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Many autoimmune diseases are driven by self-reactive T helper (Th) cells. A new population of effector CD4" T cells characterized
by the secretion of interleukin (IL)-17, referred to as Thl7 cells, has been demonstrated to be phenotypically, functionally, and
developmentally distinct from Thl and Th2 cells. Because the liver is known to be an important source of transforming growth
factor-B and IL-6, which are cytokines that are crucial for Th17 differentiation, it is very likely that Th17 cells contribute to liver
inflammation and autoimmunity. In contrast, another distinct subset of T cells, regulatory T cells (Treg), downregulate immune
responses and play an important role in maintaining self-tolerance. In addition, there is a reciprocal relationship between Th17 cells
and Tregs, in development and effector functions, and the balance between Th17 and Treg cells can affect the outcome of immune
responses, particularly in autoimmune diseases. In this review, we will focus on the latest investigative findings related to Th17 cells

in autoimmune liver disease.

1. Introduction

It has generally been accepted that CD4* T helper (Th) cells
can be categorized into two distinct subsets, that is, Thl and
Th2 cells, based on their cytokine profiles and biological
functions [1]. Thl cells are largely responsible for cellular
immunity against intracellular bacteria and viruses and are
distinguished by their secretion of interferon (IFN)-y. Th2
cells are recognized to be integrally involved in the humoral
response to parasitic infections and are defined by their
characteristic secretion of cytokines of interleukin (IL)-4,
IL-5, and IL-13. The pathogenic effects of Thl cells and the
protective contributions of Th2 cells have been recognized as
a common feature of autoimmune diseases.

Recently, a new population of effector CD4" T cells
characterized by the secretion of IL-17, identified as Th17 cells,
has been demonstrated to be phenotypically, functionally,
and developmentally distinct from Thl and Th2 cells [2, 3]
(Figure 1). In addition, another distinct subset of CD4* T
cells, regulatory T cells (Tregs), has been shown to downreg-
ulate immune responses through inhibition of effector cells
[4]. These two subsets have been shown to have opposing
effects in the immune response and may be involved in
the pathogenesis of many diseases, including autoimmune

diseases [5, 6]. In this review, we will focus on the latest
findings related to Th17 cells in autoimmune liver disease.

2. Th17 Cells

Thi7 cells have been implicated in host defense, inflammatory
disease, tumorigenesis, autoimmune diseases, and transplant
rejection, all of which are mediated by the production of
several cytokines, including IL-17A, IL-17F IL-21, and IL-
22 [3, 7, 8]. IL-17A and IL-17F possess similar biological
functions and bind to the same receptor complex, which
is expressed by most cell types in the body. Both IL-17A
and IL-17F are key cytokines in the recruitment, activation,
and migration of neutrophils and monocytes and can tar-
get nonimmune cells (such as fibroblasts, endothelial cells,
and epithelial cells) to induce proinflammatory mediators,
including cytokines, colony stimulating factors, CC and CXC
chemokines, and metalloproteinases [7-10]. IL-21 regulates
the differentiation of CD4" T cells into Thl7 cells in an
autocrine manner, thereby amplifying the Th17 responses and
inducing the autocrine loop [11, 12].

Differentiation of Th17 cells requires the action of various
cytokines and transcription factors. In mice, transforming
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growth factor (TGF)-f and IL-6 can induce the differenti-
ation of naive CD4" T cells into the Th17 phenotype [13-
15]. IL-21 also supports the development of Th17 cells [11, 12].
Once Thl7 cells have developed, IL-23 is required for the
stabilization and further expansion of these cells [13, 14, 16].
Retinoic acid-related orphan nuclear factor (ROR)-yt is a
transcription factor that serves as a master regulator to direct
the differentiation of Thl7 cells in mice [17]. The signal
transducer and activator of transcription (STAT) 3 is also
critical for the generation of Th17 cells [18].

Although it has been argued that human Th17 differ-
entiation is independent of TGF-§ signaling, subsequent
studies have confirmed that, as in murine Th17 cells, TGF-
f is indispensable for the differentiation of human Th17 cells
from najve T cells [19-21]. While TGF-f is essential for the
induction of RORC in naive T cells at low concentrations,
the expression and function of RORC are inhibited at high
concentrations of TGF- 8 [20]. Inflammatory cytokines, such
as IL-6, IL-21, IL-23, and IL-1f, initiate human Th17 differen-
tiation [19-21].

3. Relationship between Th17 and Treg Cells

Recently, Th17 and Treg cells have been shown to have
opposing immunological effects, and a regulated balance
between these two cell types may be crucial for the stability
of immune homeostasis. Disruption of the Th17/Treg balance
may lead to chronic inflammation and autoimmunity.
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Treg cells produce anti-inflammatory cytokines, such as
IL-10 and TGE-p, and suppress functional immune reactions
[4]. In addition to naturally occurring, thymus-derived Treg
cells, Treg cells can also be differentiated in the periphery
under specific conditions. The differentiation of Treg cells
may be linked to the differentiation of Thi7 cells, depending
on the cytokine milieu [22]. The differentiation of both Treg
and Thl7 cells requires TGF-f. The differentiation of Th17
cells requires low concentrations of TGE-f along with a
combination of proinflammatory cytokines (such as IL-6 and
1L-21), whereas high concentration of TGF- in the absence
of proinflammatory cytokines induce the differentiation of
Th17 cells from naive T cells [23, 24]. In addition, IL-2 and
retinoic acid promote Treg cell differentiation but inhibit Th17
cell differentiation [25, 26]. These data indicate that Th17 cells
and Treg cells are reciprocally regulated and can affect the
outcome of immune responses, particularly in autoimmune
diseases.

Forkhead box P3 (FoxP3) is a transcription factor
involved in Treg cell differentiation and has characteris-
tically high expression [27, 28]. However, under certain
circumstances, FoxP3* cells also express RORyt [29]. Cells
coexpressing with RORyt and FoxP3 also coexpress C-C
chemokine receptor 6 (CCR6), and upon activation, these
cells show decreased IL-17 production relative to that of cells
expressing RORyt alone, suggesting that FoxP3 antagonizes
the expression and function of RORyt, thus leading to
inhibition of the Th17 pathway [23, 30]. In contrast, ROR«x
inhibits FoxP3 function [31]. These findings suggest that the
relationship between Thl7 and Treg cells remains complex
and plastic.

4. Th17 Cells in Autoimmune Liver Disease

Many researchers have demonstrated the importance of Th17
cells in the pathogenesis of autoimmune diseases. Specifically,
the contribution of Thl7 cells in experimental autoimmune
encephalomyelitis, arthritis, and inflammatory bowel disease
has been investigated [32-35]. In addition, high levels of
IL-17 and other cytokines related to the Th17 pathway have
been reported in the sera and tissues of patients with several
autoimmune diseases, such as psoriasis [36] and multiple
sclerosis [37].

Inflammatory responses mediated by a various immune
cells play a key role in the development and progression of
liver diseases. Among them, T cells are thought to be the
primary effector cells contributing to the pathogenesis of
many forms of liver diseases. Because the liver is known to be
an important source of TGF-f and IL-6, Th17 differentiation
may be favored in the liver. In addition, expression of the IL-
17 receptor has been detected on the surface of all types of
liver cells, including hepatocytes, Kupffer cells, stellate cells,
biliary epithelial cells, and sinusoidal endothelial cells [38],
which indicates that IL-17 may play an important role in
the pathogenesis of many types of liver diseases (Figure 2).
Recently, substantial evidence has been accumulated regard-
ing the relationship between Thi17 cells and liver diseases
[38-41].
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promoting liver inflammation. IL-17 also promotes liver fibrogenesis
by hepatic stellate cell activation. In addition, IL-17 may stimulate

hepatocytes to produce C-reactive proteins and promote hepatocyte
survival.

4.1. Autoimmune Hepatitis. Autoimmune hepatitis (AIH) is
defined as a chronic liver disease with unknown etiological
factors and is associated with aberrant autoreactivity and a
genetic predisposition [42, 43]. The target antigens on the
hepatocyte membrane are not known, but it is likely that
liver membrane-specific activated T cells are important in the
development and/or progression of the disease.

Zhao et al. [44] reported that serum IL-17 levels and
the frequency of circulating Th17 cells in patients with ATH
are substantially higher than those in healthy controls or
patients with chronic hepatitis due to hepatitis B virus. In
addition, IL-17" lymphocytic infiltration (primarily of the
CD4" phenotype) in the liver substantially increases in AIH,
and the degree of hepatic IL-17" cell infiltration is positively
correlated with the degree of hepatic inflammation and fibro-
sis in patients with ATH. IL-17 has also been demonstrated
to induce IL-6 expression via the mitogen-activated protein
kinase pathway in hepatocytes, thus indicating that Th17 cell
proliferation is the key trigger in the pathogenesis of ATH
and that the positive feedback loop between Th17 cells and
hepatocytes exacerbates the inflammatory process [44].

Functional Treg cell impairment and decreased Treg cell

number have been identified in patients with ATH [45-47].
Treg cell impairment in ATH varies with disease stage, appear-
ing worse at presentation than during remission, thereby
showing functional restoration potential [47]. Longhi et al.
[48] reported that Treg cells can be expanded and generated
de novo (from CD4"CD25” cells) in patients with ATH and
that the suppressor function and FoxP3 expression levels
of these cells are higher than those in freshly isolated Treg
cells. However, Treg cells generated from CD4"CD25” cells
in patients with AIH have been found to contain a greater
population of IL-17"RORC" cells and these cells suppressed
CD257 effector cell proliferation with less efficiency than Treg

cells from CD4*CD25"" cells [49]. Inhibition of IL-17 or

Thl7 differentiation was found to lead to phenotypic and
functionally stable Treg cells, suggesting that the anti-Thl7
approach is an important step toward the establishment of
new therapeutic strategies in ATH.

4.2. Primary Biliary Cirrhosis. Primary biliary cirrhosis
(PBC) is a chronic cholestatic liver disease characterized by
the destruction of small- and medium-sized intrahepatic bile
ducts [50, 51]. Although several studies have examined the
autoimmune mechanisms underlying biliary damage in PBC,
the underlying cause of the disease remains largely unknown.
Autoreactive CD4" and CD8" T cells have been implicated in
the pathogenesis of PBC.

IL-2 receptor (IL-2R)™~ mice spontaneously produce
antimitochondrial antibodies, especially against the E2 sub-
unit of pyruvate dehydrogenase, and develop portal inflam-
mation with ductular damage, which is characteristic of PBC
[52]. These mice have been found to have a decreased fre-
quency of CD4"FoxP3" Treg cells. In contrast, they showed
increased serum IL-17 levels and marked aggregations of Th17
cells near the portal tracts in the liver [53].

Several studies have demonstrated a close correlation
between PBC and Th17 in humans. The number of Thl7 cells
in peripheral blood has been found to be higher in patients
with PBC than in healthy controls [54, 55]. Furthermore, IL-
17 and pro-Thl7 cytokines, that is, IL-1f3, IL-6, and IL-23, were
substantially upregulated in terms of both gene expression
and serum concentration in patients with PBC relative to
healthy controls [53, 56]. Harada et al. [56] demonstrated that
liver tissues from patients with PBC have higher counts of
IL-17" cells per portal tract than liver tissues from normal
controls, which is consistent with the results obtained for
an animal model [52]. Furthermore, biliary epithelial cells
possess the ability to produce pro-Thl7 cytokines, such as
IL-6, IL-1B3, and IL-23, in response to pathogen-associated
molecular patterns [56], suggesting that periductal IL-17-
secreting cells facilitate the migration of inflammatory cells
around the bile ducts. These inflammatory cells could be
associated with chronic inflammation of the bile ducts in
PBC. In contrast, patients with PBC possess reduced counts
of Treg cells [54, 55, 57], indicating that an enhanced Th17
response and a weakened Treg response may both play an
important role in the pathogenesis of PBC.

4.3. Primary Sclerosing Cholangitis. Primary sclerosing cho-
langitis (PSC) is a fibrosclerotic disease of the bile ducts,
with diffuse structuring of the intrahepatic and extrahepatic
biliary tree [58, 59]. The etiological factors and pathogen-
esis of PSC remain poorly understood, but autoimmune
mechanisms are believed to contribute to the development
and progression of this disease state, The biliary epithe-
lium appears to be the target for immune-mediated injury.
Recently, Katt et al. [60] reported that patients with PSC
show increased numbers of Thl7 cells in response to heat-
inactivated pathogens, which are present in the bile duct of
the majority of patients with PSC, relative to healthy controls
and patients with PBC. In addition, IL-17* lymphocytes were
detected within the periductal areas of patients with PSC
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by immunohistochemical analysis. The Thi7 response was
induced by the selective stimulation of Toll-like receptor
(TLR) 5 and TLR7 but not by stimulation of other pattern-
recognition receptors.

One of the histological features of PSC is fibrooblitera-
tive sclerosis of intra- and/or extrahepatic bile ducts. Th17
cells may contribute to fibrosis thorough production of IL-
17A and other cytokines. Meng et al. [61] demonstrated
that the mRNA levels of IL-17A and its receptor increased
in animal livers when fibrosis was induced by bile duct
ligation and carbon tetrachloride and that serum IL-17A
levels were associated with the development of liver fibrosis.
These findings indicate that Th17 may contribute not only to
inflammation but also to fibrosis in the pathogenesis of PSC.
In addition, IL-17RA deletion in mice dramatically inhibits
both models of liver fibrosis; therefore, IL-17 may promote
liver fibrosis through hepatic stellate cell (HSC) activation or
promotion of liver inflammation through the upregulation
of proinflammatory cytokines and chemokines in HSC or
Kupffer cells. However, the animal models used in these
studies do not exhibit all of the attributes of PSC. In particular,
the role played by Thi7 cells in the pathogenesis of large bile
ducts has not yet been clarified. Further studies using other
animal models with sclerosing cholangitis and biliary fibrosis
[62] are required.

4.4. IgG4-Related Sclerosing Cholangitis. 1gG4-related scle-
rosing cholangitis (IgG4-SC) is a recently described biliary
disease that has unknown etiological features and presents
with biochemical and cholangiographic features similar to
those of PSC and is often associated with autoimmune pan-
creatitis and other fibrotic conditions [63]. In this condition,
the patient’s IgG4 serum level is elevated and IgG4-positive
plasma cells infiltrate into the bile ducts and liver tissue.
Th2-dominant immune responses or Treg cells appear to
be involved in the underlying immune reaction [64-66].
Therefore, the immunopathogenesis of IgG4-SC appears to
be distinct from that of PBC and PSC. However, the role of
Th17 cells in the pathogenesis of IgG4-SC has not yet been
clarified, and further studies are required.

4.5. Thi7 Cells in Liver Fibrosis. Liver fibrosis is a common
outcome of chronic liver diseases, including autoimmune
liver disease, and potentially leads to portal hypertension,
hepatic failure, and liver cancer. Activated HSCs play a critical
role in collagen and extracellular matrix production. In addi-
tion, accumulating evidence indicates that IL-17 also plays an
important role in promoting liver fibrosis by inducing HSC
activation [61, 67-69].

The frequency of Th17 cells in the diseased liver correlates
with liver fibrosis in patients with viral hepatitis [67, 70],
ATH [49], and alcoholic liver disease [71]. Furthermore, IL-
17A and IL-17RA deficiency protects mice from liver fibrosis
induced by CCl, and bile duct ligation [61, 68, 69]. Tan
et al. [68] recently reported that activation of HSC and
production of collagen in CCl -induced liver fibrosis are
IL-17A dependent. Therefore, IL-17A neutralization may be
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a promising approach for antifibrotic therapy in patients with
chronic liver diseases.

5. Conclusion

Unbalanced Th1/Th2 responses in the liver have long been
proposed to be associated with perpetuated inflammation
and subsequent liver fibrosis. The recently discovered Thl7
cells have also been linked to host defense and autoim-
munity. Although research on Thl7 cells has progressed,
several unanswered questions still require clarification, such
as the interaction between Th17 cells and other subsets of
T cells, especially Treg cells. Th17/Treg imbalance has been
implicated in the pathogenesis of many diseases, especially
autoimmune diseases. Elucidation of the role of Th17 differen-
tiation and regulation will provide investigators with a novel
target for the treatment of autoimmune liver disease.
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Introduction

Autoimmune hepatitis (AIH) is characterized by chronic
inflammation of the liver, interface hepatitis, hypergammaglobu-
linemia and production of autoantibodies [1,2]. The etiology of
AIH is unknown, but is thought to have both a genetic and an
environmental basis [3]. Although the HLA DRBI1 gene is a well-
characterized susceptibility gene [4,5], non-HLA susceptibility
genes may also contribute to genetic susceptibility to AIH and
remain to be elucidated. Recently, with the emergence of genome-
wide association studies (GWAS), there has been a dramatic
increase in genetic discoveries for many complex genetic
autoimmune diseases, such as type 1 diabetes and rheumatoid
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arthritis (RA) [6]. It is also interesting to note that evaluating the
results from the study of one disease in other complex diseases can
disclose common risk factors. Thus, there has been a marked
overlap of loci between autoimmune diseases [7]. Of those, STAT4
particularly has been confirmed in several studies and is clearly
associated with autoimmune diseases such as RA or systemic lupus
erythematosus (SLE) [8-10]. STAT4, a signal transducer and
activator of transcription 4, is expressed in activated peripheral
blood monocytes, dendritic cells and macrophages at the sites of
inflammation in humans [11]. It is activated by interleukin (IL)-12,
leading to T helper (Th) 1 and Th 17 differentiation, monocyte
activation and interferon (IFN)-o production [12]. Since Thl and
Th17 cells have the capacity to cause autoimmunity [13], STAT4
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may play a crucial role in the development of autoimmune
diseases, including AIH.

The degree of risk for RA or SLE susceptibility observed with
the STAT4 haplotype was found to be similar in Caucasian and
Japanese populations [14-16]. In addition, meta-analysis demon-
strated that the STATY rs7574865 T allele conferred susceptibility
to various autoimmune diseases, suggesting an association between
STAT4 gene polymorphism and autoimmune diseases [17].

STAT#4 is considered important in a mouse model of Thl-
dependent liver injury [18]. Therefore, we hypothesized that
STAT4 polymorphisms may overlap in genetic susceptibility
between AIH and other autoimmune diseases. To test this
hypothesis, we investigated the association of STAT# with type-1
AIH susceptibility using a large series of Japan NHO-AIH registry
[19]. We also tried to evaluate whether the gene was associated
with type-1 AIH outcome measures in a Japanese AIH cohort.

Materials and Methods

Study population

Consecutive type-1 AIH patients were initially enrolled in the
register of the Japanese National Hospital Organization (NHO)
liver-network study, contributed to medical facilities in Japan, and
prospectively followed since 2009 as a multicenter cohort
population. All patients satisfied the 1999 revised criteria of
International Autoimmune Hepatitis Group (IAIHG) diagnosis of
type-1 AIH [20]. Patients were excluded from the study if there
was histological evidence of cholangitis or non-alcoholic steatohe-
patitis. In addition, patients who were positive for hepatitis B virus
(HBV)-surface antigen (HBsAg) or hepatitis C virus (HCV)-RNA
were excluded. Patients with other causes of liver disease, such as
excess alcohol or drug use, were excluded based on reviews of their
appropriate history and investigations. The control group consist-
ed of 230 gender-matched Japanese healthy subjects (34 men and
196 women). The mean * SD age was 43.9%13.1 years. Among
the cases (AIH) and controls, 156 patients and 163 controls were
recruited from West Japan and 74 patients and 67 controls were
recruited from East Japan. The study was approved by the Ethics
committee of the Nagasaki Medical Center and participating
NHO Liver-network hospitals (NHO Sagamihara National
Hospital, Tokyo National Hospital, Yokohama Medical Center,
Nagoya Medical Center, Kure Medical Center, Osaka Minami
Medical Center, Kyushu Medical Center, Minami Wakayama
Medical Center, Shinshu Ueda Medical Center, Kanazawa
Medical Center, Higashi Hiroshima Medical Center, Asahikawa
Medical Center, Kokura Medical Center, Ureshino Medical
Center, Higashi Nagoya National Hospital, Hokkaido Medical
Center, Okayama Medical Center, Takasaki General Medical
Center, Oita Medical Center, Beppu Medical Center, Osaka
Medical Center, Kumamoto Medical Center, Nishigunma
National Hospital). Written informed consent was obtained from
each individual. This study was conducted with the approval of the
ethical committees of Nagasaki Medical Center and participating
NHO Liver-network hospitals. Written informed consent was
obtained from each individual.

Variables at study entry

Demographic and other characteristics of the 230 retained
patients were recorded in a database at the initial assessment. Data
included sex, age at diagnosis, time of onset of symptoms or other
evidence of liver disease, markers of infection with hepatitis viruses
HBYV and HCV, alcohol intake, coexisting autoimmune diseases,
serum levels of ALT, AST, alkaline phosphatase and bilirubin,
platelet count and prothrombin time. Anti-nuclear antibodies
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(ANA) and anti-smooth muscle antibodies (ASMA) were measured
by indirect immunofluorescence on HEp-2 cells and cut-off titers
for positivity were 1:40. Liver tissue from percutaneous biopsy
performed at the referring facility was available for the majority of
patients at the time of entry (192/230, 83.5%), but for only a few
at the subsequent follow-up examination (7/230, 3.0%). The
histological variables examined included degree of fibrosis (0;
absent, 1; expansion of fibrosis to parenchyma, 2; portal-central or
portal-portal bridging fibrosis, 3; presence of numerous fibrous
septa, 4; multi-nodular cirrhosis). The histological diagnosis of
cirrhosis required a loss of the normal lobular architecture,
reconstruction of hepatic nodules and presence of regenerative
nodules [21]. Liver biopsy was not performed for patients who had
apparent biochemical, endoscopic and ultrasound features of liver
cirrhosis. All phenotypic data were collected blind to the results of
the genotypic data.

DNA extraction and genotyping

Blood samples were taken from all study participants, and
genomic DNA was isolated from peripheral blood leukocytes using
a DNA blood mini kit from Qiagen (Hilden, Germany) according
to the manufacturer’s guidelines. STAT4 SNPs (rs7574865,
1rs7582694) were determined by the polymerase chain reaction—
restriction fragment length polymorphism (PCR-RFLP) method
[22,23]. The primers used for the PCR reaction were rs7574865,

F:5'-AAAGAAGTGGGATAAAAAGAAGTTTG-3/, R:5'-
CCACTGAAATAAGATAACCACTGT-3', and rs7582694,
F:5"-ATCGCAACTCTTCTCAGCCCTT-3', R:5'-TCATAAT-

CAGGAGAGAGGAGT-3'.

Rs7574865 was a 147-bp PCR product and was digested with
restriction enzyme Hpal (New England Biolabs) and electropho-
resed on a 2.5% polyacrylamide gel. Rs7574865 was a 338-bp
PCR product was digested with restriction enzyme HpyCHA4III
(New England Biolabs) and electrophoresed on a 3.0% polyacryl-
amide gel.

HLA-DRBI genotyping was performed as described previously
[24]. Briefly, the HLA-DRBI1 genotype was determined by
sequence-based typing (SBT) of group-specific PCR products.

Statistical analyses

Results are expressed as mean * SD. The statistical significance
of differences between groups was calculated by either the chi-
square test or Fisher’s exact test for categorical data and Mann-
Whitney’s U-test for quantitative data. Multivariate logistic
regression analysis was performed with SPSS v.18 for windows
(SPSS Statistics, Illinois). Deviation from Hardy-Weinberg equi-
librium was assessed using the SNPAlyze software ver. 7.0
(Dynacom, Yokohama, Japan). Power calculations were per-
formed by using an online power calculator [25]. A P value of
<0.05 was considered significant.

Results

Baseline data at entry

Of the original 240 patients registered in the NHO-AIH study,
10 were excluded from analysis because of overlapping primary
biliary cirrhosis (PBC). The remaining 230 patients were eligible
for the study. Table 1 shows other demographic data for the
cohort at entry. Among the enrolled type-1 AIH patients, 206
(89.6%) were positive for ANA (>1:40) and 96 (41.7 %) for ASMA
(>1:40). Some patients with lower serum aminotransferase or total
bilirubin were managed with ursodeoxycholic acid (UDCA)
therapy alone, which was demonstrated to be efficacious in
Japanese patients with type I autoimmune hepatitis [26]. Among
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Table 1. Baseline characteristics of type-1 AlH patients.

Age at presentaion (years) 59.6+12.2
)

Other autoimune diseases . = -

Baseline Laboratory Values
CAST(=AOMM) o assTaa
ALT (<40 1U/L) 484.31:490.5

3.83+6.14

AL g L assros
IgG (870-1700 ma/d)  4804%9314
_ Platelets (15-40x10%j) -+ 8B
ANA + (21:40) ' 206(89.6%)
CASMA + (21:40) o osalTR)
Cirrhosis at presentation 44(19.1%)

R'eée‘i\ieﬂit:rea'tn'ieht;,;t« sy

Steroid alone 81(35.2%)

15(6.5%)

STAT4; A Risk Factor for Type-1 AlH

Table 2. STAT4 rs7574865 polymorphism in patients with
type-1 AlH and controls.

Control AlH
(%) (%)

value®  OR (95%Cl)

Genotype
frequencies

0.001

109(47.4)

G/T  108(47.0)

Allele 0.001
G 314(683). 263672 e T -
T 46(317)  197(42.8) 1611(1.230-2.109)

Abbreviation: AlH; autoimmune hepatitis, OR; odds ratio, Cl; confidence interval,
STAT4; signal transducer and activator or transcription.

2Genotype frequencies were determined by 2 test using 2x3 contingency
tables between patients with AlH and healthy controls, Allele frequencies were
determined by %2 test using 2x2 contingency tables between patients with AIH
and healthy controls.

doi:10.1371/journal.pone.0071382.t002

Table 3. STAT4 rs7582694 polymorphism in patients with
type-1 AlH and controls.

Abbreviations: AlH; autoimmune hepatitis, AST; aspartate aminotransferase,
ALT; alanine aminotransferase, ALP; alkaline phosphate, IgG; immunoglobulin G,
ANA; anti-nuclear antibody, ASMA; anti-smooth muscle antibody, UDCA;
ursodeoxy cholic acid, Aza; azathioprine. Data are expressed as number
(percentage) or mean * standard deviations.
doi:10.1371/journal.pone.0071382.1001

230 eligible patients, 29 (12.6%) had liver cirrhosis at the time of
diagnosis, and among the remaining 201 patients without liver
cirrhosis, 15 developed liver cirrhosis during the follow-up. Two
patients died because of complications (ruptured esophageal
varices 1, hepatic failure 1) of liver cirrhosis during follow-up.

Association of STAT4 polymorphisms with type-1 AlH

The genotype frequencies for STAT4 rs7574865 and rs7582694
were in HWE (Hardy-Weinberg equilibrium) in both the patient
and control populations (data not shown). Because of the strong
linkage disequilibrium between rs7574865 and 157582694
(R?=0.949 and D’=0.981), very similar results were observed
between 157574865 (Table 2) and rs7582694 (Table 3). We
observed a significant difference in allele frequency and genotype
distribution of STAT# polymorphisms (rs7574865) between type-1
AIH patients and controls. As shown in Table 2, the minor T allele
and TT genotype frequencies at STATZ rs7574865 in the type-1
ATH group differed significantly from those in the control group.

To determine whether the observed association of the STAT4
gene SNPs with disease susceptibility was caused by other
autoimmune diseases associated with AIH, we stratified type-1
AIH patients without other overlapping autoimmune diseases.
There was a significant association of STAT4 rs7574865 with
susceptibility to type-1 AIH even in the ATH patients without other
overlapping autoimmune diseases (Table 4).

Associations between STAT4 genotype status and type-

1AIH phenotype
To examine the associations between HLA-DR and type-1
AIH, HLA-DR allele typing was performed in patients with type-1

PLOS ONE | www.plosone.org

Control . AIH
(%) (%) pvalue® OR (95%C})

Genotype 0.001
frequencies

G/C 109(474)  103(44.8)

Allele 0.001

C 149(324)  197(42.8) 1.563(1.195-2.046)

Abbreviation: AlH; autoimmune hepatitis, OR; odds ratio, Cl; confidence interval,
STAT4; signal transducer and activator or transcription.

2Genotype frequencies were determined by 2 test using 2x3 contingency
tables between patients with AlH and healthy controls. Allele frequencies were
determined by %2 test using 2x2 contingency tables between patients with AlH
and healthy controls.

doi:10.1371/journal.pone.0071382.t003

AIH. In the analysis of HLA-DR alleles, the frequencies of DR %04
allele was significantly increased in type-1 AIH patients as
compared with those in controls (Table 5). The STAT4
rs7574865 T allele and HLA-DR *04 allele for the progression
to liver cirrhosis were subjected to multivariate logistic regression
analysis. Neither HLA-DR *04 allele nor rs7574865 T allele did
not contribute to the progression to liver cirrhosis (data not
shown). Based on the significant association of the rs7574865 with
susceptibility to type-l1 AIH, we also performed a detailed
genotype-phenotype analysis using the clinical data. However,
we found no significant difference in the presence of autoantibod-
ies (ANA or ASMA) and the peak levels of transaminases or total
bilirubin (AST, ALT, TB) by laboratory tests among each
genotype (data not shown).
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Table 4. STAT4 rs7574865 polymorphism in patients with type-1 AlH without. other autoimmune diseases.

Control (%)

AlIH without other
autoimmune diseases (%)

p-value® OR (95%Cl)

Genotype frequencies

GG lo3aas)
G/T 108(47.0)

a0
89(46.6)

Allele
314(68. (589)
T 146(31.7) 157(41.1)

0.008

0.005
1.501(1.131~1.992)

doi:10.1371/journal.pone.0071382.t004

Discussion

AIH reflects a complex interaction between triggering factors,
environmental factors, genetic predisposition and the immune
regulatory network [3]. Most knowledge concerning the genetic
factors of ATH comes from studies of the HLA genes [4,5]. Although
multiple genes are probably involved, HLA genes appear to play a
dominant role in the predisposition to AIH [27]. Genetic factors
other than HLA genes that can affect the susceptibility of AIH are
mainly polymorphisms in genes that encode proteins that affect
cytokine pathways responsible for modulating immunity [27-29].
Although autoimmune diseases include a wide array of different
organ involvement and symptoms, they all share a common
component: the loss of immune tolerance toward “self antigen”
[30]. Findings in recent genetic studies support the emerging
concept that distinct clinical autoimmune diseases may share genetic
susceptibility factors. STAT4 is a critical transcription factor

Abbreviation: AlH; autoimmune hepatitis, OR; odds ratio, Cl; confidence interval, STAT4; signal transducer and activator or transcription.
“Genotype frequencies were determined by %2 test using 2x3 contingency tables between patients with AlH and healthy controls. Allele frequencies were determined
by %2 test using 2x2 contingency tables between patients with AlH and healthy controls.

involved in the regulation of Th1/Th2 cytokine balance [12].
STAT% polymorphisms have been found to be associated with
various autoimmune diseases [8-10].

This study is the first to investigate a detailed correlation
between STAT4 gene polymorphisms and susceptibility to type-1
AIH in a Japanese nationwide AIH cohort study. In the current
study, we confirmed an association of STAT4 polymorphisms with
susceptibility to type-1 ATH. Our data suggest that STAT4 may be
an “autoimmune disease susceptibility gene” and support the
concept of deregulated pathways across multiple autoimmune
diseases. In addition to their influence on autoimmune disease
susceptibility, STAT# polymorphisms can also influence disease .
phenotypes. For example, rs7574865 in SLE patients was
associated with severe discase manifestations, such as nephritis,
high double stranded-DNA antibody production and younger age
of disease onset. [31] For patients with systemic sclerosis, this
polymorphism was associated with the presence of pulmonary

Table 5. Distribution of HLA-DR alleles distribution in patients with type-1 AlH.
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HLA-DRB1 allele was assessed by cis-square test. The probability values were corrected (Pc) for multiple testing (Bonferroni correction).

August 2013 | Volume 8 | Issue 8 | e71382

-214-



fibrosis [32]. Therefore, we examined possible associations
between STAT# and the clinical phenotype of type-1 AIH.
However, we did not find evidence of association between STAT4
polymorphisms and disease progression or phenotype of type-1
ATH.

Regarding the disease-developing effect of genetic variants in
the STATZ region on type-1 AIH observed in our study, it might
be interesting to determine whether the STATZ risk alleles have
different expression levels or functional effects in different effector
cells [33]. The susceptibility SNP rs7574865 is located within
intron 3 of STAT4, a non-coding region. It is suspected that it may
influence the gene expression of STAT4 at the level of
transcription or splicing variation [34]. A recent study reported
that the expression level of STAT4 in peripheral blood mononu-
clear cells correlated with the risk allele of STAT4 rs7574865 [33].

This might indicate the effects of different STAT4 gene variants on -

STAT4 expression levels. To date, the main alternative spliced
isoforms of STAT4 are STAT4a and STAT4P. STAT4P is a
shorter form of the full-length STAT40 and is not as efficient as
STAT4a for the direct induction of IFN-y gene expression
activated by IL-12 in Thl cells [35]. However, expression of
STATH4B, lacking the transactivation domain, was not affected by
the STAT4 SNPs [33]. Additionally, a significant inverse
correlation with T-risk alleles at rs7574865 and the methylation
status of the STAT4 promoter was demonstrated in inflammatory
bowel disease [36]. The STATI gene is located adjacent to STAT4
suggesting it is also a candidate susceptibility gene for autoimmune
disease [37]. To examine the role of the STAT1-STAT4 region,
52 tag SNPs encompassing this region in Japanese lupus patients
[38]. The SNPs rs11889341 and rs10168266 were in linkage
disequilibrium (LD) with 1rs7574865 and were significantly
associated with SLE [38]. In contrast, significant association was
not detected for SNPs in the STATI region [38].

AIH pathogenesis are more complex than the traditional
dichotomous Th1/Th2 paradigm, where STAT4 represents a
transcription factor that induces IL-12, IL-23 and type 1 IFN-
mediated signals to Thl and Thl7 differentiation, monocyte
activation and interferon-y production [39]. STAT4 is important
for IL-22 production, which plays a pathological role in IL-17-
dependent hepatitis [40].

A recent study showed that G allele at rs7574865 was associated
with increased risk for HCC, suggesting dual roles of STAT4 in
autoimmune diseases and HBV-related HCC [41]. Interestingly,
subjects with GG genotype at rs7574865 had the lowest mRINA
levels of $TAT4 in both HCC and non-tumor tissues compared
with TG and TT genotypes [41]. Considering the role of STAT4
in Thl immune responses, rs7574865 polymorphisms may affect
the hepatic immune response against auto-antigen or viral antigen,
contributing to the susceptibility of these related disorders. Further
studies will be needed to examine the different possible mecha-
nisms by which the variant haplotypes contribute to AIH.

The current study was limited because there were relatively
small numbers of patients, and because some of the phenotypes
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Abstract Severe alcoholic hepatitis has a high mortality
rate due to limited therapeutic methods. Although corti-
costeroids have been used to control the inflammatory
response, the outcomes vary and no standardized therapy
has been established. Novel therapeutic approaches, such
as anti-TNF-a, pentoxifilline, and others have been tested
clinically on the basis of their cytokinemic pathophysiol-
ogy with limited success. However, treatment of leukocy-
tosis that causes cytokinemia and hepatic inflammation in
patients via granulocytapheresis and leukocytapheresis
showed promising results in a number of reports. Here, we
report two cases of severe alcoholic hepatitis treated with
granulocytapheresis. The liver function and inflammation
recovered after the therapy. A review of 35 cases treated
with granulocytapheresis and leukocytapheresis demon-
strated their efficacy in treating alcoholic hepatitis by
controlling leukocytosis as well as cytokines such as IL-8.
Multidisciplinary treatment for severe alcoholic hepatitis
should be considered case by case on the basis of the
complexity and severity of the condition.

Notice The clinical course of case 1 is from Kamimura K et al.
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Introduction

Severe alcoholic hepatitis (SAH) is an acute inflammatory
response to the endotoxin results in leukocytosis, neutrophil
infiltration in the liver, severe hepatic injury, renal failure,
hepatic encephalopathy, pneumonia, and others [1, 2]. This
inflammation causes increased plasma levels of pro-inflam-
matory cytokines, including TNF-o, IL-6, and IL-8. In addi-
tion, increased neutrophil elastase enhances the production of
pro-inflammatory cytokines by macrophages. To date, corti-
costeroids [1, 3] have been used in cases with high cytokinemia
and anti-TNF-o antibody [4], and pentoxifilline [5] has been
considered as a new therapeutic option; however, the results of
clinical trials have not revealed any significant therapeutic
effects. In cases that demonstrate a poor response to cortico-
steroids, liver transplantation is often considered [6]; however,
due to ethical issues, including alcoholic relapse, these patients
are not considered as good candidates for the procedure [7].
Granulocytapheresis (GCAP) and leukocytapheresis (LCAP)
have been used in the treatment of ulcerative colitis, and since
our first report in 2002 [8], they have been considered as a
therapeutic option for SAH to control leukocytosis, neutrophil
infiltration in the liver, and the cytokinemia [8-18]. The use of
this strategy has improved the prognosis of SAH from 32.6 %
in the 1990s to 62.9 % during 20042008 in Japan on the basis
of an analysis conducted in 1,234 medical institutes [19]. In
this report, we reviewed two cases of SAH treated with GCAP
and demonstrated the recovery of their liver function, as well as
35 cases reported to date, treated with GCAP or LCAP for
further understanding of this disease and the efficacy of these
therapeutic options. On the basis of the available data, we
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showed that GCAP and LCAP yield a prognosis of approxi-
mately 60 % mortality, which is consistent with the recent rate
of SAH in Japan [2, 19]. Because the etiology of SAH results
from an increase in the endotoxin due to the infection, the
administration of corticosteroid should be carefully considered.
Therefore, the treatment of leukocytosis by GCAP or LCAP,
supporting hepatic function by plasma exchange (PE), inhib-
iting systemic cytokinemia by hemodiafiltration (HDF), corti-
costeroid, anti-TNFo antibody, and pentoxifilline will
contribute to improve the prognosis of this disease. We con-
clude that multidisciplinary therapy is necessary depending on
the complexity and severity of the patients’ condition.

Case Reports

Case 1

A 59-year-old Japanese woman presented at our hospital
with loss of appetite, jaundice, abdominal distention, and

pretibial edema in January 2000. She had been taking
alcohol every day, equivalent to approximately 150 mg of
ethanol for 40 years and her daily consumption had
increased to approximately 200 mg 3 months prior to
admission. Physical examination revealed fever, jaundice,
ascites, pretibial edema, and marked hepatomegaly. Labo-
ratory test results revealed significantly increased levels of
white blood cell [WBC; 20,160/uL (neutrophils 90.5 %)],
direct bilirubin (D-Bil; 23.4 mg/dL), aspartate aminotrans-
ferase (AST; 81 IU/L), lactate dehydrogenase (LDH,;
483 TU/L), y-glutamyl transpeptidase (GGTP; 282 IU/L),
creatinine (Cre; 1.3 mg/dL), and c-reactive protein (CRP;
7.8 mg/dL). The decrease in albumin (Alb) and prothrom-
bin time (PT) to 2.2 g/dL. and 40 %, respectively, was
revealed. No other marker of viral hepatitis and autoim-
mune hepatitis was notably changed. Importantly, signifi-
cant increase in IL-6 (61.2 pg/mL), IL-8 (608 pg/mL), and
neutrophil elastase (122 pg/L) was observed (Fig. la, b).
There was no increase in tumor markers, including carci-
noembryonic antigen, carbohydrate antigen 19-9, alpha-
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Fig. 1 Summary of case 1. a Laboratory data upon admission.
b Time courses of WBC, IL-8, IL-6, and neutrophil elastase. Black
arrows represent granulocytapheresis (GCAP) treatment. ¢ Computed
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fetoprotein, and prostate-specific antigen. Ultrasonography
(US) revealed severe fatty infiltration of the liver with
ascites, and contrast-enhanced computed tomography (CT)
revealed inflammation of the liver with a diffuse low den-
sity area indicating severe fatty infiltration (Fig. 1c).

Clinical Course

On the basis of the above mentioned findings, a diagnosis of
severe alcoholic hepatitis (SAH) was made for case 1
according to the Diagnostic Criteria for Alcoholic Liver
Disease set by Takada et al. [20]. A possible bacterial
infection was evidenced by elevated WBCs, high grade
fever, and elevated CRP. Thirteen sessions of GCAP were
performed to treat granulocytosis (Adacolumn, JIMRO,
Takasaki, Japan), plasma exchange (PE) and hemodiafiltra-
tion (HDF) to treat the activated cytokines, along with
administration of ulinastatin and antibiotics instead of corti-
costeroids. The WBC counts, cytokine levels, and neutrophil
elastase gradually decreased (Fig. 1b) followed by a decrease
in ascites and recovery of her appetite. The CT image
showed marked improvement of the fatty infiltration
(Fig. 1d). She showed severe ventricular fibrillation on day
37 after admission, probably due to alcoholic cardiomyopa-
thy that caused cerebral ischemia, and she expired on day 68.

Case 2

A 45-year-old Japanese woman presented at our hospital
with fever, loss of appetite, diarrhea, jaundice, abdominal
distention, and pretibial edema in November 2011. She had
been taking alcohol every day, equivalent to approximately
230 mg of ethanol for 25 years. Her appetite significantly
decreased in October 2011, and she was unable to drink
any alcohol since that time. Physical examination revealed
fever, jaundice, ascites, pretibial edema, and marked
hepatomegaly. No neurological findings were seen. Labo-
ratory test results revealed significantly increased levels of
WBC [39,880/uL (neutrophils 89.5 %)], D-Bil (14.9 mg/
dL), AST (96 IU/L), and CRP (11.1 mg/dL). Decreased
platelet counts (33,000/uL.), Alb (1.7 g/dL), and PT (42 %)
were also revealed. No other marker of viral hepatitis and
autoimmune hepatitis was notable. As in case 1, a signifi-
cant increase in IL-6 (79 pg/mL), IL-8 (279 pg/mL), and
neutrophil elastase (290 pg/L) was observed (Fig. 2a, b).
There was no increase in tumor markers. The US and CT
showed significant hepatic inflammation along with severe
fatty infiltration (Fig. 2c).

Clinical Course

Case 2 was diagnosed with SAH according to the Diag-
nostic Criteria for Alcoholic Liver Disease set by Takada

et al. [20], similar to case 1. However, her fatigue was
significant, which prevented GCAP. Therefore, she
received intravenous infusion of the neutrophil elastase
inhibitor, sivelestat sodium hydrate, along with the
administration of ulinastatin, antibiotics, and fresh frozen
plasma on days 2-16 after admission. However, when no
improvement was seen in the physical findings, WBC
counts, and cytokines (Fig. 2b), GCAP and HDF were
initiated on days 21-26 with the informed consent of the
patient and her family. Her fatigne and WBC counts
improved, and the level of IL-6, IL-8, and neutrophil
elastase significantly decreased after the treatment. The CT
image showed significant improvement of the fatty infil-
tration in the liver (Fig. 2d). However, the patient condition
took a sudden turn for the worse and she expired on day 30.
Bleeding from the pleural wall was evident upon autopsy.

Discussion

Alcoholic hepatitis (AH) is an acute manifestation of
alcoholic liver injury and the majority of cases recover
following basic treatment including the abstinence from
alcohol, nutritional support, and others [1]. Among the
various pathophysiologies of AH, SAH demonstrates poor
response to these basic treatments resulting in a poor
prognosis [1, 2]. Due to the lack of an effective treatment,
SAH has a high mortality rate, reportedly up to 35 % at day
28 without effective treatment [21]. Horie et al. also
reported that the survival rate within 100 days of hospi-
talization in Japan was 32.6 and 23.8 % in the 1990s and
the 1980s, respectively, on the basis of Takada’s criteria
[20]. However, an increased understanding of the patho-
physiology of this disease has led to the clinical testing of
various therapeutic options [2-5, 19].

The key etiology of SAH is the malfunction of the Ku-
pffer’s cells due to chronic alcoholic liver damage, which
causes penetration of the endotoxin into the systemic circu-
lation through the hepatic parenchyma followed by the
inflammatory response, leukocytosis with extensive neutro-
phil infiltration in the liver, severe hepatic cell necrosis,
multiple organ failure including renal failure, pneumonia,
encephalopathy, and others [22, 23]. This inflammation cau-
ses increased plasma levels of pro-inflammatory cytokines,
including TNF-o, IL-6, and IL-8. In addition, increased
neutrophil elastase enhances pro-inflammatory cytokine pro-
duction by macrophages. Therefore, although limited, treat-
ment options for patients with SAH are often multitargeted to
treat the inflammatory response, leukocytosis, and cytokin-
emia. Corticosteroids have been used to treat the inflamma-
tory response in cases with high levels of Maddrey’s
discriminant function (DF) [24]; however, no significant
improvement has been seen in long-term prognosis [25, 26].
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Fig. 2 Summary of case 2. a Laboratory data upon the admission. b Time courses of WBC, IL-8, IL-6, and neutrophil elastase. Black arrows represent
granulocytapheresis (GCAP) treatment. ¢ Computed tomography (CT) before GCAP treatment. d CT after the four sessions of GCAP treatment

Recently, anti-TNF-o antibody and pentoxifylline have been
used in the United States of America and Europe to control
TNF-0; however, the clinical outcomes vary among the
institutions [4, 5]. GCAP and LCAP may control the activated
leukocytes both in the systemic circulation and in the liver
tissue. Activated leukocytes release inflammatory cytokines
and therefore it is a reasonable hypothesis to state that the
control of the number of cells may result in the treatment of
cytokinemia and the inflammatory response. A number of
cases have been treated with GCAP or LCAP, especially in
Japan [8~18] (Table 1) since our first report in 2002 [8]. A
literature review of 35 cases shown in Table 1 clearly
revealed that the control of leukocytosis improved survival to
approximately 60 % compared with 32.6 % in Japan in the
1990s before the introduction of GCAP or LCAP, and cur-
rently the survival rate in Japan is 62.9 % since 2004 [2, 19,
20]. Horie et al. [2] reported the survival and mortality rates
with and without the different therapeutic options, including
corticosteroid, plasma exchange, hemodialysis, and granulo-
cytapheresis, and also showed that GCAP is statistically
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associated with improved survival. In addition, the patients
with leukocytosis evidenced by WBC counts higher than
10,000 showed a statistically higher survival rate with GCAP
(p < 0.0007) [2]. On an average the WBC counts decreased
approximately 29 % after 2.95 sessions of GCAP or LCAP.
Morris et al. [17] reported less effective results in six cases in
Europe; however, the patients received only one session of
GCAP in their course and leukocytosis was not adequately
treated. The serum level of IL-8 reported in 11 cases showed
a 71 % decrease after the treatment, indicating that control-
ling leukocytosis improved cytokinemia. Due to the limited
number of cases reported, there is no significant correlation
with the prognosis based on statistical analysis. However,
because the serum IL-8 has been reported to be correlated
with the severity of liver injury and leukocytosis in AH
patients and it may serve as a predictor of survival in the
patients [27], the results support the efficacy of GCAP and
LCAP for treatment of SAH. The level of IL-6 also showed a
tendency to decrease; however, the values varied and the
serum level of TNF-o was not available. No major adverse
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Table 1 Summary of reported cases treated with GCAP and LCAP

Case no. GCAP/  Session PE HDF Corticosteroid Silvelestat Ulinastatin Outcome Before After Decrease  Before After Decrease Before After Decrease  Cause of death

[Ref. no.} LCAP WBC WBC (%) IL-8 -8 (%) IL-6 IL-6 (%)

1[9] LCAP 2 + = + - - D 71,600 20,300 71.6 492 87.9 82.1 49.1 8.1 83.5 Pneumonia

2 [8] GCAP 13 +  + —- - + D 20,160 10,200 49.4 608 104 82.9 61.2 9.5 84.5 Stroke

3 [10] GCAP 2 - - + - - A 26,900 ~8,000 703 70.4 484 313 19.3 8.9 53.9

4 (111 GCAP 2 + o+ - - -+ A (T) 12,040  ~10,000 16.9 205 45.6 778 21.1 57.5 —172.5

5 [12] GCAP 5 - - + + + A 38,700 20,000 48.3 300 ~50 83.3 65 ~10 84.6

6 [13] LCAP 5 +  + - - - A 14,800 5,000 66.2 31.8 3.7 88.4 355 8.7 97.5

7 {14) GCAP 4 + + - + A 72,700 5,000 65.5 658 / / 53.3 / /

8 [15] GCAP 3 - - + — + D 42,600 ~70,000 —64.3 ~2506 ~130 48.0 ~5 ~25 —400.0 Pancreatitis, Pneumonia

9 {15} GCAP 2 - - + - + A 27,000 ~5,000 815 ~70 ~20 714 ~20 ~5 75.0

10 [15] GCAP 2 - - + - — A 23,800 ~12,000 49.6 ~85 ~20 76.5 ~50 ~5 90.0

11 [15] GCAP 2 -+ -+ - - D 16,000 ~10,000 37.5 ~80 ~20 75 ~300 ~500 —66.7 Cerebral hemorrhage

12 [15] GCAP 3 - - + - - A 18,600 / / / / / / / /

13 [15] GCAP 1 + o+ + - - D 11,600 / / / / / / / / SMA thrombosis, GI
tract perforation

14 [16] GCAP 4 + o+ + - - A 27,400 18,400 32.8 / / / / / /

15 [17] GCAP 1 - - + - - D 16,900 ~20,000 -18.3 / / / / / / Variceral bleeding

16 [17] GCAP 1 - = + - - D 12,900 ~6,000 535 / / / / / / Multiple organ failure

17 [17] GCAP 1 - - + - - D 25,800 ~25,000 3.1 / / / / / / Pneumonia

18 [17] GCAP 1 - - + - e D 24,700 ~30,000 -21.5 / / / / / / Multiple organ failure

19 [17] GCAP 1 - - + - - A 16,700 ~17,000 ~-1.8 / / / ! / /

20 [17] GCAP 1 - - + - - D 14,500 ~13,000 103 / / / / / / Multiple organ failure

21 [18]) GCAP / + o+ + / / A 27,400 / / / / / / / /

22 [18] GCAP / - = - / / A 17,600 / / / / / / / /

23 [18] GCAP / - = - ! / A 23,300 / / / / / / / /

24 [18] GCAP / - - - / / A 39,300 / / / / / / / /

25 {18} GCAP / + - - ! / A 31,800 / / / / / / / /

26 (18] GCAP / + - + / / A 33,700 / / / / / / / /

27 [18) GCAP / - = - / / A 17,500 / / / / / / / /

28 [18) GCAP / - - - / / A 12,300 / / ! / I ! / /

29 [18] LCAP / - - + / / A 39,100 / / / / / / / /

30 [18] GCAP / + o+ + / / A 31,600 / / / / / / / /

31 [18] GCAP / I + / / A 78,000 / / / / / / / /

32 [18] GCAP / - - - / / D 32,000 / / / / / / / /

33 [18) GCAP / + + + / / D 25,900 / / / / / / / /

34 [18] GCAP / +  + + / / D 20,100 / / / / / / / /

35 GCAP 6 -+ - + - D 39,880 14,000 64.9 396 156 60.6 478 102 78.7 Pleural bleeding

GCAP granulocytapheresis, LCAP leukocytapheresis, PE plasma exchange, HDF hemodiafiltration, WBC white blood cell, Before before GCAP/LCAP, After after GCAP/LCAP, D died, A alive, T transplantation
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