants in the two regions by ASTQ analysis using
both B-cell lines and primary cells (PBMC), the majority of
which consisted of T and B lymphocytes. As the mechanism of
gene-regulation is substantially different between cell types [26],
ASTQ analysis in more specific cell types that are relevant to
the disease etiology, such as Thl and Th17 cells, would be ideal
to evaluate the cis-regulatory effects of variants. In this context,
a more comprehensive catalog of the eQTL database of multiple
cell types should be established for genetic study of diseases. As
our ASTQ analysis demonstrated cis-regulatory effects of
variants in both regions, we then performed an integrated in
silico and in vitro analysis to identify candidate regulatory
variants. Accumulating evidence by recent ChIP-seq and
DNase-seq studies suggested that cis-regulatory variants are
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Figure 3. Functional evaluation of nsSNPs and allelic imbalance of expression in NFKBIE and RTKN2. (A, B) Effects of nsSNPs in NFKBIE (A)
and RTKN2 (B) on NF-kB activity by luciferase assays. Two haplotype constructs (A-C (rs2233434-rs2233433; non-risk (NR)) and G-T (risk (R)) for NFKBIE
and C-C (rs3125734-rs61850830; NR) and T-T (R) for RTKN2) were used. The expression vector of each construct, pGL4.32[/uc2P/NF-xB-RE] vector and
pRL-TK vector were transfected into HEK293A cells. Data represent ‘che mean * s.d. Each experiment was performed in sextuplicate, and experiments
were independently repeated three times. *P<0.05, **P<<1.0x107°, and ***P<1.0x107'° by Student’s t-test. n.s.: not significant. (C, D) Protein
expression levels of each haplotype construct. Anti-V5 tag antibody was used in the Western blotting analysis to detect the expression of exogenous
IxBe (C) and RTKN2 (D). Beta-actin expression was used as an internal control. The densities of the bands were quantified and normalized to that of
the risk allele. (E, F) Allelic imbalance of expression in NFKBIE (E) and RTKN2 (F). ASTQ was performed using samples from individuals heterozygous for
rs2233434 (G/A) in NFKBIE and rs3125734 (T/C) in RTKN2. Genomic DNAs and cDNAs were extracted from PBMCs (n=14 for NFKBIE and n=6 for
RTKN2). The y-axis shows the log; ratio of the transcript amounts in target SNPs (risk allele/non-risk allele). The top bar of the box-plot represents the
maximum value and the lower bar represents the minimum value. The top of box is the third quartile, the bottom of box is the first quartile, and the
middle bar is the median value. The circle is an outlier. *P=0.012, ¥*P=0.016, by Student’s t-test. (G, H) Dose-dependent inhibition of NFKBIE (G) and
activation of RTKN2 (H) on NF-xB activity. Various doses of expression vectors carrying the non-risk allele of each gene were transfected into HEK293A
cells with pGL4.32 and pRL-TK vectors.

doi:10.1371/journal.pgen.1002949.g003

located in the key regions of transcriptional regulation [26,36], i witro assays. However, there may be additional causal variants,
warranting the prioritization of variants before evaluation by iz including rare variants, unsuccessfully selected at each step of
vitro assays. This could also minimize false-positive results of the our integrated screening. Therefore, the screening strategy
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Prediction of regulatory potential in silico. 3a) Regulatory potential (RP) scores were used for SNP selection, where an RP score >0.1 indicated the
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reference genotypes were used. SNPs with a significance level of P<<0.05 were selected. SNPs without association data were also selected. (Step 5)
EMSAs and luciferase assays were performed for evaluation of regulatory potentials in vitro.

doi:10.1371/journal.pgen.1002949.g004

should be refined as the quality and quantity of genomic inhibitory effect of IxB-& on nuclear translocation of NF-xB. On
databases improves in the future. the other hand, down-regulated NFKBIE expression and up-

We identified multiple candidate causal variants in NFEBIE (two regulated RTEN2 expression were observed at the risk haplotypes,
nsSNPs and one rSNP) and RTENZ (two rSNPs). We could not which may be regulated in ¢is by the rSNPs (rs2233424 in NFKBIE,
statistically distinguish the primary effect of each candidate causal 1512248974 and rs61852964 in RTENZ). As overexpression studies
variant, because these variants are in strong LD and on the same have also demonstrated dose-dependent attenuation of NF-xB
common haplotype. However, multiple causal variants could be activity by NFKBIE, and dose-dependent enhancement by RTENZ,
involved in a single locus, which is also seen in another well-known the cis-regulatory effects of these rSNPs should enhance the NF-xB
autoimmune locus in 6q23 (TNFAIP3 gene locus), where both an activity in the risk allele. Taken together with the effect of nsSNPs
nsSNP and a regulatory variant have been shown to be in NFKBIE, the enhancement of NF-«B activity may play a role in
functionally related to the disease [8,37]. The risk haplotype of  the pathogenesis of the disease. This is further supported by
nsSNPs in NFEBIE (rs2233433 and rs2233434) showed an evidence that previous GWAS for RA have also identified genes
enhancement of NF-xB activity, which might reflect an impaired related to the NF-xkB pathway, such as TNFAIP3 [13], v-rel
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Figure 5. Evaluation of candidate regulatory SNPs /n vitro. (A) Binding of nuclear factors from lymphoblastoid B-cells (PSC cells) and Jurkat
cells to the 31-bp sequences around each SNP was evaluated by EMSA. Unlabeled probes in 200-fold excess as compared to the labeled probes were
used for the competition experiment. The densities of the bands were quantified and normalized to that of the risk allele. rs2233424 in NFKBIE (C(NR)/
T(R)) (left), rs12248974 (A(NR)/G(R)) (middle) and rs61852964 (G(NR)/T(R)) (right) in RTKN2. (B) Transcriptional activities were evaluated by luciferase
assays. Each 31-bp oligonucleotide was inserted into the pGL4.24[Luc2P/minP] vector. Luc, luciferase; minP, minimal promoter. Transcfection was
performed with HEK293A (for all the SNPs), PSC cells (for rs2233424), and Jurkat cells (for rs12248974 and rs61852964). rs2233424 (left), rs12248974
(middle), and rs61852964 (right). Data represent the mean = s.d. Each experiment was performed in sextuplicate and independently repeated three
times. *P<<0.05 by Student’s t-test. n.s.: not significant. (C) Liner regression analysis of the relationship between SNP genotype and gene expression
level. NFKBIE expression data in lymphoblastoid B-cell lines of HapMap individuals (JPT+CHB, CEU and YRI; n=151), and RTKN2 expression data in
primary T cells from umbilical cords of Western European individuals (n==85) were used. The x-axis shows the SNP genotypes and the y-axis
represents the log,-transformed gene expression level. R: correlation coefficient between SNP genotype and gene expression. Rs2233424 genotypes
and NFKBIE expression level (left). The genotype classification by population: JPT+CHB, CC=52, CT=1; CEU, CC=35,CT=2; YR, CC=32,(T=2,TT =4.
Rs1432411 genotypes and RTKN2 expression level (right). Rs1432411 was used as a proxy SNP of rs12248974 (= 0.97).
doi:10.1371/journal.pgen.1002949.g005

reticuloendotheliosis viral oncogene homolog (REL [MIM Materials and Methods
164910]) [5], TNF receptor-associated factor 1 (TRAFI [MIM .
601711]) [3], and CD40 molecule TNF receptor superfamily Ethics statement

member 5 (CD40 [MIM 109535]) [38]. All subjects were of Japanese origin and provided written
In conclusion, we identified NFKBIE and RTENZ as genetic risk informed consent for participation in the study, which was
factors for RA. Considering the allelic effect of both genes, approved by the ethical committees of the institutional review

enhanced NF-xB activity may play a role in the pathogenesis of boards.
the disease. Because NF-kB regulates the expression of numerous

genes, including inflammatory and immune response mediators, Subjects

NF-xB and its regulators identified by GWAS are promising A total of 7,907 RA cases, 657 SLE cases, 1,783 GD cases, and
targets for the treatment of RA, 35,362 control subjects were enrolled in the study through medical
PLOS Genetics | www.plosgenetics.org 8 September 2012 | Volume 8 | Issue 9 | €1002949
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institutes in Japan under the support of the BioBank Japan Project,
Center for Genomic Medicine at RIKEN, the University of
Tokyo, Tokyo Women’s Medical University, and Kyoto Univer-
sity. The same case and control samples were used in the previous
meta-analysis of GWASs in the Japanese population (Table S1)
[15] . RA and SLE subjects met the revised American College of
Rheumatology (ACR) criteria for RA [39]. Diagnosis of individ-
uals with GD was established on the basis of clinical findings and
results of the routine examinations for circulating thyroid hormone
and thyroid-stimulating hormone concentrations, thyroid-stimu-
lating hormone receptors, ultrasonography, F™TCO,”~ (or
['?*I]) uptake, and thyroid scintigraphy. DNAs were extracted
from peripheral blood cells using a standard protocol. Total RNAs
were also extracted from PBMGs of healthy individuals (z=20)
using an RNeasy kit (QIAGEN, Valencia, CA, USA). Details of
the samples are summarized in Table S1.

Genotyping and quality control

In the GWAS, RA cases and controls were genotyped using
TIlumina Human610-Quad and Ilumina Human 550v3 Geno-
typing BeadsChips (Illumina, San Diego, CA, USA), respectively,
and quality control of genotyping was performed as described
previously [6]. For replication study of candidate loci, a landmark
SNP was selected from each locus that satisfied
5%1078<Papus<5x107° in the GWAS. If multiple candidate
SNPs existed within *£100 kb, the SNP with the lowest P-value
was selected. All case subjects in the replication study and both
case and control subjects in the validation study of candidate
causal variants were genotyped using TagMan SNP genotyping
assays (Table S12) (Applied Biosystems, Foster City, CA, USA)
with an ABI Prism 7900HT Sequence Detection System (Applied
Biosystems). Because of the availability of DNA samples, only a
part of the control subjects were genotyped for the validation study
(n=3,290, 97.3%). To enlarge the number of subjects and
enhance statistical power for replication studies, we used genotype
data obtained from other GWAS projects genotyped using the
Tlumina platforms for the replication control panels (Table S1). All
SNPs were successfully genotyped with call rates >0.98 and were
in Hardy-Weinberg equilibrium (HWE) in control subjects
(P>0.05 as examined by x” test), except for rs2233434, which
displayed a deviation from HWE (P=0.00091). To evaluate
possible genotyping biases between the platforms, we also
genotyped rs2233434 and rs3125734 by TagMan assays for
randomly selected subjects genotyped using other genotyping
platforms (n= 376), yielding high concordance rates of =0.99.

Association analysis

The associations of the SNPs were tested with the Cochran-
Armitage trend test. Gombined analysis was performed with the
Mantel-Haenszel method. Haplotype association analysis and
haplotype-based conditional association analysis were performed
using Haploview v4.2 and the PLINK v1.07 program (see URLs)
[40], respectively. The SNPs that were not genotyped in the
GWAS were imputed using MACH 1.0.16 (see URLs), with
genotype data from the 1000 Genome Project (JPT, CHB, and
Han Chinese South (GHS): 177 individuals) as references (August
2010 release) [41]. All the imputed SNPs demonstrated Rsg values
more than 0.60.

DNA re-sequencing

Unknown variants in the coding sequences of NFEKBIE and
RTEN2 were revealed by directly sequencing the DNA of 48
individuals affected with RA. DNA fragments were amplified with
the appropriate primers (Table S13). Purification of PCR products
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was performed with Exonuclease I (New England Biolabs,
Ipswich, MA, USA) and shrimp alkaline phosphatase (Promega,
Madison, WI, USA). The amplified DNAs were sequenced using
the BigDye Terminator v3.1 Cycle Sequencing kit (Applied
Biosystems), and signals were detected using an ABI 3700 DNA
Analyzer (Applied Biosystems).

Construction of haplotype-specific expression vectors

The full coding regions were amplified using cDNAs prepared
from an Epstein-Barr virus-transfected lymphoblastoid B-cell line
(Pharma SNP Consortium (PSC), Osaka, Japan) for NFEBIE
(NM_004556.2) and from Jurkat cells (American Type Culture
Collection (ATCC), Rockville, MD, USA) for RTEN2
(NM_145307.2) with appropriate primers (Table S14) and DNA
polymerases. PCR products were inserted into the pcDNA3.1D/
V5-His-TOPO vector (Invitrogen, Camarillo, CA, USA) using the
TaKaRa Ligation kit ver. 2.1 (Takara Bio Inc, Shiga, Japan), and
mutagenized using the AMAP Multi Site-Directed Mutagenesis
Kit (MBL, Nagoya, Japan). Each construct was then transformed
into Jet Competent Escherichia coli cells (DH5a) (BioDynamics
Laboratory Inc., Tokyo, Japan). These plasmids were purified
using an Endofree Plasmid Maxi Kit (QJAGEN) after confirma-
tion of the sequence.

NF-xB reporter assay

Human embryonic kidney (HEK) 293A cells (Invitrogen) were
cultured in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich,
St. Louis, MO, USA) supplemented with 10% fetal bovine serum
(BioWest, Nuaillé, France), 1% penicillin/streptomycin (Invitro-
gen), and 0.1 mM MEM Non-Essential Amino Acids (Invitrogen).
Various doses of the haplotype-specific expression vector (0.0025-
0.02 pg for NFEBIE and 0.1-0.8 pg for RTENZ), pGL4.32[luc2P/
NF-kB-RE/Hygro] vector (Promega) (0.05 pg and 0.0125 pg,
respectively), and pRL-TK vector (an internal control for
transfection efficiency) (0.45 ug and 0.15 pg, respectively) were
transfected into the HEK293A cells using the Lipofectamine LTX
transfection reagent (Invitrogen) according to the manufacturer’s
protocol. The total amounts of DNAs were adjusted with empty
pcDNA3.1 vector. After 22 h, cells were incubated with 1 ng/ml
TNF-o (Sigma) for 2h or with medium alone. Cells were
collected, and luciferase activity was measured using a Dual-
Luciferase Reporter Assay system (Promega) and a GloMax-
Multi+ Detection System (Promega). Each experiment was
independently repeated three times, and sextuplicate samples
were assayed each time.

Western blotting

After 24 h of transfection as described for the NF-xB reporter
assay, cells were lysed in NP-40 lysis buffer (150 mM NaCl, 1%
NP-40, 50 mM Tris-HCl at pH 8.0, and a protease inhibitor
cocktail), and incubated on ice for 30 min. After centrifugation,
the supernatant fraction was collected and 4xSodium dodecyl
sulfate (SDS) sample buffer was added. After denaturation at 95°C
for 5 min, proteins were analyzed by SDS-polyachrylamide gel
electrophoresis (PAGE) on a 5% to 20% gradient gel (Wako,
Osaka, Japan) and were transferred to polyvinylidene difluouride
(PVDF) membranes (Millipore, Billerica, MA, USA). Target
proteins on the membrane were probed with antibodies (mouse
anti-V5 tag (Invitrogen), anti-B-actin-HRP (an internal control),
and goat anti-mouse IgG2a-HRP (Santa Cruz Biotechnology,
Santa Cruz, CA, USA)), visualized using enhanced chemilumi-
nescence (ECL) detection reagent (GE Healthcare, Pollards Wood,
UK), and detected using a LAS-3000 mini lumino-image analyzer

September 2012 | Volume 8 | Issue 9 | 1002949



(Fyjifilm, Tokyo, Japan). Band intensities were measured using
MultiGauge software (Fujifilm).

Allele-specific transcript quantification (ASTQ) analysis

ASTQ analysis was performed as previously described [42].
Total RNAs and genomic DNAs were extracted from PBMCs and
lymphoblastoid B-cell lines. ¢cDNAs were synthesized using
TagMan reverse transcription reagents (Applied Biosystems). We
selected SNPs (rs2233434 (A/G) for NFEBIE and 153125734 (C/T)
for RTENZ) as target SNPs. Allele-specific gene expression was
measured by TagMan SNP genotyping probes for these SNPs
(Applied Biosystems). To make a standard curve, we selected two
individuals that had homozygous genotypes of each target SNP.
We mixed these DNAs at nine different ratios and detected the
intensities. The logy of (risk allele/non-risk allele intensity) for each
SNP was plotted against the logs of mixing homozygous DNAs.
We generated a standard curve (linear regression line; y = ax+b),
where y is the logy of (risk allele/non-risk allele intensity) at a given
mixing ratio, x is the logy of the mixing ratio, a is the slope, and b
is the intercept. We then measured the allelic ratio for each cDNA
and genomic DNA from each individual by real-time TaqMan
PCR. Based on a standard curve, we calculated the allelic ratio of
c¢DNAs and genomic DNAs. Intensities were detected using an
ABI Prism 7900HT Sequence Detection System (Applied Biosys-
tems).

Electrophoretic mobility shift assays (EMSA)

EMSA and preparation of nuclear extract from lymphoblastoid
B-cell lines and Jurkat cells were performed as previously described
[43]. Cells were cultured in RPMI-1640 medium (Sigma-Aldrich)
supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin. Following stimulation with 50 ng/ml phorbol
myristate acetate (Sigma-Aldrich) for 2 h, cells were collected
and suspended in buffer A (20 mM HEPES at pH 7.6, 20%
glycerol, 10 mM NaCl, 1.5 mM MgCl,, 0.2 mM EDTA at
pH 8.0, 1 mM DTT, 0.1% NP-40, and a protease inhibitor
cocktail) for 10 min on ice. After centrifugation, the pellets were
resuspended in buffer B (which contains buffer A with 500 mM
NaCl). Following incubation on ice for 30 min and centrifugation
to remove cellular debris, the supernatant fraction containing
nuclear proteins was collected. Oligonucleotides (31-bp) were
designed that corresponded to genomic sequences surrounding the
SNPs (Table S15). Single-stranded oligonucleotide probes were
labeled using a Biotin 3’ End DNA Labeling Kit (Pierce
Biotechnology, Rockford, IL, USA), and sense and antisense
oligonucleotides were then annealed. DNA-protein interactions
were detected using a LightShift Chemiluminescent EMSA kit
(Pierce Biotechnology). The DNA-protein complexes were sepa-
rated on a non-denaturing 5% polyachrylamide gel in 1 xTBE
(Tris-borate-EDTA) running buffer for 60 min at 150 V. The
DNA-protein complexes were then transferred from the gel onto a
nitrocellulose membrane (Ambion, Carlsbad, CA, USA), and were
cross-linked to the membrane by exposure to UV light. Signals
were detected using a LAS-3000 mini lumino-image analyzer
(Fwjifilm). Allelic differences were analyzed using MultiGauge
software (Fujifilm) by measuring the intensity of the bands.

Luciferase assay

Oligonucleotides (31-bp) were designed as described for the
EMSAs (Table S15), and complementary sense and antisense
oligonucleotides were annealed. To construct luciferase reporter
plasmids, pGL4.24[luc2P/minP] vector (Promega) was digested
with restriction enzymes (Xhol and BglIl) (Takara Bio Inc), and
annealed oligonucleotide was ligated into a pGL4.24 vector
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upstream of the minimal promoter. HEK293A (n=2.5%10%,
lymphoblastoid B-cell lines (z=2.0x10% and Jurkat (n=5.0x10°)
cells were transfected with the allele-specific constructs (0.4 pg,
1.8 ug and 2.5 pg, respectively) and the pRL-TK vector (0.1 pg,
0.2 pg and 0.25 pg, respectively) using the Lipofectamine LTX
transfection reagent (for HEK293A and Jurkat cells) and Amaxa
nucleofector kit (Lonza, Basel, Switzerland) (for lymphoblastoid B-
cell lines). Cells were collected, and luciferase activity was
measured as described for the NF-xB reporter assay. Each
experiment was independently repeated three times and sextupli-
cate samples were assayed each time.

Correlation analysis between gene expression and
genotypes

The expression data in lymphoblastoid B-cell lines derived from
HapMap individuals (z =210; JPT, CHB, CEU, and YRI) and in
primary T cells from umbilical cords of Western European
individuals (n=85) from the database of the Gene Expression
Variation (Genevar) project were used. SNP genotypes were
obtained from HapMap and 1000 Genome Project databases. The
expression levels were regressed with the genotype in a liner
model. The statistical significance of regression coefficients was
tested using Student’s ftest.

Statistical analysis

We used %2 contingency table tests to evaluate the significance
of differences in allele frequency in the case-control subjects. We
defined haplotype blocks using the solid spine of LD definition of
Haploview v4.2, and estimated haplotype frequency and calculat-
ed pairwise LD indices () between pairs of polymorphisms using
the Haploview program. Luciferase assay data and ASTQ analysis
data were analyzed by Student’s #test.

Web resources
The URLs for data presented herein are as follows:
PLINK, http://pngu.mgh.harvard.edu/~purcekk/plink
MACH, http://www.sph.umich.edu/csg/abecasis/mach/
UCGSC Genome Browser, http://genome.ucsc.edu/;
Genevar, http://www.sanger.ac.uk/resources/software/genevar/
HapMap Project, http://www.HapMap.org/
1000 Genome Project, http://www.1000genomes.org
Online Mendelian Inheritance in Man (OMIM), http://www.
omim.org/

Supporting Information

Figure 81 NF-kB activity was influenced by nsSNPs in NFEBIE.
NF-xB activities were evaluated by luciferase assays. Allele specific
construct, pGL4.32[luc2P/NF-xB-RE] luciferase vector, and pRL-
TK vector were transfected into HEK293A cells. Four haplotypes
(rs2233434-r52233433; A-C, G-C, A-T, and G-T) were examined.
(rs2233434: A=non-risk (NR), G =risk (R); rs2233433: C=NR,
T =R). Twenty-two hours after transfection, cells were stimulated
with medium alone (A) or TNF-o. (B) for 2 h. Data represent the
mean * s.d. Each experiment was performed in sextuplicate, and
experiments were independently repeated three times. *P<<0.05
and #**P<1.0x107° by Student’s #test. n.s.: not significant.

(TTE)

Figure 82 Allelic imbalance of expression in NFABIE. ASTQ was
performed using samples from individuals heterozygous for
152233434 (G/A) in NFEBIE. Genomic DNAs and cDNAs were
extracted from lymphoblastoid B cells (z=9). The y-axis shows the
log, ratio of the transcript amounts in target SNPs (risk allele/non-risk
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allele). The top bar of the box-plot represents the maximum value
and the lower bar represents the minimum value. The top of box is
the third quartile, the bottom of box is the first quartile, and the
middle bar is the median value. The circle is an outlier.
#*P=5.3x10"* by Student’s #test.

(TIF)

Figure 83 SNP sclection using i silico analysis in the NFKBIE
region. Step 1: Definition of the target region. P-values of the
SNPs in the GWAS (top) and genomic structure (middle), and the
D'-based LD map (bottom). The green diamond shapes represent
the -log;o of the Cochran-Armitage trend P-values. The dashed
line indicates the significance threshold (P<1x10~%). The LD map
was drawn based on genotype data of the 1000 Genome Project
(JPT, CHB and CHS: 177 samples) using Haploview software
v4.2. LD blocks were defined by the solid spine method. The red
box (top) represents the target region of the # sifico analysis (Chr6:
44,336,140-44,394,125). Step 2: Target SNPs were extracted from
public databases (HapMap and 1000 Genome Project). SNPs with
MAF >0.05 were selected. Step 3: Evaluation of regulatory
potential. Step 3a: The regulatory potential (RP) score was
calculated for sequences surrounding the SNPs by ESPERR
(evolutionary and sequence pattern extraction through reduced
representations) method. SNPs with RP score >0.1 were selected.
Step 3b: Subsequently, SNPs within the predicted, regulatory
genomic elements were selected by using ChIP-seq data of
transcription factor binding sites (I'xn factor), histone modification
sites (CTCF binding, H3K4mel, H3K4me2, H3K4me3,
H3K27ac, H3K9ac) or DNase-seq data of DNase I hypersensi-
tivity sites (DNase HS). ChIP-seq data and DNase-seq data used
the signals derived from GM12878 EBV-transformed B cells. All
these analyses of Steps 2 to 3 were performed by using the UCSC
genome browser. Step 4: Evaluation of disease association.
Association data of both genotyped (green diamonds) and imputed
(black diamonds) SNPs in the GWAS samples were used. Red
triangles represent 14 extracted SNPs iz sifico. The dashed line
indicates the significance threshold (P<0.05).

(TTF)

Figure S84 SNP selection using i silico analysis in the RTEN2
region. SNP selection in the RTEN2 region was performed the
same as in the case of the NFKBIE region as described in Figure
S3, except that we used DNase-seq data derived from Thl, Th2,
and Jurkat cells in addition to GM12878 EBV-transformed B cells.
(TTF)

Figure S5 Results of EMSAs for candidate regulatory SNPs.
Binding affinities of nuclear factors from lymphoblastoid B-cells
(PSC cells) and Jurkat cells to the 31-bp sequences around each
allele of the candidate regulatory SNPs were evaluated by EMSA.
Nuclear factors from PSC cells were used for NFEBIE, and Jurkat
cells were used for RTEN2. 14 SNPs in NFKBIE (A) and 10 SNPs
in RTKN2 (B) were tested. NR: non-risk allele; R: risk allele.
Arrows indicate bands showing allelic differences in each SNP.
(TTF)

Figure 86 Luciferase assays for regulatory SNPs. Transcription-
al activities of the 31-bp genomic sequences around the SNPs were
evaluated by luciferase assays. Each oligonucleotide was inserted
into the pGL4.24[luc2P/minP] vector upstream of the minimal
promoter (minP), and allele-specific constructs were transfected
into HEK293A cells. Relative luciferase activity is expressed as the
ratio of luciferase activity of each allele-specific construct to the
luciferase activity of the mock construct. Data represent the mean
*+ s.d. Each experiment was independently repeated three times,
and each sample was measured in sextuplicate. *P<1x10~% by
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Student’s ftest. n.s.: not significant. (A) rs2233434 and rs77986492
in the NFEBIE region. (B) rs3864793, rs1864836, rs4979765, and
rs4979766 in the RTKN2 region. NR: non-risk allele; R: risk allele.
(TTF)

Figure 87 The correlation between NFKBIE expression and
rs2233434 and rs77986492 genotypes. Linear regression analysis
of the relationship between SNP genotypes and NFKBIE
expression. Gene expression data from EBV-transformed lympho-
blastoid B cell lines of HapMap individuals (JPT+CHB, CEU, and
YRI). (A) 12233434 (n=204) and (B) rs77986492 (n=152). The
genotype classification by population: rs2233434 (JPT+CHB,

AA=61, AG=28, GG=1; CEU, AA=52, AG=2; YRI,
AA=53, AG=72) and 1577986492 (JPT+CHB, CC =52,
CT=24; CEU, CC=35, CT=9; YRI, CC=38, CT=1). The

x-axis shows SNP genotypes and the y-axis represents the loge-
transformed NFKBIE expression level. R: the correlation coeffi-
cient between NFEBIE expression and SNP genotype.

(TTF)

Figure S8 The correlation between RTKNZ expression and
1rs3852694 genotypes. Linear regression analysis of the relationship
between the 1s3852694 genotype and RTEKN2 expression.
Rs3852694 was used as a proxy SNP of rs1864836 (= 1.0).
Gene expression data in primary T cells from umbilical cords of
Western European individuals (n=285) were presented by using
Genevar software. The x-axis shows the rs3852694 genotypes (AA,
AG, GG) and the y-axis represents the logo-transformed RTENZ
expression level. R: the correlation coefficient between RTENZ
expression and 133852694 genotype.

(TIF)
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Abstract

Technologies associated with massively parallel sequencing have evolved rapidly over the last several
years, making it possible to cost-effectively sequence the whole human genome and exome in a short period
of time. These technologies are expected to bring about a better understanding of genetic components
underlying monogenic diseases, as well as diseases inherited in a non-Mendelian fashion. They will
eventually cause a paradigm shift in clinical practice, where the diagnosis and decision-making for appro-
priate therapeutic procedures is based on the “personal genome”. In this review, we outline some of our
recent efforts in the Medical Genome Center at the University of Tokyo Hospital, including an identification
of the causative gene for a Mendelian disease (posterior column ataxia with retinitis pigmentosa), an
approach to uncover susceptible genes for a non-Mendelian disease (Parkinson disease), and an application
of exome sequencing for the molecular diagnosis of a disease with vast genetic heterogeneity (hereditary
diffuse leukoencephalopathy with spheroids). We also discuss the advantages and limitations of these
emerging technologies.

Key words : massively parallel sequencing, Parkinson disease, common disease- multiple rare variants, personal genome
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g TCHE EED, FLVCRI » PCARP O EK:#E
BFTHIUREES T W EF Z o, HHOFRRT
I OSSR TH Y, FERERT EMET 2
R DR OERFRIC L DMERF RIS o
720 KRRy —r vy —i & - T, EEER BT S
EREZROH IR BR S ey, TO—FTIERE
RERBEICE D WTY Y — A R2IET 2ERFEOEE
BINETLEDLLTHBOTCEELZLDOTH S,

Y-y —AOREE LT, BEERO XN
Y= v —HERI0EEDY a - )~ FIZ L B
IR TH D78, VR LUEFIDEEPHEAZTEDOR

ML WEABRE TS, BEFEE2ED TV 3
9p21 \EEH T 2 BB MM AR GAE - BT AR ZRA
FEWBIT B COrf7l1 4 >~ +a VRGO 6 MERDEL
BEFIERZATFE»0 2 &, HEOE»EELEBRRER TN
FRREODT N TR AL H D, BUEEEVEL
Ay —5y P 2o BT 2> 7 7 —D R,
PacBio RS VAT LRk YL B 07 U — FEFIEHR
DYz ERETRER TV 5,

II. MFEEBEZERSOEERFEHICET
E7PJ0—F

1. TNETDCWAS ODRREFSNI-RE
MFEMMRERD 1FE LT, S—F >V UREET
B, N—F vV URERIEE, A, 53, LEKEE
S Y OEFEES FOERENEEE U, RaEEe
BEEEEL XS 2 X REHEREZE T 2 #THD
MIREMREATH S, HREERBE L TET VYN
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XU FBRERERDRERER

D R

[ EEAEL

BEMNTEE | PEEOSVER
(RiEASH

T rLUER
Fig.? MBHEESOREETRECEYT

TIRIZROTHEENE {, 60U EoEREIcs
TH1IXBECEETHIY, SEfbe & b BHEHD
BENTFERsNS,

FHEME S —F > Y IR DWW TR RICR T % HeHE
I EoT, a¥ X 27 v 4 > (SNCA), /S—F v~
(PARK2), PINKI, DJ-1, LRRKZ2 7z ¥ BRREETF
ELTHEEIN TS, s RREETFOBERITIZ
IV, a X7 v4A VYEADRERIR - RUER, 3
PRV TOBREE, 28352 - 7077V —4A
ROEE, B VAR ESIMHAE S—F Y UFE
LILET AR L UGl s h, SREERRRE « iR
BFICE T e ENfTON T w512, L LEREETO
WEEOFOE, PREE - REERRO P8 VETI
N ARFEEERICL &0, RERRREOET 2ME]
T5HED R0, KEFEED ZMHER S —F Y VR
DEGRFHEHs L, REEEOET 2T 2
Tz e EEOREN TR R 2 DT RV LS
nTwns,

WM S —F v Y VEOEBRFORE SOV TII
FENH BN, INF TORGEFEE» S EGET
DA E S ERTEEEE 60%ATE EHEE L T 51314,
INETDZMEY—H—I1Z L7 GWAS 33— w3
EM» 6 D|EP KIS TH BH, SNCA, LRRKZ,
MAPT, PARKI6, BSTI, GAK, HLA-DRB5 7z &
PEUEBERTESREIN T B9, AKAZNER
WL KHEEGWAS T, 2—uo v EFTHESK
Twd MAPT st s g ofe—F, #HiziErnT
B PARK16, BSTI»#H & h-BEE, EMic Lo
THEBOEBEGCHETFOBENEZ > TRA I E2RMLT
WTERENY, —F, SNCAZ Y IZHEAAERATY
F—o vy SERTHIEL CHRE X CEESFERE SN
T3,

WE4E, F—u v SEMIZBIT S GWAS % 4 7 @i L

Te BARBEOPE N S iz, 20X ¥ BFTi,

INE THE SN T \wiz SNCA, MAPT, LRRK2,
PARKI16, BSTI, HLA, GAK iz T, % -«
SYT11, ACMSD, STK39, MCCCI1/LAMP3,
CCDC62/HIPIR 3% 2 A7 4 RAKEDHEEZ% b -
THERS N, Ihs Il BETFRERCEICAOFSEY R
7#l& (population attribution risk : PAR) %2&5H T
60.3% EHEL T3, PARIZYRZ 7V ATEHET
XREBBRETOESEEL, IRNETHRESA TS
IR—F ) VROBEERICIEVEFIEL THWAE Z X
EHEN S,

bb2A, BREEDIEBGTEDAZEDTL B
DDOHETENA 7T AR, BHINe~—h — L ADHERE
EROEETFHOBREN D -0, I OHFEEIZEFE
KRS TWAAREND H 2, 5B e, BERTHE
EORL L3 EL L NEERIC BT 2 BREORER,
BETHEEEFACRERTFET i s 28
BEEREETILENRD LY, BEOEVWEERRSUHE
RIZRNIE, GWAS K-> THES L OOHBRHT
HEEEZOND,

—F, BENTVWBBEE L LT —F Y VEOKRE
NEBEORENET O D, —BI—F >V VRHR
EFEDS~WUBECRERESHL I EXHo6NTED,
RIENERECHET 2 AV EITc L 5L, BEO—HSE
OFRFEBERITIIFERBELEE SN T IR, L2 3
7, GWAS THRHEN TV A2EBRRBRSEEETED A v X
B2 15 ERETHY, RENEREDOIZEA LM
FHETE Thkw, EE S, O missing herita-
bility K2 WT, BEMESEENOFEENEVWER
PARBPDE THEN T B EHBIL T3 (Fig. 2),
Thbb, HEMET T GWAS TRERHSEL »w—
7, BEFMET ECEEBTOBEIGL 25wk 5k
EEPFRENEBRBCFEL TR EELTWE, 0
£ B E R ORERFOEMEBICOWT, BT
NakVv 7oy —EEETFEICHRRTH L,

2. MFEEN—FVUREREINIELTOVI—E
BIEF

Jnvakl 7oy y—+¥ (glucocerebrosidase) E{E
F (GBA) 374 VYV —ALRBET AIKSEES S
VakvZuvy—¥Ea—FL, EREaESEERNE
DERRFER T -2 RORREGFTH B, T—
v ERERAAENT 100 FAK 3 ARE, HEEE
BOFy V7HEEZI0 A1 ABE LA S HR
R T H B, 2004 5, Goker-Alpan 522 L D,
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Table BEEAN/: GBAKRMZTENDER AR

ok R—F 2 fE SHREREOEE T4y Ye—0 I v XL
BEREOEE IEFERREME (5% EEXE)

RI120W 15/534 0/544 P <0.0001

L444P-A456P-V460V (RecNcil) 14/534 2/544 P=0.0020 7.3 (1.7~66.4)

1.444P 8/534 0/544 P=0.0035

N188S 4/534 0/544 BExRL

R329C 2/534 0/544 BEEZL

R496C 2/534 0/544 BEELL

RI20W-N188R-V191G-S196P-F2131 1/534 0/544 HEERL

R131C 1/534 0/544 BEExL

G193W 1/534 0/544 BFEERL

F2131 1/534 0/544 BEELL

A456P-V460V 1/534 0/544 BEER2L

HEF 50/534 (9.4%) 2/544 (0.37%) P=6.9%x10"1% 28.0 (7.3~238.3)

T — ¥ 2 FREOMBE TR bl v X—F Y
VIERERETAIRZBOLSOMRE SN, INiE
GBATEDF ¥ V) T7H, $—F vV VRREDBBRE
FIC BAREME R R L TB Y, KANTEEORES
DEESNS L wd I LB EENHEOITREE 2 RE L
Tw 5, [El4E, Aharon-Peretz 212 LD, 7 v ay

V- =7 LT BEBR ST b, ¥+ ) THEEDOS v
X T.0 B BOEERRTRENS TSNz, Ll,
BEOEROAR A7) -V I LTwaE, 70
WS LRI e\ 5, GBA RO » S FR
AP AR L TR HT, —RIETEZ2ED

IholERTRT 20, BEELLMERE P
HZEEE S OWSE 7 v—7 (Japanese Parkinson
Disease Susceptibility Gene Consortium) & OI:[FEEF
2T, ARAKREEY Y ZVIct LT GBA 4.2 Y
IS THBRCER R A7 ) -2 735 8
F-ARBEBIT R IT 2727, Y IARBE - v
Y iREE S4B, WEE S4BT, AFFTBEOE
BEREL, 25 11EHIT -V RORRERE L
LTRED D 28 (FERHEER), I6BHIII—~v =
WORFMZER L L THREOLWER GEREEER)
THolo MADODERFCHEE T % &£, RI20W,
L444P, RecNcil @ 3HEHER F+ V) 7HEMN S—F >~
VUBRBHTEERZE T (L Fh P<0.0001,
0.0035, 0.0020), T 5 IWMBEDERE TN THEEME
EERTHDL:0, WMEKERCEHLL & Z 3,
i, 2B—% Y VRBERTOARD S, STHEE
KBS Lol (Table), G5t 2 L/—F VY

5 R 534 B R 50 B (9.49%), B 544 Bl cp 2 B

FEHERDO N A—F Y YHEEZFCHT 54y X
28.0f% (SUEH XM T7.3~238.3) L& b, PIE X
6.9X10° " EHFETHolze —H, IREMEE CIXE
BITHEH LT —F Y VEH ENBEOBICEE
EERR S o7z,

KiZ, GBABEMER X v V7 THDENN—F> V¥
5 B2 50 I OERRAYEIZ D » TRET U T, FIEF R
EREI LIz 2%, GBARKEEER X v ) 7THOYY
FIEERIZ 52.5 T, FEx v ) TEHOD 588 L AT
BREEEFMLL Tz, GBARRMEZEE ¥+ ) 7 50
FID S B 49 FNZ DD TIEERIEH % AFTREN 5 72,
49 FlAr 41 B (83.7%) TiXHi/t—F >V FE (LR
K%, FoSIVEZRET7T=AN) WERTH-7, 33
BITHN—F vy VROHWBZHCH» s 5 R
MIBG (metaiodobenzylguanidine) Lf5 & >+ 7 5
T4 —RESMETE TV, BESEITSh T
33FIF 29 1 (87.9%) TILOLEIADEDAEZSBETL
THH, — B —F Y VRO FFHR N EH
Z BRI, 498 134 (26.5%) TRAMEE (clini-
cal dementia scale 1 BLE®®), 17#H] (34.7%) THIH
BERLTOR, EF vV 7HOBRYBUS+/ES
Nkpolcicd, BELE I DERTE Rrolzds,
F ¥ ) TEHTRIBABEESIEOEESE OATREES b
LEEZ SN,

5, EES LEMU N ERES R B AT
(b 4 HEER, BEK 1MERR, 797 3MERR, 1 R T
2HERR, T—u vV 6 MR OFEVEREN, GBA
TRBN—F 0V ERECES T 2EERFTHE
EREL DATETHER SN, OB TH, GBA
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ZRFX ¥ )7 OFREFIRITIEF v ) T IHNTHELL
T Z ERRERS N, &5 WCRAVEZ FIE T 25 EN
NI LR EPIRENT,

3. GBA ZEORBERERBUEANDES

D& GBAREMERE, N—F Y VIR
WL CHRE B EZEBE R OBRETTHL 2 8
by, N—F Y UFEORBEASEEO—H EHAET
XLHDTREVHEELISNTWS, EE, EH50%K
NTH, GBAREMARF v ) THORKEZHEEL
Jee 2%, 508th 114 (22.0%) CTHEBZ AR
MEFW—F Y VIRBREN I AT DWE Z Db
otz, FOSH IFCOVTIE, FEZD DNA B
BHBETH o DI ET 70 L 25, KFRADOFEE
FHEPITHRIEEOROERLALCERE2ILFL T1E T
Ebmol®, 51, MREERRBN S—F >
VURBEBP O ILERRRUFRRLEDOVT GBAD
Ly VRSB BTN E A, MERRP5HER
(14.7%) T GBAREMZEE =F», KRN TDNA
AR DSAJRE U » TN BWT, BIEEIL GBA BH
UERPHEL, FEFEETREERRDL VI EWR
I,

EHH o DVEPIOBET TR RS EES R s
DS, FIED GBAEBRRFEO/N—F 0V YIRS HK R
1 RADHDFEE RN REDOHE T, FREZBD
6% FHIHE LRIC GBAERERZIE T 25—, KRN
DFEHD V1% GBAEREEZHFL T &
WESNTWED, 2O Lid, GBAZERYF-Tw»
TH 0B FET 2T TREZVI L, AUKRATY
HEHEEES—ERERTET A2 LERL TS,

FNTH, GBAZBERFE->Tw3 ADEDRBREN
NR=—F VYV URERET LD THA I, GBAKLR
Fa)TIRBTBS—F Y VIEOERTERAESEE
EHRAIHRECLDE, S0RTT7.6%, 60T 13.7%,
T0mET21.4%, 80T 20. 7% EHES N TV B3, I
DT Eipd, GRAERE, x Y TLNEGBHERIEILYD
BOEEER TRV, GWAS TRHEShTWwAER
BFMER NS LR ITREHEEESE STV 5
Lz B,

4. N—=VFIG /) LBRICEDINN—F Y VR
BIFDEBEGCTHAR
GBAZERD X 5 %>, B TREZDEVE
EETFIE, —F VY EEEDE L ORBTKREHD
REH2rEzoNE, HEOBVWESR P - —IT

LTwa GWAS TR ah Tuin I OEEB~07
Ta—Fik, SV FNT S ABERICE T BN RE
BORENHRELD2THS S, Lrl, HEORKWE
BUEDOOWTER T CHEEBRET 2H3ED GWAS B
FEERE, RHSNZ2EEOEEN A bOLERZEZ
s, AROERICB T BEEOBIE A% DKL
ToTLES, JOI Ehs, WHhEROBERITICE
LT, ZBEEP ZV—7EL TRET 2 H5H 2 Fikss
WL OPREZN TS, LhrLINETOEZ
%, BERNZERINGICEEN W2 57 o —F 2%k
, EZLIRTHEERFR T CHIRETH S,
—fE e LT, Z—MELRER B TR
TERD, BETLHAORLZER (GRRZHEEL
RERRER) MBIEEL TV AAREESH D, e
o THREAPETLTLEIESY DL En, B
REf TR P BINL TN — T DL 87T Y X
LERETHHAENEZ SN D, £z, BEOERS
AT x4 POBEEERTERVAALY, EATTEL
0T hEEZOND, HEH0IX, KEHOBEEH
FD% 3, MR EESHELI LA TFHEaNE ZE
Mo, MEEY IV TIREL, BIRFIRETEIZ EX
FERERLEOH 2 v IV ERTLTERT 22 L0 E
bz, EFLRIDEIIRT T u—F0Db
&, N=F UV UK, LRMEMHE (multiple system
atrophy : MSA) 2 ¥ OMBEEERIZ O W THEN 2
HEDTWB,

. BEFZMADERCZDRE

FER OB T2H & KBERLECE RV, =27V —
NN - 25 AR, ETRARERDY A b
#Boh, zomr sBHAOREERFIERN L OMR
RTrewifinicik s, (ERE, BREGE E» 608
D& CREEG T IR > TR T Coizds, Tk
ZATREMES BRI REF T OB TE 2 L »
SFIEMD B, URITE, BEERX - BRKERE»eH
FAYV—RRIT, METREEEBEFOV A b BIER
L, =7V —LAfine & 2 EETFROREE e HIEL
T3, SRFERBZBEL T, HiL2EREETO
HEWFCTBY, BEFEELRTY A N OBEOHERITER
TH5b,

ARETW, BHEEEOBENE - REEOL T I
U —Odhh S BEFEHRR DLl OWTHENT 3,
CDEI AT IV-TE, EEEK/ADE R
(NOTCH3, COL4Al1, TREXI), 7 %> BlLEETFOD
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Fig. 3 ﬁﬁ%@%«m&ﬁmmm
40~50 A FIEDORHE, BEH MRI ik THERE

EHEEEORRT,
5, CSFIRZEREZBRH LI,

EEER, Tv Vv S —R/ (GFAP), BEMENT 2
oA FIfl% % (APP, PSEN1, PSEN2, CST3,
ITM2B), &5 2011 FERICA7 z 0 A ¥ 25 #EE
MU F AMEEE NI (hereditary diffuse leukoen-
cephalopathy with axonal spheroids : HDLS) DEH
L THESNICSFIR B ENE T oD, EEFDS
2, HERE - MEEZAY, BTHEORMESE S &/
THRABEFRAERRICOWT T 7 Y —AFH 21T
v, IhSORMEEFEEOERIIDVTHREL T,
DR, 2O00KRRKRTCSFIR BRETFOFo ¥
T—EHEBIC S A Y AEENFAE S, HDLS 0@
WicE o7 (Fig. 3), &8, MMOBEHEEETE, BE
HEFEIEREITED SN BP0,

HDLS 3 HPafrEtECE COBERE 2 FHE T
ZHAFIEDHE TR HBEEEERTH D, Pk
RETA7 204 FBEERALAOND I EPR/FHETH %,
2 DERIERIZHETH Y, WEPTEOL L, REkE

£ {50, N—FrY oLk EHEE, REY
PEESN T 5, FREGHAR D P B mELEL
THOND &S BIRRIFTR TH %, HDLS DR
FIABEFCHRENTH S Z L, ZEEEEEDR
BRE - BEVEDH 7 TV — BT 2l EMIE RIS

253

HH?!!HH{ N

E 3§48 €4

e
g
i

PO, EHRZENC L s EEEETFOF

THBI e, HRRZIDLD DREOBG T
L, 27V —AFTC L 2EETEHPERTH-
TerEZHND,

IV —AENW L ZHEEFRINMBEIX POE2S B
BHEMLDDHD, Lk, —REREBRRE LD
{DTREWLEFEZONE, bBAANY Ly Y
F—MEXRLDELT, Ya—b)—FOy—¥r v
Y—TRBRHEPELWER D DD, BT EORES
ERFERM -T2 2T, BRAT TV —ZISU THEIEE
MW 2 NEND B, 2, RESPALT 28R T,
BARERT -7 DOFERE2 O L5 EBELLT, 2
KRBIZTTWLOPEIEETCKRELBETH S, flz
i, FEESHIERSEREZRIONE D »Ev Sl
KR-TH, SFLELRWABHD 5 %, UBERTK
FEERZE L LIOIMEDSEICINTHRED, Frer X
FERPT7V—AY 7 VEELREFREINZEAQABEOBEE
WAREBHELEZ 2ERTH-720 THE, WEED
FIE A S » b Ltz v, LaL, FlIzidsxx
AERTE, FROBI >EHE F X4~ O,
Bz hic7 3 VBOMWE, BHOREE, —KEM
BUREBROEELZE, MEBEOHMICOWTS X
BEHNEZLND,
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EHDIC

BEFDP ST > T3 KBy — 7 v v v I Bifo
R HESARZEHEZ L, B O 7 Y — ABHRE
7 SIS T CIET X M oBEIITAS LS
o Twd, Y—r vy 7OEa A M b« KEEN
FHED A B — Rt LT, EREROAN—FE -V 7 h
HDA 7B DOWTESY, Rbhviy 7ok
DOHDB, G, BHEMCERT L3V F T AE
WEEEIE - BFEICRILTTHL DI, [BRENT
DEBIDELETH S, 5TEBYY —20N—FH
DEFIWMZ T, BRAKCBY 2 B HEINEE, TR
T N—ADBE - HF LY, VI ITETHRERE
WHEEND, S5, INETCHBRNLI CEBDHE
EHFEO & 6F, BECELTRELAE (A2
ENTFRENE, BRI 14— NNy 7528123, &

U WERNLROI Y Fnik L, REiEsuE
LTwa,

R RKFEEHWBRRETE, COXI3E5EFEDDL
&, WRENOXERBMHZRE LT/ AER 25— -
7 LT R 2011 FECRR SR, EREOX
Yy —4 49— (Hiseq2000 2 &, 5500XL 1A,
PacBio RS 1#&, GAIlx 18/, Miseq 18) BX U
Y IVREAEMbo Ry P RSO, $51TK
HIEEER B U BB LAY NV —2 v AT A%
HTAEREOTHRDO L DTH B, S—VF N7 A
BEREEEITES L UBRICENCBIITCTW LD
Wi, BEHREESICEET AL A LENL - HY
PBEWZ o TWL THBE S,
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