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surface-adjusted TKV (bs-TKV) or log-converted TKV
(log-TKV), were compared from the standpoint of mini-
mizing the differences between men and women. It remains
unclear which adjusted TKV marker correlates best with
renal function.

On the other hand, the results from three recent pro-
spective clinical trials examining the effect of mammalian
target of rapamycin inhibitors on disease progression of
ADPKD have not demonstrated an association between
changes in TKV and glomerular filtration rate (GFR) [6-8].
These studies might have used too short a period for
examining the relationship between TKV and functional
changes.

If TKV correlates with kidney function, it will be a
useful clinical marker of renal function since (1) it can be
measured reliably, and (2) it changes by a measurable
amount during a relatively short period of time (mean %
increase of TKV is 5-6 % per year) [9]. In contrast, kidney
function, measured by estimated GFR (eGFR), decreases at
a slow rate of 0-3 ml/min/1.73 m? per year depending on
the chronic kidney disease (CKD) stage [10]. Taking the
measurement variation of eGFR into consideration, it is
difficult to detect a small change as significant, especially
during early CKD stages when a relatively small amount of
eGFR decreases from a relatively large baseline eGFR.

For the above reasons, we reappraised the relationship
between kidney volume and kidney function (using eGFR).
If a significant relationship between two parameters was
confirmed, the characteristics of these parameters and their
changes (slopes) in relation to age and CKD stage were
examined.

Materials and methods

All patients fulfilled Ravine’s diagnostic criteria of AD-
PKD. One hundred and eighty-eight patients with ADPKD
gave informed consent to take part in an observational
clinical study protocol measuring TKV once a year with
simultaneous collection of 24-h urine for determination of
creatinine clearance (Ccr) and urinary protein excretion
between April 2007 and July 2012. Patients with end-stage
renal disease (ESRD) underwent TKV measurement only.
Of 188 patients, 70 underwent TKV measurement three
times or more. Two patients who received laparoscopic
cyst fenestration, one patient with a ureteral stone with
hydronephrosis during the study period, and three patients
with baseline ESRD were excluded from analysis.

Serum creatinine was measured enzymatically. Kidney
function was estimated with Ccr using 24-h urine, reci-
procal creatinine and eGFR. eGFR was calculated using the
following formula—eGFR (male) = 194 x cr 10 x
Age 9?7 and eGFR (female) = eGFR (male) x 0.739.
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This equation is a Japanese coefficient of the modified
Isotope Dilution Mass Spectrometry—Modification of Diet
in Renal Disease (IDMS-MDRD) Study [11]. The staging
of kidney function is based on the Kidney Disease Out-
comes Quality Initiative Clinical Practice Guidelines for
CKD [12] using the final eGFR measurement.

TKV was measured by high-resolution magnetic reso-
nance imaging (MRI) using a volumetric measurement of
cross-sectional imaging, as described in the report from the
CRISP study [13]. Gadolinium enhancement was not used
for safety reasons. TKV was adjusted by height (ht-TKV,
ml/m), body surface area (bs-TKYV, ml/mz) and log-con-
verted form (log-TKV, log[ml]). Kidney volume was
measured by one radiologist (KK). Intrareader reliability
was extremely high—the correlation coefficient was 0.999
for ten different single kidney volume measurements at
different times when blind to first measurement. The mean
of the % difference between two measurements was
0.29 + 3.28 (SD) %.

Twenty-four-hour urinary protein excretion was
expressed as the mean value of several measurements for
each patient. The slopes of TKV, adjusted TKV parameters
and kidney function parameters were calculated using lin-
ear regression analysis for each patient. %TKV was cal-
culated with baseline TKV as 100 %.

The study protocol was approved by an institutional
review board (09-56), and the study was conducted in
accordance with the guidelines of the Declaration of Hel-
sinki. All participants gave written informed consent to use
their clinical data for medical research.

Statistical analyses

Analyses were performed with StatMate 4 and SAS 10 for
Windows. Parametric variables are expressed as the mean
and standard deviation in parentheses. Two-sided p <0.05
was considered to indicate statistical significance. p values
for differences between CKD stages were obtained using
ANOVA or the Kruskal-Wallis test. Correlations between
two variables were examined by linear regression analysis.
The correlation coefficient () was obtained by the Spear-
man rank-order correlation coefficient.

Results

Between April 2007 and July 2012, 188 patients with
ADPKD attending our clinic were followed annually by
measuring TKV with MRI and 24-h urine collection.
Among them, 70 patients repeated MRI and 24-h urine
measurements three times or more. Six patients with a
medical history affecting kidney volume, such as laparo-
scopic fenestration and baseline ESRD, were excluded
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from the study, leaving 64 patients for analysis (67 % were
female).

Four of the 64 patients had ESRD and one died of
cerebral hemorrhage during this observation period.
Baseline characteristics and the annual change rate (slope)
of kidney function and volume are shown in Table 1. Mean
slope of %TKV and eGFR were 5.9 % per year and
—1.0 ml/min/1.73 m? per year, respectively.

Relationship between TKV and kidney function

TKV, ht-TKV, bs-TKV and log-TKV are all significantly
correlated with eGFR (Fig. 1). Figure 1 illustrates the data
measured at final observation, but qualitatively similar
results were obtained using baseline observation. Among
these parameters, log-TKV correlation was most signifi-
cant. Baseline TKV and ht-TKV, but not bs-TKV and log-
TKV, negatively correlated with the eGFR slope (r =
—0.2642, —0.2476, —0.1811 and —0.2425, p = 0.0349,
0.0485, 0.1521, 0.0534, respectively, Fig. 2a). There was a
weak but significant correlation between the eGFR slope
and TKV slope (r = —0.2593, p = 0.03853, Fig. 2b).

Table 1 Baseline and annual change rate (slope) data of kidney
volume and function

N (men/women) 64 (21/43)
Age (year) 47.0 (14.1)
Observation period (months) 39.7 (11.1)

Baseline data of kidney volume and function
TKV (ml)
ht-TKV (ml/m)
bs-TKV (ml/m?)
log-TKV (log[ml])
1/Cre (ml/mg)
eGFR (ml/min/1.73 m?) 60.2 (27.38)
Cer (ml/min/1.73 m?) 90.01 (36.96)
Annual change rate (slope, b") of kidney volume and function
TKYV slope (ml/year) 109.5 (123.8)

1,681.1 (1,001.1)
1,023.8 (604.2)
1,029.4 (615.2)
3.1588 (0.2357)
109.8 (42.7)

%TKV slope (%/year) 5.90 (4.38)
ht-TKV slope (ml/m/year) 65.9 (74.4)
bs-TKV slope (ml/m?/year) 64.3 (71.6)

0.022 (0.021)
—0.948 (8.073)
~1.020 (3.632)
~3.753 (9.233)

log-TKYV slope (log[ml}/year)
1/Cre slope (ml/mg/year)

eGFR slope (ml/min/1.73 m*/year)
Cer slope (ml/min/1.73 m%/year)

Numbers are the mean and standard deviation (in parentheses).

*A linear regression line (y = a + bX) was obtained by regression
analysis between each parameter and age (months) for the measure-
ment of each patient and b is expressed as change rate per year (slope)

TKV total kidney volume, ht-TKV TKV divided by height (m), bs-
TKV TKV divided by body surface area (mz), log-TKV log-converted
TKV, eGFR estimated glomerular filtration rate by Japanese MDRD
equation, Ccr creatinine clearance measured by 24-h urine collection

Statistically significant correlations between eGFR and
TKV-related parameters support the view of a clinically
meaningful surrogate marker of TKV in ADPKD. The
significant correlation between baseline TKV and eGFR
slope (Fig. 2a) suggests the prognostic value of TKV for
kidney functional deterioration.

TKYV and function in relation to CKD stage

Individual data plotted as age-related TKV according to
different CKD stages (Fig. 3) and Table 2 show that TKV
increases faster and becomes larger as CKD stages
advance. Age, systolic blood pressure, proteinuria, TKV,
and TKYV slope increase while eGFR slope decreases sig-
nificantly (p < 0.001) as CKD stage advances (Table 2).
Stages 1 and 2 are combined because TKV did not differ
significantly (1264 4 511 ml in stage 1 (n=7) and
1492 + 595 ml in stage 2 (n = 24), p = 0.3666).

In five of seven patients with CKD stage 5, TKV
increased >3,000 ml. In contrast, only two of 46 patients
with CKD stages 1-3 had TKV >3,000 ml (Fig. 1,
p < 0.001).

In patients with advanced CKD stages, eGFR decreased
faster, which was demonstrated by a significant correlation
between final eGFR and the eGFR slope (r = 0.4002,
p = 0.0011); however, no significant correlation was
observed between baseline ¢eGFR and the eGFR slope
(r = 0.1069, p = 0.4007). There was a high correlation
between baseline as well as final TKV and the TKV slope
(r=0.7995 and 0.8955, p < 0.001 p < 0.001, respec-
tively), suggesting that patients with large kidneys have a
rapid rate of kidney enlargement.

Changes in kidney volume and function in relation
to age

As age advanced, eGFR, reciprocal creatinine and Ccr
decreased significantly (Table 3). There was highly sig-
nificant correlation between age and eGFR but the eGFR
slope did not change significantly in relation to age.

TKV and TKV-related parameters had no significant
correlation with age (Fig. 5). In contrast, the %TKYV slope
and log-TKV slope became smaller as age advanced (right
panel of Table 3 and Fig. 5d). There was no significant
correlation between function-related slopes and age.

The age-related results were not qualitatively different
between baseline and final age.

Discussion

The present study confirmed the significant relationship
between TKV and kidney function, which was reported by
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CRISP studies [4, 5, 14-16]. Among adjusted TKV
parameters, log-TKV correlated with eGFR most signifi-
cantly. As the CRISP study showed that TKV increased
exponentially and GFR decreased linearly [4], it is rea-
sonable that log-TKV correlates with kidney function
better than the other adjusted TKV parameters [14].

Final eGFR but not baseline eGFR correlated with the
eGFR slope. This observation is in agreement with our
previous report [10], in which the eGFR slope had no
correlation with baseline eGFR. The kidney function
remains well preserved for many years but decreases rap-
idly at a later stage [1, 17]. This characteristic profile of
renal function progression is explained by a compensatory
adjustment for the loss of GFR. Compensatory adjustments
make the decline in GFR slow or close to zero until certain
stages [1]. GFR is maintained within the normal range
despite decreased renal plasma flow in children and young
adult patients with ADPKD [18-20]. In early stages, the
decrease in renal plasma flow due to structural distortion in
ADPKD is partially compensated for by an increased
glomerular filtration fraction to renal plasma flow, but these
adaptations eventually prove inadequate and kidney func-
tion starts to decline at a faster rate [21]. Those observa-
tions and hyperfiltration hypothesis are collectively in
accordance with the present finding that the eGFR slope
becomes more negative as eGFR decreases (Table 2).

T

¥ 1 ¥ 1 ¥ 1 3 1 i ’ i i 1 ¥ k) T 1 ¥ ] ! L i

The eGFR slope is relatively constant in relation to age
(Fig. 4b). In our previous study, changes of reciprocal
creatinine in 106 patients plotted against age showed that
the progression patterns of renal function deterioration
were different among patients [10]. Individual variation in
renal functional progression might be a parallel charac-
teristic to the wide distribution of kidney size growth, as
shown in Fig. 3. Due to individual differences, the mean
yearly change in eGFR (eGFR slope) as a whole patient
group seemed to be constant, at least after ~ 30 years of
age.

TKYV increases each year in most patients with ADPKD
(Fig. 3), but no significant correlation between age and
TKV was seen in the present study (Table 3). Similar
findings were reported in the CRISP study [4]. The reason
for this insignificant correlation between TKV and age is
probably the wide individual variation in TKV. It is
interesting to note that the TKV slope was constant at all
ages, but the %TKYV slope and log-TKV slope decreased as
age advanced (Table 3; Fig. 5d). This finding has already
been reported with the slopes expressed as a percent per
year being significantly lower in the older age group
(p = 0.02) [4]. The mechanism of this saturation-like
phenomenon is speculated as follows—the rate of kidney
volume enlargement (ml/year) is constant throughout life
(Table 3), but the growth rate (%/year) becomes lower
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Table 2 Functional and volume parameters in relation to chronic kidney disease (CKD) stages according to the final measurement of the

estimated glomerular filtration rate (eGFR)

CKD stage according to the final eGFR (ml/min/1.73 m?) measurement p value
Stages 1 and 2 Stage 3 Stage 4 Stage 5
>60 59-30 29-15 <15
N (men:woman) 31 (10:21) 15 (5:10) 11 (3:8) 7 (3:4)
Observation period (months) 40.2 (11.5) 42.3 (10.2) 345 (11.9) 40.0 (9.1) NS
Baseline age (years) 39.8 (13.7) 533 (11.0) 56.4 (11.3) 50.7 (11.4) <0.01
Systolic BP on treatment (mmHg) 118.9 (10.6) 133.2 (11.3) 133.5 (19.4) 137.1 (17.7) <0.01
Diastolic BP on treatment (mmHg) 77.2 (6.6) 81.0 (4.9) 80.3 (10.2) 82.3 (11.3) NS
Urine protein excretion (mg/day/1.73 m?) 62.3 (96.1) 124.6 (119.1) 223.7 (267.6) 1,102.7 (1,727.6) <0.01
Kidney function
Baseline eGFR (ml/min/1.73 m?) 82.1 (18.2) 52.7 (10.7) 33.0 (6.7) 21.9 (13.5) <0.01
Final eGFR (mVmin/1.73 m?) 82.5 (19.4) 46.5 (8.6) 242 (3.1) 7.8 3.7 <0.01
eGFR slope (ml/min/1.73 m*/year) 0.18 (3.47) —0.74 (3.95) —-2.95 (2.38) —3.88 (2.89) <0.01
Baseline Ccr (ml/min/1.73 m?) 114.3 (30.7) 85.1 (17.8) 48.6 (7.0) 39.5 (19.4) <0.01
Cer slope (ml/min/1.73 m%/year) —2.11 (11.74) —4.04 (3.49) ~4.62 (7.96) —9.59 (3.67) NS
Baseline 1/Creatinine (ml/mg) 143 (27) 103 (20) 70 (15) 42 (19) <0.01
Kidney volume
Baseline TKV (ml) 1,192.0 (457.9) 1,394.3 (499.9) 2,693.0 (1,112.8) 2,871.4 (1,362.4) <0.01
Final TKV (ml) 1,440.9 (576.7) 1,689.1 (618.4) 3,103.7 (1,377.2) 3,855.3 (2,129.5) <0.01
TKYV slope (ml/year) 73.8 (51.8) 75.0 (68.0) 148.6 (146.9) 279.6 (234) <0.01
% TKV slope (%/year) 6.25 (3.86) 5.16 (4.74) 4.80 (3.14) 7.69 (7.09) NS
log-TKV slope (ml/year) 0.0240 (0.0140) 0.0244 (0.0260) 0.0116 (0.0268) 0.0273 (0.0277) NS
Baseline ht-TKV (ml/m) 724.7 (279.3) 862.1 (268.6) 1,681.6 (718.7) 1,661.8 (787.9) <0.01
Baseline bs-TKV (ml/m?) 714.2 (267.4) 890.4 (257.0) 1,729.0 (764.8) 1,623.5 (784.9) <0.01
Baseline log-TKV (log[ml]) 3.044 (0.1759) 3.109 (0.1600) 3.396 (0.1825) 3.402 (0.257) <0.01

Numbers are the mean and standard deviation (in parentheses).

Slopes are calculated by regression analysis of each patient. Urine protein excretion and Cer were measured from 24-h urine. CKD stage 1 and 2
are combined. p values were calculated by ANOVA

BP blood pressure, CKD chronic kidney disease, ¢GFR glomerular filtration rate estimated by Japanese MDRD equation, Ccr creatinine
clearance, TKV total kidney volume, hz-TKV TKV divided by height (m), bs-TKV TKV divided by body surface area (m?), log-TKV log-

converted TKV

Table 3 Correlation coefficient (7) between age and kidney volume, function and their slopes

r between parameters and age at final measurement

r between each parameter slope and age at final measurement

r p value r p value
TKV (ml) 0.1264 NS TKYV slope (ml/year) —0.0979 NS
% TKV (%lyear) - - % TKV slope (%/year) —0.3923 <0.01
ht-TKV (ml/m) 0.1526 NS ht-TKV slope (ml/m/year) —0.0945 NS
bs-TKV (ml/m?) 0.1894 NS bs-TKV slope (ml/m?/year) —0.0545 NS
log-TKV (log[ml]) 0.1774 NS log-TKV slope (log[ml]/year) -0.4002 <0.01
1/Cre (ml/mg) —0.5097 <0.001 1/Cre slope (ml/mg/year) —0.1585 NS
eGFR (mlU/min/1.73 m?) —0.6027 <0.001 eGFR slope (ml/min/1.73 m*/year) —0.0809 NS
Cer (ml/min/1.73 m?) —0.436 <0.001 Cer slope (ml/min/1.73 m*/year) —0.1592 NS

Correlation coefficients (r) are calculated between each parameter and final age.
TKV total kidney volume, #z-TKV TKV divided by height (m), bs-TKV TKV divided by body surface area (m?), log-TKV log-converted TKV, Cr

creatinine, eGFR estimated glomerular filtration rate by Japanese MDRD equation, Ccr creatinine clearance
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because the denominator (kidney volume) increases every
year. The same explanation is applicable to log-converted
kidney volume.

The highly significant correlation between baseline as
well as final TKV and TKV slope is an obvious result of a
large kidney being the consequence of a rapid increase in
kidney volume. Although genotype was not determined in
the present study, it is known that faster growth is generally
associated with PKD1 genotype [4]. A large kidney volume
was associated with a more rapid declining slope of io-
thalamate-measured GFR as well as of eGFR in the present
study (Fig. 2a), indicating that a large kidney volume is
associated with decreased kidney function [4]. Recently,
Chapman et al. reported that baseline ht-TKV >600 cc/m
predicted the risk of developing renal insufficiency within
8 years [5]. The present study is not long enough to quan-
titatively predict the risk of renal insufficiency but supports
the view that TKV is a prognostic biomarker in ADPKD.

In summary, this study confirmed that TKV is a clini-
cally meaningful surrogate marker in ADPKD because it
correlates with kidney function and predicts functional
disease progression. Patients with larger TKV are at higher
risk of developing ESRD.

Limitations of this study

Kidney function was not measured directly, such as by
inulin clearance. Twenty-four-hour urine creatinine clear-
ance is known to have a relatively large variance due to
method imprecision and tubular creatinine secretion [22].
eGFR and reciprocal creatinine are affected by non-GFR
factors such as creatinine production and tubular secretion.
The patient number is limited and the observation period is
not long enough to predict disease progression.
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