Table 5. Association of the Axial Length Genes ldentified in Gene-
Based Tests with Spherical Equivalent in Independent Cohorts

Gene MEIM Number Chr Pgene-basea Value®
CD55 125240 1 45x10°°
ALPPL2 171810 2 83x107°
TIMELESS/MIP/SPRYD4/GLS2° 603887 12 0.14

Abbreviation is as follows: Chr, chromosome.

*The association with spherical equivalent was assessed in 17 European
ancestry cohorts of the 18 independent cohorts, with the HapMap 2 CEU
Eopulation as the reference to estimate patterns of LD.

Because of the +50 kb added to the definition for each gene and the close
proximity of the genes, MIP, SPRYD4, GLS2, and TIMELESS all had similar
gene-based p values (ranged from 0.14 to 0.20 for the combined analysis),
and thus p value and MIM number for TIMELESS only is presented.

susceptibility genes do not overlap between primary angle
closure glaucoma and eyes with shorter axial length.

In summary, we identified nine loci associated with AL.
They fall into two groups, one also influencing common
refractive error variation, and the other, which includes
two genes in the Wnt signaling pathway, uniquely deter-
mining eye size with little effect on natural refractive
status. Further elucidation and characterization of the
causal variants underlying the growth of ocular compo-
nent dimensions and the development of myopia may
enable new pathway and target identification, leading to
potential prevention and treatment development.
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Purrosk. To determine whether genetic variants in the lipid-associated genes are related to the
risk of developing polypoidal choroidal vasculopathy (PCV) in a Japanese population.

Mersops. Five hundred eighty-one patients with PCV and 793 controls were enrolled in the
study. Association analysis of allele and genotype frequencies was performed for the following
single-nucleotide polymorphisms (SNPs) that are associated with high-density lipoprotein
cholesterol levels in blood: rs493258 at the hepatic lipase gene (LIPC), 153764261 at the
cholesteryl ester transfer protein gene (CETP), and rs12678919 at the lipoprotein lipase gene
(LPL). A further model adjusting for age-related maculopathy susceptibility 2 (ARMS2) AG9S,
complement factor H (CFH) 162V, age, sex, and smoking status was used to confirm the
independent association of these SNPs with other covariates.

Resurts. CETP 153764261 was significantly associated with the development of PCV; the
frequency of the minor allele A was higher in the PCV cases (24.0%) than in the control
subjects (18.5%) (P = 0.0025; odds ratio [OR], 1.41; 95% confidence interval, 1.13-1.75).
Furthermore, we found an independent association of CETP variants with age, sex, smoking
status, and genetic background of ARMS2 AG69S, CFH 162V, LIPC rs493258, and LPL
rs12678919 (P = 0.0013; OR, 1.50). LIPC rs493258 and LPL rs12678919 did not show
significant associations with the development of PCV (P > 0.05).

ConcrusioN. CETP variants are associated a risk of developing PCV among the Japanese
population.

Keywords: PCV, lipid, CETP, case-control study

Polypoidal choroidal vasculopathy (PCV) is characterized by
aneurysmal dilations with interconnecting vessels that are
best demonstrated by indocyanine green angiography.l-3
Clinically, PCV is classified into a specific subtype of age-related
macular degeneration (AMD), and the incidence of PCV in
Asian populations has been reported to be higher than that in
Caucasians.“-® Controversies exist about the pathogenesis of
PCV; whether this condition represents inner choroidal
vascular abnormalities or a particular variety of choroidal
neovascularization (CNV) remains undetermined. However,
because there are apparent differences in the demographic
risk profile, clinical course, and visual prognosis, PCV is
thought to be a distinct clinical entity.” For example, the
response to treatment, particularly in photodynamic therapy
for PCV, is completely different from that for typical AMD and

CNV3?

Cholesterol and lipids are reported to accumulate under-
neath the retinal pigment epithelium (RPE) with age. When
sufficient debris, including lipids, accumulates and forms a
mound between the RPE cell and its basement membrane, it

can be seen clinically as drusen. Because many population-
based studies have shown the association between drusen and
the progression of AMD, drusen is thought to be one of the
determinants of both early and late AMD. In fact, an association
between high-density lipoprotein (HHDL) cholesterol level and
the development of AMD has been reported in several
studies,10-12

Previous studies'3-1> showed that the prevalence of drusen
under RPE was reported to be lower in PCV than in AMD.
Therefore, the absence of drusen was thought to be one of the
criteria necessary to diagnose PCV.%1516 However, the results
of a clinical study'® suggested that drusen is frequently seen in
PCV eyes, and several studies®!71® reported that drusen were
observed in 20% to 27% of unaffected, fellow eyes in patients
with unilateral PCV. Therefore, whether drusen has a functional
role in the development of PCV remains controversial.

While previous investigations showed a lower prevalence of
drusen among patients with PCV, lipid deposits that distribute
from the inner retina to the outer retina are known to be the
paramount features of PCV (Figure). Some recent investiga-
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Ficure. A G4-year-old woman with a typical case of PCV in the right eye. (A) Fundoscopic examination shows massive subretinal hemorrhage, lipid
deposits, and reddish orange nodules. (B) Indocyanine green angiography demonstrates a small branching vascular network terminating in
polypoidal lesions (white arrow). The speckle noise-reduced spectral-domain optical coherence tomography image of a horizontal section
corresponding to the arrow indicated in fluorescein angiography (C) shows hyperreflective foci, indicating lipids ([D], arrowbead), in the outer

retina beside the polyp (D], white arrow).

tions, including a study'® in a large cohort of Caucasians,
showed significant associations between the lipid-associated
genes and the development of AMD. These discoveries of
genetic variants in the lipid pathway provided new insight into
the pathogenesis of AMD. However, there are limited reports
evaluating the association between the lipid-associated genes
and the development of PCV. Although several genes are
thought to be involved in regulating susceptibility to the
development of PCV,2°-23 almost all are identical to those
involved in the development of AMD, including the age-related
maculopathy susceptibility 2 and high-temperature require-
ment factor Al genes (ARMS2/HTRAI) locus?®?> and the
complement factor H gene (CFH).?®"2° Considering that
several studies'>-'> reported a difference in the clinical

101

features of drusen between AMD and PCV, there could be
different roles of the lipid-associated genes in these subtypes.
Thus, we aimed in this study to determine whether genetic
variants in the lipid-associated genes, including variants
affecting HDL cholesterol levels, are related to the risk of
developing PCV in a Japanese population.

MEeTHODS

All procedures in this study adhered to the tenets of the
Declaration of Helsinki, and the ethics committee of each
institution involved approved the study protocols. All patients
were fully informed about the purpose and procedures of this
study, with each patient providing written consent.
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TaBie 1. Characteristics of the Study Population

Variable Cases, 7 = 581  Comntrols, z = 793 P Value
Age, vy
Mean * SD 72.59 * 8.13 65.99 + 4.33 <0.0001
Range 48-92 60-75
Sex, n (%)
M 420 (72.3) 326 (41.1) <0.0001
F 161 (27.7) 467 (58.9)
Smoking status, # (%)
Never 200 (38.5) 509 (64.3) <0.0001
Former 195 (37.6) 176 (22.3)
Current 124 (23.9) 106 (13.4)

Five hundred eighty-one patients with PCV were recruited
from the departments of ophthalmology at Kyoto University
Hospital, Fukushima Medical University Hospital, and Kobe
City Medical Center General Hospital. The diagnosis of PCV
was based on indocyanine green angiography, which showed a
branching vascular network terminating in polypoidal swelling
(Figure), and was confirmed by three retina specialists (KY, AT,
AO); a fourth specialist (NY) was consulted when the diagnosis
could not be agreed on by the initial three reviewers. Patients
who had both typical CNV and polypoidal lesions were
excluded from this study. The control group consisted of 793
unrelated individuals 60 years or older recruited in the
Nagahama Prospective Genome Cohort for Comprehensive
Human Bioscience (the Nagahama Study).?° Fundoscopic
photographs of both eyes confirmed the absence of any signs
of AMD (large drusen or pigment change) using the Age-
Related Eye Disease Study?! severity scale, with grading by two
independent ophthalmologists (IN, YAK), followed by grading
by a senior reviewer (KY).

We targeted three single-nucleotide polymorphisms (SNPs)
of three genes reported to be associated with HDL cholesterol
levels in blood, including rs493258 at the hepatic lipase gene
(LIPC), 153764261 at the cholesteryl ester transfer protein gene
(CETP), and 1512678919 at the lipoprotein lipase gene (LPL).3?
Genomic DNA was prepared from peripheral blood using a
DNA extraction kit (QuickGene-610L; Fujifilm, Minato, Tokyo,
Japan). All case samples were genotyped using the Tagman
SNP assay with an ABI PRISM 7700 system (Applied
Bijosystems, Foster City, CA). Controls were genotyped using
Human610-Quad BeadChips and HumanOmni2.5 BeadChips
(lumina, Inc., San Diego, CA). ARMS2 AG9S (rs10490924) and
CFH 162V (rs800292) were also genotyped in the same manner.
Fasting serum samples from the control subjects were analyzed
for HDL cholesterol level, measured using a direct assay system
with the selective inhibitory method on an automatic analyzer
(LABOSPECT 008; Hitachi, Ltd., Tokyo, Japan). We did not have
HDL cholesterol data for the case samples.

Information on smoking status was obtained via a self-
reported questionnaire with three categories of never smoker,
former smoker, and current smoker. The never smokers were

Tasie 2. Distribution of Genotypes and Results of the Association Tests
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Tasie 3. Logistic Regression Analysis, Including Major Factors
Associated With PCV

Variable P Value* OR (95% CD
Age <0.0001 1.18 (1.16-1.21)
F:M sex <0.0001 3.16 (2.20-4.52)
ARMS2 1s10490924 (G/T) <0.0001 2.27 (1.86-2.77)
CFH 15800292 (A/G) <0.0001 1.77 (1.43-2.19)
LIPC 15493258 (G/A) 0.689 1.05 (0.82-1.35)
CETP 153764261 (C/4) 0.0013 1.50 (1.17-1.92)
LPIL 1512678919 (4/G) 0.948 0.99 (0.72-1.35)
Smoking (never, former, or current) 0.0107 1.35 (1.07-1.69)

* A logistic regression model was used for covariate adjustment.

those who had smoked fewer than 100 cigarettes in the past,
current smokers were those who had smoked in the past year,
and former smokers were those who had quit smoking more
than 1 year earlier.

Deviations in genotype distributions from the Hardy-
Weinberg equilibrium (HWE) of the controls were assessed
with the HWE exact test. Statistical differences in the observed
allelic distribution were identified using logistic regression
analyses with age and sex adjustments, under the assumption
of an additive genetic effect where the genotypes of each SNP
are coded numerically as 0, 1, and 2 for the number of minor
alleles carried. A linear regression analysis was performed to
assess the association between HDL cholesterol level and
genotype. R software (hitp://www.r-project.org/ in the public
domain) was used for statistical analyses. P < 0.05 was
considered statistically significant.

REesuLTs

Demographics of the study population are given in Table 1.
Genotype and allele frequencies of the three SNPs were analyzed
in 581 patients with PCV and compared with those of 793 age-
matched individuals without any signs of AMD or PCV. The
genotyping of all evaluated SNPs had a success rate exceeding
99.4%.

Table 2 gives details of genotype and allele frequencies and
summary statistics. The distributions of the genotypes for all
evaluated SNPs were in HWE (P > 0.05). We found that CETP
153764261 was significantly associated with the development
of PCV; the frequency of the minor allele 4 in the patients with
PCV (24.0%) was higher than that in the controls (18.5%) (P =
0.0025; odds ratio [OR], 1.41; 95% confidence interval [CI],
1.13-1.75). This significant association remained even after a
correction for multiple testing (P = 0.0075). LIPC 15493258
and LPL 512678919 did not show significant associations with
the development of PCV (P > 0.05).

Next, we conducted a logistic regression analysis that
included the effects of the most robust Japanese variants
associated with AMD and PCV, ARMS2 A69S (£rs10490924) and
CFH 162V (rs800292), as well as age, sex, smoking status, LIPC

Allele Cases, n = 581 Controls, n = 793 Association Results*
Gene SNP 1 2 11 12 22 MAF i1 12 22 MAF P Value OR (95% CI)
LIpC 1s493258 G A 32 185 354 0.22 37 259 497 0.21 0.706 1.04 (0.84-1.30)
CETP 153764261 C A 332 210 33 0.24 528 237 28 0.19 0.0025 1.41 (1.13-1.75)
LPL r$12678919 A G 439 135 3 0.12 602 179 12 0.13 0.883 1.02 (0.77-1.35)

MAF, minor allele frequency.
* Adjusted for age and sex.
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rs493258, and LPL 1512678919 in the regression model. Table 3
gives the results of the logistic regression analysis. CETP
1s3764261 remained significant for the development of PCV
even after including the effects of these covariates (P=0.0013;
OR, 1.50; 95% CI, 1.17-1.92).

Finally, we investigated the role of CETP rs3764261 in blood
HDL cholesterol level using fasting serum samples from 793
control subjects. The mean = SD HDL cholesterol level of the
control samples was 61.3 £ 16.1 mg/dL. In this analysis, we
found that the A allele of rs3764261 was associated with the
following increases in HDL cholesterol: 59.3 mg/dL for the CC
genotype, 64.8 mg/dL for the CA genotype, and 67.2 mg/dL for
the 44 genotype (P < 0.0001).

DiscussioN

Plasma CETP was first described as a high-molecular-weight
protein stimulating the transfer of cholesteryl ester between
lipoproteins in plasma of hypercholesterolemic rabbits.33
Other studies demonstrated various roles of CETP in the lipid
pathway: CETP facilitates the transfer of triglycerides and
phospholipids®%; it is an important component of reverse
cholesterol transport, which is chiefly characterized by the
transport of cholesterol from peripheral tissues to the liver;
and it regulates the concentration of HDL cholesterol.35-3¢

After the discovery of the association between HDL
cholesterol level and cardiovascular diseases,®” studies383°
evaluated the functional role of the lipid-associated genes that
can affect the HDL cholesterol level. Among those genes, the A
allele of CETP rs3764261 was associated with an increase in
HDL cholesterol by 5.6 mg/dL among the Japanese popula-
tion.“® Herein, we confirmed the role of rs3764261 in
increased HDL cholesterol levels among 793 healthy Japanese
individuals.

In the present study comparing the allelic distributions of
CETP variants in a sample of 581 patients with PCV and 793
control subjects, the A allele of CETP rs3764261 was
significantly associated with a risk of developing PCV (OR,
1.41; 95% CI, 1.13~1.75), which indicates a higher level of HDL
cholesterol in patients with PCV. In addition, the association of
CETP variants remained significant even when we adjusted for
the effects of other established risk factors for developing AMD
and PCV (age, sex, smoking status, and genetic background of
ARMS2 AG9S, CFH 162V, LIPC 15493258, and LPL rs12678919).
Although the effect of CETP variants (OR, 1.50) was not as
large as the effects of the major genes associated with AMD and
PCV (ORs, 2.27 for ARMSZ2 and 1.77 for CFH) in this regression
analysis, we were able to confirm that CETP variants have a
significant role in the development of PCV. Our findings for
CETP 153764261 were similar to the associations already
documented in AMD among Caucasians, 142 which suggests
that a higher HDL cholesterol level may be a risk factor in both
PCV and Caucasian AMD. The hypothesis that a higher level of
HDL cholesterol is associated with the development of PCV
might appear contradictory to the fact that a lower level of
HDL cholesterol is associated with an increased risk of
cardiovascular disease. However, despite the well-known
antiatherogenic properties of HDL cholesterol, some stud-
ies!®1143 found elevated levels of HDL cholesterol in Caucasian
patients with AMD.

Recently, Zhang et al.*4 reported an investigation of lipid-
associated SNPs for PCV and neovascular AMD in a Chinese
population. In that article, they showed a significant associa-
tion of CETP with PCV, while no association was found with
neovascular AMD. Thus, they concluded that the HDL
cholesterol pathway in the pathogenesis of PCV likely differs
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from that of neovascular AMD. However, the sample size
evaluated in the their article was small (204 controls, 250
patients with PCV, and 157 patients with neovascular AMD),
which suggests that the negative result of the association
between CETP and neovascular AMD could have been due to
insufficient power to detect the association. To confirm
whether the observed association of CETP with PCV exists
for neovascular AMD as well, we performed an additional
analysis using another Japanese cohort of neovascular AMD
cases (n = 452). In this evaluation, we found a significant
association between CETP and neovascular AMD (P = 0.0246;
OR, 1.35).

Adenosine triphosphate-binding cassette, subfamily A
member 1 (ABCA1) is also known to be associated with the
lipid pathway. Because ABCA 1 has been reported to be another
susceptible gene for the development of AMD in Caucasians,!®
we also evaluated whether ABCAT rs1883025 has a significant
role in the development of PCV but found no significant
association with PCV (P > 0.05). In previous genome-wide
association analyses for HDL cholesterol, the strongest and
most consistently associated SNPs have been reported in the
CETP locus.>%® Study®? findings also suggest that LIPC
rs493258 and LPL rs12678919 are associated with HDL
cholesterol level in Caucasians, so the lack of association in
the present study could be due to insufficient statistical power
or racial/ethnic differences. Further study that includes a larger
number of participants is needed to clarify the association
between genetic variants of HDL cholesterol-associated genes
and the development of PCV.

In the present study, there was a large sex difference
between the PCV cases and the general population controls. It
remains unknown why there is such a high prevalence of PCV
among men. In a previous meta-analysis by Kawasaki et al., %’
the prevalence of late AMD among Asian women was reported
to be much lower than that among Asian men. In contrast, a
male predominance was reported in PCV.4 Considering the
high prevalence of PCV among Asian populations, these results
suggest that men are more likely to develop PCV. In our study,
genetic factors had an enormous influence on whether
participants developed PCV (Table 3). However, sex had the
largest effect among all covariates on the development of PCV
(OR, 3.16). A previous genetic study?> among Japanese may
provide insight into this question because the results
suggested that differences in sex would affect phenotypic
differences in AMD. Another limitation of the present study
was the age difference between cases and controls. Although
we enrolled only controls who were 60 years or older, the
average age of the control cohort was still younger than that of
the case cohort, which means that some of the young controls
may develop PCV in the future. To exclude a potential
confounder of genetic background with age, a logistic
regression analysis adjusting for age and sex was performed
in the present study. However, given that the prevalence of
late AMD among the Japanese population is reported to be
0.5%,*® the magnitude of statistical bias of the association
analysis is negligible. In addition, considering that case-control
association analyses among such subjects are less likely to be
statistically significant, our positive results should be accept-
able.

Overall, this study provides the first evidence to date that
CETP variants have a significant role in the risk of developing
PCV among the Japanese population. Our study also indicates
the same role of HDL cholesterol in both PCV and Caucasian
AMD, although the role of fatty acids in Japanese AMD is
reported to be different from that in Caucasian AMD.#® Further
studies are needed to increase the understanding of the genetic
backgrounds of PCV, as well as the molecular pathogenesis,
particularly the role of lipids.
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Summary

Angiotensin-I converting enzyme (ACE) occupies a pivotal role in cardiovascular homeostasis. Major loci for plasma
ACE have been identified at ACE on Chromosome 17 and at ABO on Chromosome 9. We sought to characterise the
genetic architecture of plasma ACE at finer resolution in two populations. We carried out a GWAS in 1810 individuals
of Japanese ethnicity; this identified signals at ACE and ABO that together accounted for nearly half of the population
variability of the trait. We conducted measured haplotype analysis at the ABO locus in 1425 members of 248 British
families using haplotypes of three SNPs, which together tagged the alleles responsible for the principal bloed group
antigens Al, A2, B and O. Type O alleles were associated with intermediate plasma ACE activity compared to Type Al
alleles (in whom plasma ACE activity was ~36% lower) and Type B alleles (in whom plasma ACE activity was ~36%
higher). We demonstrated heterogeneity among A alleles: A2 alleles were associated with plasma ACE activity that was
very similar to the O alleles. Variation at ACE accounted for 35% of the trait variance, and variation at ABO accounted
for 15%. A further 10% could be ascribed to polygenic effects.

Keywords: ABO blood group, angiotensin-I converting enzyme, genome wide association study, QTL

Introduction
*Corresponding author: Bernard D. Keavney, Institute of Ge- The renin-angiotensin system plays a critical role in car-
netic Medicine, Newcastle University, Central Parkway, NE1 3BZ, diovascular homeostasis, regulating blood pressure, arterial
UK. Tel: +44 191 241 8615; Fax: +44 191 241 8666; E-mail: tone and renal salt excretion. The angiotensin I-converting
bernard keavney@newcastle.ac.uk enzyme (ACE) converts circulating angiotensin-I, which is
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biologically inactive, to the active angiotensin-II and degrades
the vasodilator bradykinin. ACE occupies a pivotal position
in the renin—angiotensin system: drugs which inhibit ACE,
or which block the cellular receptor for the angiotensin-II
generated by the action of ACE, are among the most widely
prescribed agents in patients with coronary artery disease,
hypertension and chronic renal disease (Yusuf et al., 2000).
Plasma ACE activity is related to tissue ACE activity, and is
strongly influenced by genetic factors, the largest such influ-
ence being due to polymorphic variation in the ACE (also
known as DCPI) gene, which encodes ACE (Rigat et al.,
1990; Keavney et al., 1998). Previous segregation and linkage
analysis suggested the existence of a second major quantitative
trait locus (QTL) influencing plasma ACE activity (McKenzie
et al., 1995). A genome wide association study (GWAS) in a
population of hypertensive patients of Han Chinese ancestry
subsequently found this to be located at the ABO gene which
encodes glycosyltransferases A and B (Chung et al., 2010).
Global variation in the distribution of the alleles responsi-
ble for ABO blood groups is well described; we therefore
sought to confirm the identity of the second principal locus
influencing ACE activity and to estimate the proportions of
phenotypic variance attributable to major gene effects in two
additional populations from Japan and the United Kingdom.

Methods
Study Populations and ACE Phenotyping

The discovery cohort included 1830 volunteers recruited as
a part of the Nagahama Prospective Genome Cohort for
Comprehensive Human Bioscience (the Nagahama Study), a
community-based prospective multiomics cohort study. The
study has been described in detail elsewhere (Yoshimura et al.,
2012); demographics of the cohort are summarised in Ta-
ble S1. In brief, a total of 9809 volunteers from Nagahama
City, Shiga Prefecture, Japan, were recruited for this study
from 2008 to 2010. All participants completed a detailed
health questionnaire. DNA, serum and plasma samples from
all participants were obtained and stored for further analy-
sis. Samples were kept on ice immediately after they were
obtained from the participants and were promptly processed.
Plasma was stored at —80°C. ACE activity was quantified by
the method reported by Kasahara & Ashihara (1981). Pa-
tients receiving ACE inhibitor therapy were excluded from
the analyses.

The replication cohort comprised 248 British families of
Northern and Western European ancestry who participated
in a quantitative genetic study of cardiovascular risk fac-
tors (Palomino-Doza et al., 2008). The population collection
strategy has been previously described in detail (Gaukrodger
etal., 2005). In brief, families were ascertained via a hyperten-

Annals of Human Genetics (2013) 77,465-471

sive proband between 1993 and 1996, and any sibship in the
family (in the generation of the proband or his/her offspring)
greater than three members quantitatively assessable for blood
pressure was collected. Families were extended where addi-
tional hypertensives were encountered during collection; a
total of 1425 individuals participated. Families underwent
detailed cardiovascular phenotyping including a question-
naire, electrocardiographic and echocardiographic measure-
ment and measurement of 24-hour ambulatory blood pressure
using an automated monitor (Keavney et al., 2000; Mayosi
et al., 2008). Demographics of the cohort are presented in
Table S2. Blood was drawn into multiple anticoagulants, im-
mediately put on ice and transported rapidly to a central facil-
ity for processing. ACE activity was assessed by HPLC using
a synthetic substrate, as previously described (Chiknas, 1979).

Genotyping

The 1830 volunteers in the Japanese cohort were genotyped
using the Infinium Human 610-Quad Bead Chip carrying
592,044 SNP markers on a Bead Station 500G Genotyping
System (Illumina, Inc., San Diego, CA, USA). There were
no subjects showing call rates lower than 0.99. Kinship anal-
ysis was performed using PLINK. Of the 20 pairs of sam-
ples showing high degrees of kinship (PI-HAT > 0.4), the
sample with the lower call rate in each pair was removed.
165,591 SINPs were removed either due to call rate lower
than 0.95, minor allele frequency of less than 0.05, or dis-
torted Hardy-Weinberg equilibrium (P < 1077). Finally, the
results of 426,453 SNP markers in 1810 subjects were used
for the analysis.

Three SNPs at the ABO locus (15505922, rs8176746 and
rs8176750) were typed in the entire British family cohort us-
ing matrix-assisted laser desorption/ionisation—time of flight
mass spectrometry (MALDI-TOF) on a Sequenom instru-
ment (Sequenom, San Diego, CA, USA). ABO blood group
in the British families was studied in a subset of 734 indi-
viduals by multiplex polymerase chain reaction (PCR). Two
pairs of primers were used to amplify exons 6 and 7 of the
ABO gene; the amplified fragments were digested with re-
striction endonucleases Hpall and Kpnul and separated by gel
electrophoresis. This enabled us to call genotypes at the SNPs
rs8176719, 11053878, rs8176743 and rs8176472. As pre-
viously reported, genotypes at these SNPs, considered to-
gether, identify the A1, A2, B, O1 and O2 blood group alleles
(Seltsam et al., 2003).

Statistical Methods

A quantitative linear regression analysis was first performed in
the Japanese cohort to find the polymorphisms associated with
ACE activity. SNP genotype imputation for SNPs within and

© 2013 John Wiley & Sons Ltd/University College London

107



flanking the ACE (20 SINPs) and ABO (43 SNPs) loci was
performed in the Japanese samples using the MaCH (version
1.0.10) computer program with 500 Markov sampler rounds
and 200 haplotype states (Li et al., 2010). A forward-selection
stepwise regression analysis was performed to identify a par-
simonious subset of associated SNPs from the ACE and ABO
loci in the Japanese population. This analysis was based on
imputed SNP dosages using linear regression models based
on marginal sums of squares and the stepwise procedure in
Stata™ v10.1 (Stata Corp, College Station, TX, USA) us-
ing a P < 0.01 criterion for adding SNPs to the model.
Variance component proportions (R?) were calculated from a
supplementary analysis of variance based on sequential sums
of squares.

Haplotyping of ABO in the British samples was performed
using PHASE (version 2.1.1) specifying a parent-independent
multiallelic model for both SNP and blood group variation.
(Stephens et al., 2001; Stephens & Scheet, 2005) Pedigree
analysis was performed using the Pedigree Analysis Pack-
age (PAP version 5.0) to fit maximum likelihood models
including polygenic variance components (Hasstedt, 1993)
to extended families; missing data is efficiently incorporated
into this analysis (Elston & Stewart, 1971). For the mea-
sured haplotype analysis, the PAP quantitative major gene
subroutine gmlprmy was modified to parametrise an additive
(codominant) genetic model. Likelihoods were maximised
with simultaneous estimation of haplotype frequencies as-
suming Hardy—Weinberg equilibrium, haplotype-specific ef-
fects on ACE activity, covariate effects, polygenic effects and
residual individual-specific random (i.e. environmental) ef-
fects and estimates of standard errors were calculated with
the bundled quasi-Newton nonlinear optimisation function
GEMINI (Lalouel, 1979). Variance component proportions
were calculated by hand using a standard additive genetic
variance formula.

Results
GWAS for ACE Activity

The SNPs with the strongest association with ACE activ-
ity genome-wide are presented in Table S3. Two loci, ACE
on Chromosome 17, and ABO on Chromosome 9, showed
genome-wide significant association (P < 5 x 107%) with
plasma ACE activity (Fig. S1). SNPs mapping to the ACE (20
SNPs) and ABO (43 SNPs) loci and their immediate upstream
and downstream flanking regions (50 kb, respectively) were
selected for fine-mapping analysis and any missing genotype
data was imputed. Stepwise linear regression then identified
three SNPs with independent significant effects (1072% <
P < 107%): 154362 at ACE; and rs495828 and rs8176746 at
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Table 1 Forward selection stepwise regression analysis of plasma
ACE activity and GWAS SNPs in the Japanese cohort. R? shows the
proportion of variance explained by each variable.

Locus Variable Beta SE Fostatistic P-value R?

Age 0.0363 0.0040 84.32 1.13E-19 0.0229
ACE 154362 —3.0450 0.0849 1286.30 9.60E-213 0.3494
ABO 15495828 1.4762 0.0982 225.75 3.81E-48 0.0613
ABO 138176746  1.5698 0.1154 184.97 3.66E-40 0.0502

Table 2 ABO haplotype analysis using PHASE 2.1.1 in British
families. Common haplotypes assessed in the measured haplotype
analysis are shown in bold.

Blood
group Conditional
1505922 rs8176746 158176750 allele probability Frequency

G G Al 0.9235 0.1719
C G G A2 0.0049 0.0009
C G G B 0.0139 0.0026
C G G o1 0.0271 0.0050
C G G o2 0.0307 0.0057
C G del Al 0.1541 0.0096
C G del A2 0.8333 0.0517
C G del o1 0.0011 0.0001
C G del o2 0.0115 0.0007
C T G B 1.0000 0.0513
C T del A2 0.2244 0.0004
C T del B 0.7756 0.0014
T G G Al 0.0068 0.0047
T G G B 0.0055 0.0038
T G G o1 0.9618 0.6709
T G G 02 0.0259 0.0180
T G del Al 0.0377 0.0000
T G del o1 0.9623 0.0002
T T G o1 1.0000 0.0007

ABO, that together accounted for nearly half of the popu-
lation variation in the trait (Table 1), with the ACE locus
accounting for 35% and the ABO locus accounting for 11%.

Association between Haplotypes Defining Blood
Groups and ACE Activity

Haplotypes of rs505922, rs8176746 and rs8176750 showed
strong associations with alleles defining the different blood
groups in the subset of the British families (734 samples)
where blood groups were available (conditional tagging prob-
abilities range from 0.83 to 1.00; Table 2). Haplotypes of
these three SNPs that occurred at a frequency of >0.05 in
the population, and accurately tagged alleles responsible for
Al, A2, B and O1 phenotypes, were taken forward to the
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Table 3 Measured haplotype analysis of plasma ACE activity in
British families. The ABO haplotype is defined by rs505922,
1s8176746 and rs8176750; the most strongly tagged blood group
allele is shown in parentheses.

ABO haplotype (blood group allele) Frequency Mean  SE

TGG (O1) 0.647 9.295 0.084
CGG (A1) 0.212 5989 0.231
CGdel (A2) 0.079 9.473 0.473
CTG (B) 0.063 12.808 0.528
L e
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TGG (01) CGG (A1) CGdel (A2) CTG (B)

Figure 1 Measured haplotype analysis of plasma ACE activity
in British families. The mean activities and 95% confidence
intervals for each ABO haplotype are indicated by horizontal
and vertical lines, respectively. ABO haplotypes are defined by
1505922, rs8176746 and rs8176750; the most strongly tagged
blood group allele is shown in parentheses.

measured haplotype analysis of ACE activity in the total UK
cohort. In the measured haplotype analyses, SNPs rs4295 and
4392, previously shown in this cohort to tag the principal
haplotype blocks influencing ACE activity at the ACE lo-
cus, were included as covariates. (Keavney et al., 1998) The
measured haplotype analysis showed that the TGG haplotype
of r$505922/rs8176746/1s8176750, which accurately tagged
type O alleles and occurred at a frequency of ~65% in the
population, was associated with an intermediate plasma ACE
activity (Table 3). The CGG haplotype (frequency ~21%),
which tagged type Al alleles, was associated with a 36%
lower plasma ACE activity than the TGG haplotype. The
CTG haplotype (frequency ~6%), which tagged type B al-
leles, was associated with a 36% higher plasma ACE activity
than the TGG haplotype. The CGdel haplotype (frequency
~8%), which tagged type A2 alleles, had a plasma ACE activ-
ity very similar to the TGG haplotype (Fig. 1). The measured
haplotype analysis in the British families provided very sim-
ilar estimates of variance components to the GWAS in the
Japanese cohort: 35.4% of the variance was due to the ACE
locus, and 13.0% to the ABO locus, with a further 9.6%
attributable to polygenes and 42.1% to nongenetic residual
variation.

Annals of Human Genetics (2013) 77,465-471

Discussion

We have shown strong evidence for association between
plasma ACE activity and genotypes at the ABO gene that
define the major blood groups. Genome-wide analyses in
a cohort of unrelated Japanese people confirmed that the
strongest genetic influence on plasma ACE levels is located at
the ACE gene itself on Chromosome 17 (P = 1.55 x 107164
for rs4362) and demonstrated two further independent SNP
effects at ABO (15495828 and rs8176746). Stepwise regression
suggested that the association at ACE accounted for 35% of
the variability in the Japanese population and the two SNPs at
ABO accounted for 11%. To confirm this finding, we typed
SNPs at the ABO locus in a cohort of British families pre-~
viously extensively genotypically characterised at the ACE
locus. (McKenzie et al., 2001) Measured haplotype analysis
in these families indicated that the haplotype characterizing
group Al was associated with the lowest plasma ACE level,
the haplotypes characterizing groups O and A2 were associ-
ated with intermediate plasma ACE level, and the haplotype
characterizing group B was associated with the highest plasma
ACE level. The proportions of variance accounted for by the
ACE and ABOloci in the British families were highly concor-
dant with the Japanese cohort (35.4% and 13.0%, respectively)
with an additional 9.6% attributable to polygenic effects. The
ACE and ABO loci make the most substantial contribution
to population variance in plasma ACE levels; also, there is
appreciable heterogeneity in plasma ACE levels among the
alleles specifying the two subgroups Al and A2.

The ABO gene encodes a glycosyltransferase. Ge-
netic variation in ABO results in the production of two
differently named protein products: glycosyltransferase-A
and glycosyltransferase-B. Glycosyltransferase-A transfers N-
acetylgalactosamine to an acceptor glycoconjugate on the gly-
cosphingolipid H-antigen, which is strongly present on the
surface of red blood cells and more weakly present on a wide
range of other cell types. Glycosyltransferase-B transfers p-
galactose to the same position on the H-antigen. These glyco-
syltransferase activities define the blood group antigens A and
B, respectively. AB heterozygotes have molecules with both
A and B antigens present on the red cell surface. Mutations
which inactivate the glycosyltransferase encoded by ABO re-
sult in nonmodification of the H-antigen, which characterises
blood group O. A and B alleles are both dominant to O.

Previous studies have shown association between either
ABO genotypes or ABO blood groups and plasma ACE ac-
tivity. Cidl et al. found blood groups A and O to have similar
levels of plasma ACE activity and groups AB and B to have
progressively higher levels among 197 Caucasian subjects of
Eastern European origin. (Cidl et al., 1996) Chung et al. per-
formed a GWAS for plasma ACE activity among 1023 subjects
with young-onset hypertension, replicating their findings in a
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study of 428 hypertension pedigrees, all of self-reported Han
Chinese ethnicity (Chung et al., 2010). By contrast with the
findings of Cidl et al., these authors found plasma ACE activity
in blood group A individuals to be 86% of that in the reference
group O, and plasma ACE activity in blood group B individ-
uals to be 114% of that in the reference group O. However,
neither of these previous studies carried out measured haplo-
type analyses to determine the effect of the combination of
SNPs defining the principal blood group antigens on plasma
ACE levels, and neither conducted formal two-locus genetic
analyses to determine the relative contribution of ABO haplo-
types and ACE haplotypes on phenotypic variance. Moreover,
the reason for the discordance between the two reports with
respect to the relative levels of plasma ACE activity in type A
and type O individuals remained unclear. Our findings illus-
trate significant differences in plasma ACE activity associated
with the haplotypes defining the type A subgroups Al and A2.
The Al-defining haplotype had ~60% of the plasma ACE ac-
tivity of the O~defining haplotype, whereas the plasma ACE
activity of the A2-defining haplotype was not significantly
different from the O-defining haplotype. In common with
the previous studies, we found that the B-defining haplotype
was associated with a ~40% higher plasma ACE activity than
the O-defining haplotype.

The effects of the different ABO haplotypes on plasma ACE
activity were assessed in a codominant (allelic association)
model. This may explain the substantially smaller propor-
tion of variation that could be accounted for by ABO blood
grouping in the study of Cidl et al. (1996), when compared
to the present study (since A and B alleles are dominant to
O with respect to the determination of blood group). Differ-
ences in the proportions of A1 and A2 alleles in the previously
studied populations may also contribute to the discrepancy in
the results of previous studies: among Asian populations such
as those studied by Chung et al. (2010), the A2 allele is ex-
tremely rare, while among European populations it comprises
up to 25% of all A alleles. The A2 allele shows a weaker activ-
ity than the A1l allele in adding N-acetylgalactosamine to the
acceptor glycoconjugate of the H antigen, which is present on
red blood cells. At the DNA level, the A2 allele differs from
the Al in two ways: a single amino acid change (Pro156Leu)
and a 1061delC mutation causing a frameshift that extends
the reading frame by 64 nucleotides (Yamamoto et al., 1992).

Reecently, several significant associations between the ABO
locus and complex diseases have been reported. Association
between ABO blood group and the risk of myocardial infarc-
tion (MI) was first observed decades ago; a GWAS approach
recently confirmed strong association between non-O blood
group and the risk of MI, although not of coronary artery
disease without MI (Reilly et al., 2011). The likely princi-
pal mechanism is a differential susceptibility to thrombosis:
people of blood group O have 25% lower plasma levels of
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von Willebrand factor and Factor VIII, both members of
the blood coagulation cascade, and SNPs defining group O
are associated with less coagulable blood on standard labo-
ratory coagulation tests. (Tang et al., 2012) Congruent with
this observation, ABO genotypes are the strongest risk fac-
tor genome-wide for venous thromboembolism (Qi et al,,
2010). Nevertheless, other potential mechanisms whereby the
pleiotropic ABO locus could contribute to MI risk have been
identified through GWAS approaches. ABO genotypes are
associated with plasma levels of lipids, and of other plasma
factors associated with coronary artery disease including sol-
uble ICAM-1, E-selectin and P-selectin (Barbalic et al., 2010;
Qi et al,, 2010; Pare et al., 2011). GWAS studies have also
identified SNPs at ABO responsible for the long-standing
epidemiological observations of association between blood
group O and higher risk of duodenal ulceration; (Tanikawa
et al. 2012) and lower risks of gastric and pancreatic cancer
(Amundadottir et al., 2009). Plasma ACE activity has not, in
general, been systematically studied as a risk factor for any of
the conditions associated with ABO blood groups. Since the
ABO haplotype defining type O in our study was associated
with intermediate levels of plasma ACE activity compared
with types A and B, it is unlikely that plasma ACE activity lies
in the causal pathway for any of these conditions, in which
type O lies at the upper or lower extreme of the risk distri-
bution. Further research will be required to define the mech-
anism whereby ABO haplotypes are associated with plasma
ACE activity, which remains uncertain. A plausible hypothesis
is that it may involve differential affinities of receptors involved
in the clearance of ACE, a heavily glycosylated protein, for
the A B and H glycosylation motifs that depend upon ABO
genotype.

Although evidence remains inconclusive, it has been sug-
gested that blood group O protects against severe malaria, and
that this may have constituted a selective advantage favouring
the alleles responsible for the group O phenotype throughout
human evolutionary history (Anstee, 2010). In this regard it
is of interest that angiotensin-II has recently been shown to
reduce erythrocyte invasion in vitro by P falciparum in a dose-
dependent manner, and that the deletion allele of the ACE
insertion/deletion polymorphism, which is associated with
higher plasma ACE activity, has been reported to be pro-
tective against cerebral malaria (Dhangadamajhi et al., 2010;
Saraiva et al.,, 2011). Further research into the question of
whether the major genetic effects on plasma ACE activity at
the ACE and ABO loci contribute significantly to differential
susceptibility to severe malaria would be of interest.

In conclusion, this study has confirmed the existence of
two major genetic loci influencing plasma levels of ACE, and
quantified the contribution of the two loci to the popula-
tion variability of the trait in two populations. We have also
demonstrated previously unrecognised heterogeneity among
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alleles responsible for group A antigens with respect to their
effect on plasma ACE.
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Takayasu arteritis (TAK) is an autoimmune systemic vasculitis of unknown etiology. Although previous studies have revealed that HLA-
B*52:01 has an effect on TAK susceptibility, no other genetic determinants have been established so far. Here, we performed genome
scanning of 167 TAK cases and 663 healthy controls via llumina Infinium Human Exome BeadChip arrays, followed by a replication
study consisting of 212 TAK cases and 1,322 controls. As a result, we found that the IL12B region on chromosome 5 (156871626, overall
p=17x 1073, OR = 1.75, 95% CI 1.42-2.16) and the MLX region on chromosome 17 (15665268, overall p = 5.2 X 1077, OR = 1.50,
95% Cl 1.28-1.76) as well as the HLA-B region (159263739, a proxy of HLA-B*52:01, overall p = 2.8 x 10721, OR = 2.44, 95%
CI 2.03-2.93) exhibited significant associations. A significant synergistic effect of rs6871626 and rs9263739 was found with a relative
excess risk of 3.45, attributable proportion of 0.58, and synergy index of 3.24 (p < 0.00028) in addition to a suggestive synergistic effect
between rs665268 and 15926379 (p < 0.027). We also found that 156871626 showed a significant association with clinical manifesta-
tions of TAK, including increased risk and severity of aortic regurgitation, a representative severe complication of TAK. Detection of these
susceptibility loci will provide new insights to the basic mechanisms of TAK pathogenesis. Our findings indicate that IL12B plays a
fundamental role on the pathophysiology of TAK in combination with HLA-B*52:01 and that common autoimmune mechanisms
underlie the pathology of TAK and other autoimmune disorders such as psoriasis and inflammatory bowel diseases in which IL12B is
involved as a genetic predisposing factor.

Introduction

Takayasu arteritis (TAK [MIM 207600]) is an autoimmune
systemic vasculitis that was first reported from Japan.® It
is estimated that TAK affects around 0.004% of the popula-
tion in Japan, especially young women aged between 15
and 35. Although TAK was originally thought to affect
individuals of mainly Asian origin, individuals with TAK
have been identified worldwide, though with lower preva-
lence compared to Asia.®> TAK is characterized by the
involvement of large arteries, especially the aorta and its
large branches, and is grouped into “vasculitis affecting
large vessels” according to the Chapel Hill classification.®
Individuals with TAK develop a wide range of symptoms
such as fatigue, syncope, and lowering of vision in addi-
tion to its characteristic complications including aortic
regurgitation (AR), pulselessness, and difference of blood

pressure between right and left upper limbs. Previous
studies have revealed that genetic components are
involved in the pathogenesis of TAK, and HLA-B*52:01 is
so far the only established genetic factor across the
world.*” Other genetic components especially outside of
the HLA locus have not been confirmed to date. Establish-
ment of association with non-HLA regions would lead to a
deeper understanding of the basics of TAK pathology and
the development of a novel therapy for this vasculitis.
Here, we performed a genome-scanning study of TAK to
identify the genetic predisposing factors for TAK.

Subjects and Methods

Study Subjects
A total of 379 TAK cases and 1,985 controls were enrolled in this
study. All the cases were diagnosed based on the criteria of
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