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lower doses.*® The Japanese Chronic Heart Failure (J-CHF)
study, however, assessed 3 doses of carvedilol (2.5, 5, and
20 mg/day), but dose dependency in mortality and morbidity
was not confirmed.®® Surrogate markers of chronic HF prog-
nosis, however, include LVEF,# BNP,*? and HR,* and the
J-CHF noted that decreases in BNP and HR were dose depen-
dent.® Despite the fact that the present results were not statis-
tically examined because of the small number of patients,
large SD, and confounding by treatment duration, the present
week 12 results for LVEF, BNP, and HR do not contradict the
notion of dose-dependent improvement. Clearly, further inves-
tigation of the efficacy of carvedilol CR doses >40mg/day is
warranted in Japanese chronic HF patients.

The present results suggest that dose dependency of de-
crease in HR, which has been identified as a prognostic factor
in HE,* will last to 80 mg carvedilol CR in Japanese patients
(data not shown). This finding is consistent with a study by
Konishi et al, who noted a significant decrease in HR among
110 Japanese patients assigned to a low-dose carvedilol regi-
men for 18 months.*5 Moreover, in a meta-analysis of HF -
blocker trials, McAlister et al observed a relationship between
the extent of the reduction in HR, not the dose of S-blocker,
and the magnitude of increased survival.#> HR reduction is
regarded as a marker of sympathetic suppression. Thus, given
the dose dependency of the reduction in HR, uptitration to a
dose of 60 or 80mg of carvedilol CR might be more effica-
cious in Japanese patients with chronic HF.

The limitations of the present study were the small number
of enrolled patients and the absence of a comparison group. In
addition, because the primary goal of the study was to confirm
the safety and tolerability of a once-daily dose of 10-40mg
carvedilol CR, the present findings regarding efficacy and PD
should be regarded as preliminary. Additional studies are
needed to examine the tolerability, safety, and efficacy of a
once-daily dose of 10-80mg carvedilol CR.

Conclusions

The characteristics of AEs did not substantially differ in
patients receiving the CR and IR formulations of carvedilol. In
addition, no new safety issues emerged in patients receiving
carvedilol CR in contrast to those known in carvedilo] IR.
With increasing doses up to 80 mg once daily of carvedilol CR,
exposure to plasma S(-)-carvedilol increased in an approxi-
mately dose-proportional manner. Seven of 19 patients receiv-
ing carvedilol CR reached a daily dose of 80mg. Thus, further
investigation of the tolerability, safety, and efficacy of carve-
dilol CR doses up to 80mg/day is warranted in Japanese
patients with chronic HF.
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Methods
and results
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We investigated the influence of type one cannabinoid receptor (CB1) deficiency on acute heart, failure (AHF) and
the underlying mechanism. Acute heart failure syndrome is an important clinical problem because of its high morbid-
ity and mortality rates. Activation of CB1 induces vascular diation and reinforces the properties of morphine, long-
standing therapies for AHF syndrome, but the effect of endogenous CB1 activation on AHF is largely unknown.

............................................................................................................................................................

Acute heart failure mouse model characterized by hypertension and pulmonary oedema was created by using trans-
verse aortic constriction (TAC). Mortality, echocardiography, haemodynamic, morphology, and circulatory catechol-
amine levels in response to TAC were evaluated in CB1 knockout (KO) and wild-type mice. Type one cannabinoid
receptor KO mice had a much higher mortality rate at 1 week after TAC attributable to AHF (65 vs. 11%, P < 0.001).
One hour after TAC, CB1 KO mice had significant larger lung weight to body weight ratio (LW/BW,
14.53 + 1.09 mg/g in KO vs. 10424036 mg/g in WT, P<0.01) and higher plasma epinephrine levels
(9720 + 1226 pg/mL vs. 6378 -+ 832 pg/mlL, P < 0.05). Pharmacological activation of CB1 reduced LW/BW in
wild-type mice. Administration of epinephrine to wild-type TAC mice significantly increased left ventricular end-dias-
tolic pressure and LYW/BW, while CB1 agonists reduced the LW/BW and the plasma levels of catecholamine and
increased myocardial activity of AMP-activated protein kinase.

.........................................................................................................................................................

Conclusion Endogenous activation of CB1 in mice has cardiac protection in AHF, which is attributable to the inhibition of exces-
sive sympathetic activation.
Keywords Cannabinoid receptor e Acute heart failure e Catecholamine ¢ Mortality e Mouse
. . L . 45
EE‘B@E"'@ duction 2 (CB1 and CB2, respectively) exist in the cardiovascular system.

Recent published literature has addressed the influence of CB1

Patients with cardiovascular diseases are increasingly hospitalized
due to acute heart failure syndromes (AHFS). However, traditional
therapies for AHFS, such as oxygen, loop diuretics, nitrates, and
morphine have significant limitations, and the mortality rate
remains relatively high,' indicating the need to develop more effec-
tive treatments. Cannabinoids have not only neurobehavioural, but
also cardiovascular effects.>? Both of cannabinoids receptors 1 and

activation on the uncommon forms of heart failure induced by
hepatic cirrhosis or doxorubicin,® however, the influence of
endogenous CB1 activation on the classical AHFS remains poorly
understood.

Type one cannabinoid receptor agonists have been shown to
exhibit a vasodilatory effect,” inhibit the release of neurohormonal
factors,® improve myocardial energy metabolism,” and suppress
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vasopressin-induced vasoconstriction.'® More importantly, it was
reported that a CB1 antagonist increased the acute mortality
rate after myocardial infarction in rats.'" These findings raise
the possibility that CB1 signalling may play an important role in
AHFS.

In the present study, we hypothesized that activation of CB1
might be beneficial for AHF. To verify this hypothesis, we first
established a murine model of AHF mimicking the clinic profiles
of pulmonary oedema and high blood pressure, and then investi-
gated the influence of the CB1 activity in AHF by studying the
cardiac changes in CB1 knockout (KO) mice and the influence of
CB1 agonists or antagonists on heart function in wild-type (WT)
mice as well as the underlying mechanism.
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Agents :
WIN 552122 (WIN), and AM 251, [N-(piperidin-1-yl)-5-(4-
iodophonyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxa-
mide], were purchased from Tocris Bioscience (Ellisville, MO).
2-Arachidonyl glycerol (2-AG) was purchased from Sigma RBI. Epineph-
rine was purchased from Sigma Chemical Company (see Supplemen-
tary material online).

Transverse aortic constriction model

All procedures were performed in accordance with our institutional
guidelines for animal research that conformed to the ‘Position of the
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American Heart Association on Research Animal Use’ adopted by the
AHA on 11 November 1984. Type one cannabinoid receptor(—/—),
CB1(+/+) or C57 mice were used. Development of mice lacking
CB1 was previously described by Ledent et al? Male C57BL/6 mice
(7 weeks old and weighing 20-24g) or ICR or CBT1 mice (5-7
weeks) were anaesthetized with pentobarbital sodium (50 mglkg).
To induce acute pulmonary oedema, transverse aortic constriction
(TAC) was performed as described elsewhere,' degree of aortic ste-
nosis was controlled by the size of the banded needle which was with-
draw after aortic ligation and confirmed by the pressure gradient
across the banded site (Figure 1A), which was usually >50 mmHg at
the 3rd day after TAC in our laboratory. .

Transthoracic echocardiography was performed with a Sonos 4500
and a 15-6 L MHz transducer (Philips, the Netherlands) and invasive
assessment of haemodynamic was carried out using a Millar catheter
(see Supplementary material online).

Measurament of catecholamine and
endocannabinoids and blood cell counts
Plasma catecholamine (epinephrine, norepinephrine, and dopamine)
were measured by SRL, Inc. (Kyoto, Japan) using high-performance
liquid  chromatography = (HPLC).  Anandamide (AEA) and
N-oleoylethanolamine (OEA) in the heart and lung samples HPLC—
tandem mass spectrometry (HPLC/MS-MS) (see Supplementary
material online).

Circulating blood cell counts (red cells, leucocytes, and platelets)
were measured using a Sysmex KX-21 hematology analyzer (Sysmex,
Japan) (see Supplementary material online, Methods).

Cell culture and immunoblotting

Ventricular myocytes were isolated from neonatal rats at 2—3 days of
life and cultured. Proteins were prepared from cultured cardiomyo-
cytes or whole hearts of mice. Then immunoblotting was performed
using mouse antibodies directed against phosphorylated
AMP-activated protein kinase (AMPK), which recognizes the AMPK
pan-subunit phosphorylated at Thr-172, or AMPK (Cell Signaling).
Immunoreactive bands were visualized by the enhanced chemilumines-
cence method (Amersham) and then were quantified by densitometry
with Scion Image software.

Knoclkdown of rat type one cannabinoid
receptor using siRNA and real-time PCR
Neonatal rat cardiomyocytes at 50—-70% confluence were transfected
with CB1 siRNA (designed and synthesized by B-Bridge International,
Inc.) with Optifect (Invitrogen Co.). SIRNA for CB1 was transfected at
66 nM at 4—6 h after plating of cells into a 60-mm culture dish. The
siRNA sequences were 5'-ggg aag aug aac aag cuu a-TT (sense) and
5-uaa gcu ugu uca ucu ucc c-TT (antisense), while the control
siRNA was uag cga cua aac aca uca a~dTdT.

Real-time PCR for fatty acid amide hydrolase (FAAH) and the
monoacylglycerol lipase (MAGL) in heart and lung was performed
using a Quantitect SYBR Green RT-PCR kit (DRR420A Takara,
Japan) (See Supplementary material online, Methods).

Statistical analysis

The SPSS 16.0 (Chicago, USA) software was used for analysis. The
unpaired and paired t-tests were used for comparisons between two
groups and between different conditions within the same group,
respectively. One-way ANOVA with post hoc analysis by the
Tukey—Kramer exact probability test was employed for multiple com-
parisons. Survival analysis was performed using Kaplan Meier curves

with Log-rank test for comparison between the groups. Results
were expressed as the mean + SEM and P < 0.05 was considered to
indicate statistical significance. All the tests-were two-sided.

Results

Confirmation of acute heart filure model
One hour after TAC, left ventricular systolic pressure (LVSP)
was increased to ~170 mmHg in both ICR and C57 mice
(Figure 1B). Left ventricular end-diastolic pressure (LVEDP) was
increased by more than 2 folds, dp/dt min was dramatically
reduced, and the exponential time constant of relaxation (tau)
was markedly extended (Figure 1B—E), indicating a diastolic
AHF was successfully induced by TAC. Lung weight/body
weight ratio (LW/BW) was significantly increased by ~90% in
both ICR and C57 TAC mice (Figure 1F), indicating an acute pul-
monary oedema occurred.

Higher mortality of type one cannabinoid
receptor deficiency mice in response to
transverse aortic constriction

The survival curve showed that nearly 65% of CB1 KO mice vs.
11% of WT mice died during the first week after TAC

A Kaplan—Meier survival estimates
1,00 memreery
S | e e
A S A P T E
22 0751
.g : Log rank: Chi-square 25.145, P< 0.001
% 2 0.50
o 5 Y
£ T
S0
E 025
© [—HO (n=65) -=~~WT (n=35)|
0.004
T T T - :
0 2 4 6 8

Analysis time (days)

Lung weight/body
weight (ing/g)

Figure 2 Effect of type one cannabinoid receptor deficiency on
1-week survival and cause of death in response to transverse
aortic constriction. (A) Kaplan—Meier stirvival curves for mice
subjected to transverse aortic constriction. N = 35 and n = 65
in the type one cannabinoid receptor wild-type and type one can-
nabinoid receptor knockout groups, respectively (P < 0.001,
Log-rank test). (B) Representative picture of lung with pulmonary
oedema and haemorrhage. Scale bar =3.mm. (C) The lung
weight/body weight ratio for both the wild-type (n=4) and
knockout (n = 42) mice died of acute heart failure,
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(Figure 2A). By daily observation of the mice and performing @ was usually higher than 12 mg/g (more than two folds of the
autopsy of the dead animals, we found that acute pulmonary : normal value) in mice that died of AHF. These results indicate
oedema was the major cause of death, as indicated by the presence ©  that CB1 activation is crucial to protect the heart from acute pul-
of pulmonary haemorrhage/oedema (Figure 2B). The LW/BW ratio monary oedema.
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Acute cardiac effects of type one
cannabinoid receptor inactivation or
activation

When the mice were subjected to TAC and sacrificed after 1h,
we found that the CB1 KO mice developed more severe
pulmonary oedema. There was a significant difference of LW/
BW ratio between the KO and WT mice (nearly 40%
larger in KO group than in WT group, Figure 3A and B),
suggesting that CB1 plays an important role in pulmonary
oedema.

We then examined echocardiograph and LV haemodynamic
arameters of cardiac function. At 10 min after TAC, CB1 KO
mice showed a significant decrease of LV fractional shortening
(LV dimensions and wall thickness are showed in Supplementary
material online, Figure S7), whereas no significant change was
observed in WT mice (Figure 3C). At 30 min after TAC, the
extent of pressure overload (ie. the LVSP) was similar
between CB1 KO mice and WT mice (Figure 3D), but, CB1
KO mice had a lower LV dp/dt max (reduced by 30%) and
dp/dt min (reduced by 50%), a lower contractility index, and a
larger tau (Figure 3E). These data indicated that CB1 inactivation
was detrimental to both systolic and diastolic cardiac function in
the context of pressure overload.
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Type one cannabinoid receptor deficiency
promotes catecholamine release in
response to transverse aortic constriction
At one hour after TAC, catecholamine was elevated significantly
in both KO and WT mice (Figure 3F—H), but CB1 KO mice had
much higher epinephrine (152% of WT) and norepinephrine
(231% of WT) levels than WT mice (Figure 3G and H).
The decrease in CB1 activity dependent dopamine release may
be one of the reasons for the lower plasma concentration
of . dopamine following TAC in CB1 KO mice than in WT
mice, which was in agreement with previous studies.”” It was
plausible that the extremely high epinephrine and norepi-
nephrine levels in CB1 KO mice might have contributed to
their high mortality. V

Influence of epinephrine on left
ventricular haesmodynamic and
pulmonary oedema

In both normal and TAC wild-type mice, LYEDP was significantly
elevated after intraperitoneal injection of epinephrine at 2 mg/kg
(Figure 4B). Epinephrine increased the LVSP, heart rate, and LV
contractility index more markedly in normal mice than in TAC
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Figure 4 Acute effect of epinephrine on left ventricular haemodynamic and pulmonary oedema. (A) Left ventricular; systolic pressure. (B) Left
ventricular end-diastolic pressure. (C) Examples of left ventricular pressure recording. (D) The left ventricular contractility index. (E) Heart rate.
#p < 005, *p < 0.01, compared with the respective baseline values (0). N =7 in each group. Epinephrine (2 mg/kg) was intraperitoneal
injected. (F) Epinephrine (2 mglkg, ip.) significantly increased lung weight to body weight ratio at 1 h after transverse aortic constriction
(n=16,9, and 7 in the Sham, transverse aortic constriction, and transverse aortic constriction + epinephrine group). #p < 0.05, *P < 0.01.
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mice (Figure 4A and C—E), suggesting that excessive sympathetic
activation led to suppression of cardiac diastolic function. We
further confirmed that epinephrine exaggerated acute pulmonary
oedema in TAC mice indicated by a 25% increase of LW/BW
(Figure 4F).

Effects of type one cannabinoid receptor
inactivation on haemodynamic, blood cell
counts and endocannabinoids system

Genotyping results are showed in Figure 5A. Intraperitoneal injection
of CB1 agonist WIN exerted no effect on systolic blood pressure in
CB1 KO mice while it decreased blood pressure markedly in WT
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mice (Figure 5B), and greater suppression of heart rate was also
noted in WT mice (Figure 5C), indicating a vascular dilatory effect
and a negative chronotropic character of CB1 activation.

No significant differences on peripheral blood celt counts were
found between WT and KO mice in either sham or TAC groups
(Figure 5D). Cardiac FAAH expression level was higher in WT
sham group than in KO sham group (P < 0.05), which was down-
regulated in WT TAC group (P < 0.05), whereas there was no sig-
nificant difference between KO sham and KO TAC groups
(Figure 5E). Pulmonary FAAH expression level was a little lower
but with statistical significance in WT TAC mice than in WT
sham mice (P <<0.05) (Figure 5F). Monoacylglycerol lipase gene
expression in hearts of WT TAC mice was significantly lower
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N-oleoylethanolamine (H)-contents in hearts and lungs (pg/mg), n = 4 per group. *P < 0.01, *P < 0.05.
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than in KO TAC mice (P << 0.01) (Figure 5E), while no significant
differences were found on pulmonary MAGL expression among
the four groups (Figure 5F) (also see Supplementary material
online, Figure 52).

We further measured endogenous cannabinoids in heart and
lung samples and found that there were no significant differences
on AEA and OEA contents between WT and KO sham mice.
Different from WT mice, both AEA and OEA contents in lung
tissues were significantly decreased in KO mice after TAC (P <
0.05) (Figure 5G and H).

Type one cannabinoid receptor agonists
rescue acute heart failure

We next tested the effects of two CB1 agonists WIN and 2-AG
and a selective CB1 antagonist (AM251) on acute pulmonary
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oedema. These drugs were administrated before the perform- -
ance of TAC. One hour after TAC, we sacrificed the mice
and evaluated the LW/BW ratio. Treatment with either WIN
(0.2 mg/kg) or 2-AG (5 mg/kg) significantly reduced LW/BW
by ~30 and 40%, respectively (P <0.05 and 0.01), while the
administration of AM251 (0.3 mg/kg) increased it by 10%
(Figure 6A). We also evaluated the effect of CB1 activation on
catecholamine and LV function. In WT TAC mice, WIN did
not suppress cardiac systolic function (Figure 6B), but caused a
significant decrease in LVEDP by ~60% (P < 0.01), an index
of pulmonary congestion, and also slowed the heart rate
(Figure 6C and D).

In addition to the preventive use of CB1 agonists, we further
evaluated their therapeutic effect on pulmonary congestion. One
hour after the TAC, WIN, 2-AG, or AM251 was given to the
mice at the same dosage as above described and LW/BW was

aTAC
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m
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Figure 6 Effect of type one cannabinoid receptor activation on pulmonary oedema and heart function. (A) WIN 55, 212-2 (WIN) (0.2 mg/kg,
i.p.) or 2-arachidonyl glycerol (5 mgfkg, i.p.) significantly reduced the lung weight to body weight ratio at 1 h after transverse aortic constriction.
The type one cannabinoid receptor antagonist AM251 (0.3 mg/kg, i.p.) tended to increase pulmonary oedema. n = 16,9, 5, 6, and 6 in the Sham,
transverse aortic constriction, transverse aortic constriction 4+ WIN, transverse aortic constriction + 2-arachidonyl glycerol, and transverse
aortic constriction + AM251 group, respectively. (B) At 10 min after transverse aortic constriction, no significant difference on left ventricular
fractional shortening was found between transverse aortic constriction and WIN -+ transverse aortic constriction groups. (C) Effects of pre-
treatment with WIN on left ventricular systolic pressure and left ventricular end-diastolic pressurée. (D) WIN treatment decreased the
heart rate. (E) WIN treatment decreased maximal LV pressure rise rate. P < 0.05, *P < 0.01, compared with the transverse aortic constriction

group, n =5 in each group.
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measured 24 h later. We noted that WIN and 2-AG reduced LW/
BW by ~28 and 30%, respectively (P < 0.05), while the adminis-
tration of AM251 increased it by 13% (P > 0.05. Supplementary
material online, Figure S4).

Effects of type one cannabinoid réceptw
activation on plasma catecholamine and
AMP-activated protein kinase activity

WIN reduced circulatory epinephrine by 27% and norepinephrine
by 37% in wild-type TAC mice (P << 0.01, Figure 7A). In cultured
cardiomyocytes, co-culture with WIN for 30—-60 min significantly
enhanced AMPK activity (Figure 7B), and this effect was abrogated
by knockdown of CB1 (Figure 7C). Similarly, phosphorylation of
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AMPK was also increased in WiN-treated WT sham and TAC
mice (Figure 7D and E).

Discussion

In this study, we found that CB1 plays a previously unrecognized
role in acute pulmonary oedema resulting from LV pressure over-
load. Type one cannabinoid receptor KO mice with pressure over-
load displayed high levels of catecholamine, acute
pulmonary oedema, and a high acute mortality rate, while admin-
istration of epinephrine to WT mice increased LVEDP and exag-
gerated pulmonary oedema, indicating that excessive sympathetic
activation contributed to the worsening of AHF. Since inhibition
of catecholamine release is a well-recognized effect of CB1 ago-
nists'*  and pressure overload-induced stress  stimulates

severe
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'tured heonatz ardlomyocytes (C) Effect of type one ¢annabinoid receptor knockdown on AMP:activated protein kinase activity.
AMP-activated protein. klnase phosphorylat|on in the hearts of sham (D) and transverse @ortic constriction mice (E) was also examined. Exper-
iments in (B).and (C) were repeated for three to four times, #P < 0.05, *P < 0.01, compared with the responding control group.
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sympathetic activity, it seems reasonable that high catecholamine
levels were found in CB1 KO mice after TAC. Notably, the
decrease in pulmonary endogenous cannabinoids following
pressure overload might have also contributed to the severer pul-
monary oedema in KO mice, suggesting a cardioprotection con-
ferred by endocannabinoids.

Most patients with AHFS present with pulmonary oedema and a
normal-to-high systolic blood |:>ressure,15 which is similar to our
murine model of AHF. Currently available vasodilators used to treat
AHFS include nitroglycerin, nitroprusside, and nesiritide, which
were reported to ameliorate symptoms and improve clinical status,
but did not decrease the mortality rate.'®™"® Our results in the
present study that mortality of AHF was increased in CB1 deficient
mice and pulmonary oedema was improved by CB1 agonists in WT
mice would raise new hope for the treatment of acute heart failure.

Beneficial effects of cannabinoids have been observed in various
critical cardiovascular diseases such as septic shock, myocardial ischae-
mia/reperfusion injury, or myocardial infarction."*=%* A wealth of
data have shown that cardiovascular beneficial effects could be
mediated by activation of either CB2 or CB1 227 however, deleter-
jous actions of CB1 activation on doxorubicin-induced cardiac dysfunc-
tion have also been rePO|"ted.26’28 Emerging evidence shows that
selective CB1-receptor blockade with rimonabant significantly pro-
motes reduction in weight and favourable changes in cardiometabolic
risk factors,””>° which are at least in part attributable to blocking the
role of cannabinoids on appetite stimulation.®® Several recent pub-
lished reports from almost the same laboratories have suggested that
CB1 antagonist rimonabant is protective in some non-classical forms
of heart failure induced by hepatic cirrhosis and doxorubicin.?8*%* It
should keep in mind that those forms of heart failure are largely differ-
ent from the classical types. On the other hand, similar to beta 1
blocker, CB1 agonists have negative inotropic effect, thus it is not sur-
prising that CB1 activation reduced myocardial contractility in hepatic
cirrhosis or doxrubicine-induced heart failure 323 Lim et al3*
reported that rimonabant reduced infarct size in wild-type mice, but
in-untreated mice, infarct size was similar between CB1 KO and wild-
type groups, suggesting that rimonabant has CB1-independent cardio-
protective role. Paradoxically, a recent published large clinical trial
(RESCENDO) showed that rimonabant did not improve major vascu-
lar event-free survival in obesity patients with previously manifest or
increased risk of vascular disease at a mean follow-up of 14
months,* which is by coincidence in agreement with previous exper-
imental studies.” It seems plausible that agents for reducing cardio-
vascular risk factors are not necessarily effective for treatment of overt
cardiovascular disease. Noticeably, a recent review of endocannabi-
noid effects on the heart by Hiley*® shows that it is not possible yet
to define CB1 activation simply as protective or injurious to the cardi-
ovascular system, though the balance does seem to favour a protective
role. Therefore, extensively studies to address this issue should be

_encouraged.

Pulmonary congestion is one of the main reasons for admission
and readmission in patients with AHFS. The pathophysiology may
be dominated by hypertension and neurohormonal activation
resulting in increased LV filling pressure. Our murine model of
AHF was characterized by hypertension and neurohormonal acti-
vation as well as pulmonary oedema. This study implicated that
endogenous activation of CB1 seems to meet at least three ideal

properties for an AHFS therapy: (i) improve pulmonary conges-
tion, (ii) improve haemodynamic, and (jii) improve the neurohor-
monal profile. Other pharmacological properties of CB1
activation may also favour AHFS, for example, limiting damage to
the heart,®%
cardiomyocytes as showed in this study and elsewhere,” reinfor-
cing properties of morphine,? a long-standing therapy for AHFS
recommended by Practice Guidelines.®” For patients with AHFS,
in addition to optimal therapy, metabolic modulators are an attrac-
tive choice of co-treatment. AMP-activated protein kinase acti-
vation is an important preventative therapeutic target for the
progression of heart failure.®3* We postulate that CB1 agonists
may exert additional benefit for the failing heart by improving
energy metabolism through enhancement of AMPK activity.

Accumulated evidence shows that endocannabinoids seem to be
produced ‘on demand’* Our findings in this study suggest that
endocannabinoids fulfill a protective role in AHF. Therefore,
pharmacologically manipulation of endocannabinoid levels might
be a possible therapeutic approach for AHFS.

stimulating AMP-activated protein kinase activity in

Supplementary material

Supplementary material is available at European Heart Journal
online.
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Activation of Natural Killer T Cells Ameliorates Postinfarct
Cardiac Remodeling and Failure in Mice

Mochamad Ali Sobirin, Shintaro Kinugawa, Masashige Takahashi, Arata Fukushima, Tsuneaki Homma,
Taisuke Ono, Kagami Hirabayashi, Tadashi Suga, Putri Azalia, Shingo Takada, Masaru Taniguchi,
Toshinori Nakayama, Naoki Ishimori, Kazuya Iwabuchi, Hiroyuki Tsutsui

Rationale: Chronic inflammation in the myocardium is involved in the development of left ventricular (LV)
remodeling and failure after myocardial infarction (MI). Invariant natural killer T (iNKT) cells have been shown
to produce inflammatory cytokines and orchestrate tissue inflammation. However, no previous studies have
determined the pathophysiological role of iNKT cells in post-MI LV remodeling.

Objective: The purpose of this study was to examine whether the activation of iNKT cells might affect the

development of LV remodeling and failure.

Methods and Results: After creation of MI, mice received the injection of either a-galactosylceramide (aGC;
n=27), the activator of iNKT cells, or phosphate-buffered saline (n=31) 1 and 4 days after surgery, and were
followed during 28 days. Survival rate was significantly higher in MI+aGC than MI+PBS (59% versus 32%,
P<0.05). LV cavity dilatation and dysfunction were significantly attenuated in MI+aGC, despite comparable
infarct size, accompanied by a decrease in myocyte hypertrophy, interstitial fibrosis, and apoptosis. The infiltration
of iNKT cells were increased during early phase in noninfarcted LV from MI and aGC further enhanced them.
It also enhanced LV interleukin (IL)-10 gene expression at 7 days, which persisted until 28 days. AntienIL-10
receptor antibody abrogated these protective effects of aGC on MI remodeling. The administration of aGC into
iNKT cell-deficient Jo18~~ mice had no such effects, suggesting that aGC was a specific activator of iINKT cells.

Conclusions: iNKT cells play a protective role against post-MI LV remodeling and failure through the enhanced

expression of cardioprotective cytokines such as IL-10.

(Circ Res. 2012; 111:1037-1047.)

Key Words: natural killer T cells B myocardial infarction ® inflammation B heart failure ® cytokines

yocardial infarction (MI) leads to the development of

heart failure (HF), which is the major cause of death
in post-MI patients. The changes in left ventricular (LV) ge-
ometry, such as cavity dilatation associated with myocyte hy-
pertrophy and interstitial fibrosis, referred to as remodeling,
contribute to the development of depressed cardiac function in
HF after MI.! It has been reported that monocytes and lympho-
cytes are infiltrated in noninfarcted area as well as infarcted
area of LV after MI.2* Chemokines, monocyte chemoattrac-
tant protein-1 (MCP-1), and RANTES (regulated on activation
normally T-cell expressed and secreted), are essential factors
in the recruitment and activation of monocyte and lymphocyte.
These chemokines are also increased in noninfarcted LV after
MI and contribute to local inflammation through the release

of inflammatory cytokines including tumor necrosis factor-o
(TNF-.).** Targeted deletion of CC chemokine receptor 2 or
anti-MCP-1 gene therapy has been shown to attenuate LV re-
modeling after MI.%> Thus, chronic tissue inflammation plays
an important role in LV remodeling process.

Invariant natural killer T (iNKT) cells are innate-like
T-lymphocyte population coexpressing NK markers and an
afp T-cell receptor that recognize glycolipid antigens. They
can rapidly and robustly produce a mixture of T-helper type
1 (T,1) and T2 cytokines, such as TNF-q, interferon-y
(IFN-v), interleukin (IL)-10, and IL-4, and also a vast array
of chemokines in shaping subsequent adaptive immune re-
sponse.® Thus, iNKT cells can function as a bridge between
the innate and adaptive immune systems, and orchestrate
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Non-standard Abbreviations and Acronyms

aGC a-galactosylceramide

HF heart failure

IFN-y interferon-y

L interleukin

iNKT invariant natural killer T

Lv left ventricle

MCP-1 monocyte chemoattractant protein-1

Mi myocardial infarction

MMP matrix metalloproteinase

NK natural killer

PBS phosphate-buffered saline

gRT-PCR  quantitative reverse transcriptase—polymerase chain reaction

RANTES  regulated on activation normally T cell expressed and
secreted

T1 T-helper type 1

T2 T-helper type 2

TNF-a tumor necrosis factor-o.

tissue inflammation. Indeed, we have shown that iNKT cells
activate vascular wall inflammation in atherogenesis and adi-
pose tissue inflammation in obesity-induced glucose intoler-
ance.™ On the other hand, iNKT cells play a protective role
against autoimmune and inflammatory diseases such as type
1 diabetes,>!° allergic encephalomyelitis,>!! and rheumatoid
arthritis.”” These findings suggest that iNKT cells may have
bidirectional effects on tissue inflammation. However, no pre-
vious studies have examined the changes of iNKT cells and
their pathophysiological role in LV remodeling and failure
after MIL

Therefore, the purpose of the present study was to de-
termine whether iNKT cells might affect the development
of LV remodeling and failure after MI. We demonstrated
that the activation of iNKT cells by a-galactosylceramide
(aGC), a specific activator for iNKT cells,? attenuated the
development of LV remodeling and failure after MI in mice.
The enhanced gene expression of IL-10 might be involved
in these beneficial effects of iNKT cells on this disease
process.

Methods
All procedures and animal care were approved by our institutional an-
imal research committee and conformed to the animal care guideline
_ for the Care and Use of Laboratory Animals in Hokkaido University
Graduate School of Medicine.

Experiment 1: Time-Dependent Changes of iNKT
Cell Receptors in Post-MI Hearts

Animal Models

MI was created in male C57BL/6]J mice, 6 to 8 weeks old and 20
to 25 g body weight, by ligating the left coronary artery as de-
scribed previously.' Sham operation without ligating the coronary
artery was also performed as control. MI mice were euthanized
and the hearts were excised at days 3, 7, 14, and 28 for quantita-
tive reverse transcriptase—polymerase chain reaction (QRT-PCR)
measurements.

Quantitative RT-PCR
Quantitative PCR for Val4Jal8 (a specific marker of iNKT cells)
was performed, as described previously.®

Experiment 2: Effects of iNKT Cell Activation on
Post-MI Heart Animal Models

Sham and MI mice were created in male C57BL/6J as described
in experiment 1. Each group of mice was randomly divided into 2
groups; either aGC(0.1 pg/g body weight; Funakoshi Company, Ltd,
Tokyo, Japan), the activator of iNKT cells, or phosphate-buffered
saline (PBS) was administered via intraperitoneal injection 1
and 4 days after surgery. The concentration of aGC was chosen
based on the previous study of its efficacy.® Thus, the experiment
was performed in the following 4 groups of mice; sham+PBS
(n=10), sham+aGC (n=10), MI+PBS (n=31), and MI+aGC
(n=27).

Survival

The survival analysis was performed in all 4 groups of mice. During
the study period, the cages were inspected daily for dead animals. All
dead mice were examined for the presence of MI as well as pleural
effusion and cardiac rupture.

Echocardiographic and Hemodynamic Measurements
Echocardiographic and hemodynamic measurements were per-
formed under light anesthesia with tribromoethanol/amylene hydrate
(avertin; 2.5% wt/vol, 8 pL/g ip), as described previously.'

Myocardial Histopathology, Infarct Size, Myocardial
Apoptosis, and Matrix Metalloproteinase Zymography
Myocyte cross-sectional area, collagen volume fraction, infarct size,
myocardial apoptosis, and zymographic matrix metalloproteinase
(MMP) levels were determined as described previously. !4

Isolation of Cardiac Mononuclear Cell and

Flow Cytometry

Cardiac mononuclear cells from 3 mice were isolated, pooled, and
subjected to flow cytometric analysis as previously described.”'s

Quantitative RT-PCR

Quantitative PCR for Val4Jol8, CD1lc (a marker of M1 mac-
rophages), arginase-1 (a marker of M2 macrophages), MCP-1,
RANTES, IFN-vy, IL-4, IL-6, TNF-q, and IL-10 was performed, as
described previously.®

Immunohistochemistry

LV sections were immunostained with antibody against mouse MAC3
(a macrophage marker), mouse CD3 (a T-cell marker), or mouse my-
eloperoxidase (a leukocyte marker), followed by counterstaining with
hematoxylin.

Plasma Cytokine Concentration

Plasma IL-10, TNF-o, IFN-y, IL-6, and IL-4 levels were measured
by commercially available ELISA kit (R&D systems, Inc) in all
groups.

Experiment 3: Effects of IL-10 Neutralization on

aGC-Treated Post-MI Hearts

MI mice were divided into the following 3 groups; MI+0GC (n=18),
MI+anti-IL-10 receptor antibody (n=12), and MI+0oGC+anti—
IL-10 receptor antibody (n=19). aGC was administered identi-
cally as in experiment 2. Anti~IL-10 receptor antibody (500 pg/
mouse, BD Pharmingen, San Diego, CA) was administered via
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intraperitoneal injection 1, 4, and 14 days after surgery. The con-
centration of anti-IL-10 receptor antibody was chosen based on
the previous study of its efficacy.””> Four weeks after surgery, echo-
cardiographic and hemodynamic measurements were performed.
Separate groups of mice were used in the MI+aGC group in
experiment 2.

Experiment 4: Specificity of aGC for NKT Cells
Val4* NKT cell-deficient Jo.187 (Jal8 KO) mice were provided
by Dr M. Taniguchi (RIKEN, Yokohama, Japan) and back-crossed
10 times to C57BL/6J."7 Sham and MI mice were created in
male Ja18 KO mice as described in experiment 1. Each group of
mice was treated identically to experiment 2. Thus, the experi-
ment was performed in the following 4 groups; KO+sham+PBS,
KO-+sham+0GC, KO+MI+PBS, and KO+MI+0GC. One week after
surgery, all mice (n=9 for each group) were euthanized and used
for immunohistochemistry (n=3 for each group) and for qRT-PCR
(n=6 for each group). These analyses were performed as described
in experiment 2.

Statistical Analysis
Data are expressed as mean+SEM. Survival analysis was performed
by the Kaplan-Meier method, and between-group differences in sur-
vival were tested by the log-rank test. A between-group compari-
son of means was performed by 1-way ANOVA, followed by ¢ test.
The Bonferroni correction was applied for multiple comparisons of
means. P<0.05 was considered statistically significant.

The authors had full access to and take full responsibility for the
integrity of the data. All authors had read and agreed to the manu-
script as written.

Results

Experiment 1: Time-Dependent Changes of iNKT
Cell Receptors in Post-MI Hearts

The quantification of iNKT cells by Va14/Ja.18 gene expres-
sion demonstrated that iNKT cell infiltration into the nonin-
farcted LV was significantly enhanced at 7 days (1.7+0.2-fold
changes from baseline, P<0.05 versus baseline) after MI and
returned to baseline at 14 and 28 days after MI (1.0+0.2- and
1.120.1-fold changes from baseline, respectively). In the
infarcted LV, its gene expression was significantly elevated
7 days and remained elevated 28 days after MI (data not
shown).

Experiment 2: Effects of iNKT Cell Activation on
Post-MI Hearts

By using flow cytometric analysis, iNKT cells were detected
in LV from all groups of mice (Figure 1A). aGC injection
increased iNKT cells infiltration into the noninfarcted LV
both in sham+aGC and MI+aGC mice after 7 days (Figure
1A). Moreover, it remained enhanced at 28 days in MI+aGC
(Figure 1A).

Quantitative RT-PCR also demonstrated that gene expres-
sion of Val4/Jal8, a marker of iNKT cell infiltration, was
significantly elevated in the noninfarcted LV from sham+aGC
and MI+aGC mice after 7 days (Figure 1B). Interestingly, it
remained significantly increased at 28 days only in MI+aGC
(Figure 1B).
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Figure 1. A, Representative flow cytometric assessment

of cardiac mononuclear cells obtained from sham+PBS,
sham+aGC, MiI+PBS, and Ml+oGC at days 7 and 28. Cardiac
mononuclear cells from 5 different mice for each group were
pooled and analyzed. The experiments were performed 3

times. iNKT cells were gated as the 0 GC-loaded dimer X
tetramer*TCR-f* population. The inset numbers are a percentage
of the gated region of the samples. B, Gene expression of Va14/
Ja18 in noninfarcted LV from sham+PBS, sham+aGC, MI+PBS,
and Ml+oGC 7 days (n=6) and 28 days (n=4) after surgery. They
were normalized to GAPDH gene expression and expressed as
ratio to sham+PBS values. Data are expressed as mean+SEM.
*P<0.05 versus sham+PBS, tP<0.05 versus MI+PBS.
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PBS aGC PBS aGC

Survival

There were no deaths in sham-operated groups. The survival
rate during 28 days was significantly higher in MI+aGC com-
pared with MI+PBS mice (59% versus 32%; P<0.05; Figure
2A). Thirteen MI+PBS (42%) and 8 MI+aGC (30%) mice
died of LV rupture (P=NS).
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Figure 2. A, Percent survival of sham+PBS (n=10),
sham+oGC (n=10), MI+PBS (n=31), and MI+aGC (n=27)
mice shown by Kaplan-Meier method. B, Representative M-
mode echocardiographic images obtained from sham+PBS,
sham+aGC, MI+PBS, and Mi+aGC. AW indicates anterior wall;
PW, posterior wall; EDD, end-diastolic diameter.
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Table 1. Echocardiography, Hemodynamics, and Organ Weights in Experiment 2

Sham-+PBS Sham-+0.GC MI+PBS Ml+aGC
(n=10) (n=10) (n=10) (n=16)
Echocardiography
Heart rate, bpm 522+10 522+12 531+16 520+13
LVEDD, mm 3.4+01 3.4+0.04 54+0.1* 5.0+0.1*F
LVESD, mm 2.1+0.03 2.1+0.04 4.5+0.1* 41014 .
FS, % 38.2+0.7 38.3+0.6 16.5+0.6* 18.8+0.6*t
AWT, mm 0.63+0.01 0.62+0.01 0.31+0.01* 0.30+0.01*
PWT, mm 0.68+0.02 0.68£0.01 0.97+0.01* 0.96+0.02*
Hemodynamics
Heart rate, min 507+9 499+9 485+23 495x11
Mean AoP, mm Hg 78.1x2 77.7+2 75.0+3 79.3+1
LVEDP, mm Hg 1.7+0.3 2.3+0.1 10.7+1.1* 6.6+0.6"1
LV +dP/dt, mm Hg/s 15 625623 14 972+398 73524697 9386476t
LV —dP/dt, mm Hg/s 9983697 9130691 5045+482* 5861=+286"
Organ weights
Body wt, g 25.1+0.3 24.9x0.2 24.5+0.4 24.8+0.3
Heart wt/body wt, mg/g 46+0.1 4.5+0.1 .6.8+0.2* 6.1+0.1*F
Lung wt/body wt, mg/g - 5.2+0.03 5.2+0.1 7.2+0.7* 5.9+0.2t
Infarct size, % 56+2 55+1

LVEDD indicates left ventricular end-diastolic diameter; LVESD, left ventricular end-systolic diameter; FS,
fractional shortening; AWT, anterior wall thickness; PWT, posterior wall thickness; AoP, aortic pressure; LVEDP, left
ventricular end-diastolic pressure; wt, weight. Data are mean+SEM.

*P<0.05 versus sham+PBS.
1P<0.05 versus MI+PBS.

Echocardiography and Hemodynamics

The echocardiographic and hemodynamic data from 4 groups
of survived mice at 28 days are shown in Figure 2B and Table 1.
There were no significant differences in either echocardio-
graphic or hemodynamic parameters between sham+PBS and
sham+aGC mice. LV diameters were significantly greater and
LV fractional shortening was significantly lower in MI mice
than sham mice. These changes were ameliorated by the treat-
ment of MI mice with aGC. There were no significant differ-
ences in heart rate or aortic blood pressure among groups. LV
end-diastolic pressure (LVEDP) was significantly increased,
and LV +dP/dt and LV —dP/dt were significantly decreased in
MI compared with sham, which was ameliorated by the treat-
ment of MI mice with aGC.

Organ Weights, Infarct Size, and Histology

There were no significant differences in heart weight/body
weight and lung weight/body weight between sham+PBS
and sham+aGC mice (Table 1). In agreement with LVEDP,
heart weight/body weight and lung weight/body weight were
increased in MI mice, and these increases were significantly
attenuated in MI+a.GC (Table 1). '

Infarct size measured by the morphometric analysis was
comparable (56+2% versus 5521%; P=NS) between MI+PBS
(n=6) and MI+c¢.GC (n=6) groups (Table 1).

Histomorphometric analysis of noninfarcted LV sections
showed that myocyte cross-sectional area was increased in
MI+PBS compared with sham mice and was significantly at-
tenuated in MI+aGC (Figure 3A). Collagen volume fraction

was also increased in MI+PBS compared with sham mice and
was significantly attenuated in MI+aGC (Figure 3A).

There were rare TUNEL-positive nuclei in both sham and
sham+aGC mice. The number of TUNEL-positive myocytes
in the noninfarcted LV was increased in MI+PBS and was sig-
nificantly decreased in MI+aGC (Figure 3B). -

Myocardial MMP Activity
Representative gelatin zymography of the noninfarcted LV
tissue at day 7 from 4 groups of mice was shown in Figure
4A. There were no zymographic MMP-2 and 9 levels in the
sham+PBS and sham+oaGC. Zymographic MMP-2 level
was significantly increased in MI+PBS mice compared with
sham mice at day 7. aGC injection significantly decreased
this after MI (Figure 4B). Zymographic MMP-9 Ievel
was also increased in MI+PBS mice compared with sham
mice at day 7, which, however, was not affected by aGC
(Figure 4C).

Zymographic MMP-2 level was increased in MI+PBS
mice also at day 28, and o.GC injection tended to decrease it
(3.7+1.1 versus 2.1+0.8 in ratio to sham, P=0.08).

Inflammatory and Cytokine Gene Expression
Immunohistochemical stainings for MAC3 and CD3 were in-
creased in MI+PBS compared with sham+PBS and were fur-
ther increased by aGC at day 7 (Figure 5). MPO-positive cells
were not detected in the LV tissue from either group of mice
(data not shown).
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Figure 3. A, Representative high-power photomicrographs of LV cross sections stained with Masson trichrome from sham+PBS
(a), sham+aGC (b), Mi+PBS (c), and Ml+aGC (d) and summary data of myocyte cross-sectional area and collagen volume fraction
in 4 groups of mice (n=6). Scale bar, 20 um. B, Representative photomicrographs TUNEL staining of LV sections from MI+PBS (a)

and Ml+aGC (b) and summary data for the number of TUNEL-positive cells in the noninfarcted LV (n=6). Scale bar, 20 um. Data are
expressed as mean+SEM. *P<0.05 versus sham+PBS, 1P<0.05 versus MI+PBS.

CD11c (a marker of M1 macrophage) and arginase 1 (a
marker of M2 macrophage) gene expressions were significa-
ntly increased in noninfarcted LV from MI+PBS compared
with sham+PBS at day 7 (Figure 6A and 6B). aGC signifi-
cantly increased their expressions in both sham and MI ani-
mals at day 7. Arginase 1 but not CD11c was increased in
noninfarcted LV from MI+PBS and MI+aGC at day 28.
There was no significant difference in arginase 1 between
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these 2 groups. MCP-1 and RANTES gene expressions were
increased in noninfarcted LV from MI+PBS compared with
sham+PBS at day 7 (Figure 6C and 6D). oGC significantly
increased their expressions in both sham and MI animals at
day 7. In contrast, there was no significant difference in their
expressions among all groups at day 28.

IFN-y, TNF-a, IL-6, and IL-10 gene expression levels
were significantly increased in sham and MI mice by aGC at
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Figure 4. Representative LV zymographic MMP-
2 and MMP-9 activities in noninfarcted LV at 7
days after surgery (A) and their densitometric
analysis (B and C; n=5 for each). P indicates
positive control. Data are expressed as mean+SEM.
*P<0.05 versus sham+PBS, 1P<0.05 versus
MI+PBS.
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Figure 5. Representative photomicrographs of LV cross sections stained with (A, upper panel) anti-MACS3 and (B, upper panel),
anti-CD3 in sham+PBS, sham+aGC, MI+PBS, and Ml+oGC. Summary data of the numbers of (A, lower panel) MAC3 and (B, lower
panel) CD3-positive cells in the LV (n=4-8 for each). Data are mean+SEM. *P<0.05 versus sham+PBS, 1P<0.05 versus Mi+PBS.

day 7 (Figure 6E through 6H). IL-10 gene expression alone
significantly elevated up to 2.6-fold in the noninfarcted
LV from MI+aGC mice at day 28 (Figure 6H). These
time-dependent and aGC-mediated changes in IL-10 gene

expression (Figure 6H) in the LV were matched with those’

in NKT cell infiltration (Figure 1B). IL-4 was not detected
in either group.

Plasma Cytokine Concentration

PlasmalIL-10level was similar among sham+PBS, sham+aGC,
and MI+PBS groups (9.0+0.5 versus 9.8+2.3 versus 10.6+2.3
pg/mL). However, in parallel to IL-10 gene expression in
the LV, it significantly increased up to 2-fold in MI+aGC
(21.1+2.3 pg/mL) compared with sham and MI+PBS mice
(P<0.05). Plasma IFN-y level was similar among 4 groups of
mice (1.4+0.3 versus 1.7+0.3 versus 0.9+0.2 versus 1.0+0.2
pg/mL, P=NS). Plasma TNF-q, IL-6, and IL.-4 levels were not
detected in either group.

Experiment 3: Effects of IL-10 Neutralization on
aGC-Treated Post-MI Heart Survival

The survival rate during 28 days tended to be higher in
MI+aGC than in MI+anti-IL-10 receptor antibody and
MI+aGC+anti—JL-10 receptor antibody (66.7% versus 44.4%
and 42.1%, P=0.4).

Echocardiography and Hemodynamics
The echocardiographic and hemodynamic data from 3 groups
of surviving mice are shown in Table 2. IL-10 receptor

antibody injection significantly increased LV diameters,
LVEDP, and decreased LV fractional shortening in aGC-
treated MI mice. In contrast, there were no differences in
these parameters between MI+anti—IL-10 receptor antibody
and MI+aGC+anti-IL-10 receptor antibody. There was no
significant difference in heart rate and aortic blood pressure
among 3 groups.

Organ Weights and Infarct Size
In agreement with LVEDP, lung weight/body weight ratio
was significantly increased in MI+aGC+anti—IL-10 recep-
tor antibody compared with MI+aGC (Table 2). There were
also no differences in these parameters between MI+anti—
IL-10 receptor antibody and MI+aGC+anti—IL-10 receptor
antibody. ; '

Infarct size was comparable (56+2%, 54+2%, and 56+4%;
P=NS) among MI+aGC (n=8), MI+anti—IL- 10 antibody (n=8),
and MI+aGC+anti—IL-10 receptor antibody (n=8) groups.

Experiment 4: Specificity of aGC for iNKT Cells

Immunohistochemical stainings for MAC3 and CD3 were
increased in KO+MI+PBS compared with KO+sham+PBS.
In contrast to the results from wild-type (Figure 5), aGC
did not alter them (Online Figure I). MPO-positive cells
were not detected in the LV tissue from either group of mice
(data not shown). MCP-1 and RANTES were increased in
KO+MI+PBS compared with KO+sham+PBS and were
not affected by aGC (Online Figure IIA and B). There was
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no difference in TNF-o. and IL-10 in the LV tissue from either
group of mice (Online Figure IIC and D). These data suggest
that aGC did not directly activate other inflammatory cell, in-
duce chemokines, or produce inflammatory cytokines.

Discussion

The present study demonstrated that the activation of iNKT
cells by aGC improved survival and ameliorated LV remod-
eling and failure after MI in mice, accompanied by the de-
creases in interstitial fibrosis, cardiomyocyte hypertrophy,
and apoptosis. Furthermore, the enhanced expression of IL-10
by aGC is involved in these effects. This is the first report to
provide direct evidence for increased iNKT cells in MI and
the inhibitory effects of their activation on the development
of post-MI HF.

Day 7

Day 28

Chronic Infiltration of Inflammatory Cells
Including iNKT Cells in Post-MI Heart

In the setting of acute MI, the infiltration of inflammatory
cells such as neutrophils, macrophages, and lymphocytes is
a physiological repair process and beneficial removing dead
cardiomyocytes and leading to the repair and scar formation
of infarcted area.'® However, the chronic inflammatory re-
sponse in the noninfarcted area causes the further myocardial
damage and fibrosis, leading to the progressive impairment
of cardiac function.” We have previously demonstrated that
anti-MCP-1 gene therapy improved survival and attenuated
LV dilation and contractile dysfunction, which was associ-
ated with the decreases in macrophage infiltration and gene
expression of myocardial inflammatory cytokines.? Therefore,
chronic myocardial inflammation plays a crucial role on
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