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Figure 6. The expression of genes related to mitochondria was
decreased in Pgam2 mice. The expression of genes related to
mitochondria was analyzed using quantitative real-time PCR. The genes
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presented here are involved in {A) transcriptional regulators, (B) fatty
acid metabolism, (C) the TCA cycle, and (D) mitochondria. Peroxisome
proliferator-activated receptor o (PPARa), peroxisome proliferator-
activated receptor & (PPARS), estrogen related receptor o (ERRe),
mitochondrial transcription factor A (Tfam), carnitine palmitoyltransfer-
ase 1b (CPT-1b), isocitrate dehydrogenase 3 o (IDH3a), oxoglutarate
dehydrogenase (OgDh), succinyl-CoA synthetase o (SCS), mitochondri-
ally encoded NADH dehydrogenase 4 (ND4), alpha-subcomplex 9 of
complex | (a-s9), mitochondrial succinate dehydrogenase iron-sulfur
subunit (SDHB), iron-sulfur protein (Fe-S), cytochrome b (Cyt-b),
cytochrome ¢ (Cyt-c), cytochrome ¢ oxidase subunit Vlla (COX7a),
uncoupling protein 2 {UCP2), uncoupling protein 3 (UCP3), and
manganese superoxide dismutase (Mn-SOD) levels were decreased in
Pgam2 mice. NRF-1: nuclear respiratory factor 1; CD36/FAT: CD36/fatty
acid translocase; MCAD: medium-chain acyl coenzyme A dehydroge-
nase; Cox5a: mitochondrial cytochrome ¢ oxidase subunit Va. The
amount of target gene mRNA was normalized by 185 rRNA mRNA.
Values are the mean * SEM. Gene expression levels in Pgam2 mice
were compared with those of NTg mice. *p<<0.05 versus NTg mice
(n=12 for each group).

doi:10.1371/journal.pone.0072173.9006

weight (LW)/body weight ratio (LW/BW) of Pgam2 mice was also
higher than that of NTg mice with TAC (Figure 9B), which
suggested the presence of pulmonary congestion in Pgam?2 mice
with TAC. Fibrosis was not observed with Sirius Red staining in
Pgam? mice with the sham operation. However, the fibrotic area
in Pgam2 mice with TAC was significantly larger than that of NTg
mice with TAC (Figure 9C). Thus, Pgam2 mice developed heart
failure associated with enhanced cardiac hypertrophy and fibrosis.

We then examined the expression of genes related to
mitochondria in NTg and Pgam2 mice under sham and TAC
operations. The expression of several genes related to mitochon-
dria was decreased in NTg mice with TAC (Figure 10A-D).
Pgam?2 overexpression further decreased the expression of some
genes, such as ERRo, Tfam, medium-chain acyl coenzyme A
dehydrogenase (MCAD), Cox5a, and Cox7al, in response to TAC
(Figure 10A-D).

Discussion

We examined the effects of the persistent overexpression of
Pgam?2 on energy metabolism and stress resistance in the heart in
this study. Cardiac function at rest was normal. Uptake of the
analogs of glucose and a fatty acid, and the PCr/PATP ratio at
rest were normal in Pgam? mice. However, the persistent
overexpression of Pgam2 altered the levels of metabolites involved
in glycolysis and the TCA cycle, and the expression of genes
related to mitochondrial function at baseline. The capacity for
mitochondrial respiration decreased, and that for mitochondrial
ROS production increased in i viro experiments using isolated
mitochondria. Pgam2 mice developed systolic dysfunction upon
dobutamine infusion and pressure overload.

The Pgam protein in Pgam2 mice with TAG was 6.9-fold
higher than that in NTg mice with TAC. Pgam protein levels in
Pgam?2 mice with TAC were lower than those in Pgam?2 mice with
the sham operation, which may have been due to reduced a-MHC
promoter activity upon TAC [40]. Pgam2 mice with the sham
operation showed preserved cardiac function. Gardiac function in
NTg mice with TAC was preserved. However, Pgam2 mice with
TAC showed decreased systolic function and increased lung
weight, which indicated the development of heart failure. Pgam
protein levels were shown to increase by approximately 5-fold in a
canine model of heart failure [24]. Thus, increased Pgam protein
levels were involved in the development of heart failure under
stressed conditions.
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Figure 7. Cardiac function in response to dobutamine was impaired in Pgam2 mice. Cardiac function was analyzed by cardiac
catheterization under dobutamine infusion. (A) Representative traces of left ventricular pressures. (B) Cardiac systolic function in response to
dobutamine was impaired in Pgam2 mice. LVP: left ventricular systolic pressure; v: pg/kg/min. A two-way repeated-measures ANOVA was used to test
differences between groups in response to dobutamine infusion. Values are the mean * SEM. *p<C0.05, interaction of dobutamine doses with
differences between Pgam2 mice and NTg mice (n=10 for each group).

doi:10.1371/journal.pone.0072173.g007

Pgam? overexpression in primary mouse embryonic fibroblasts
(MEFs) increased the production of *HyO from [3-*H]glucose and
lactate production, which indicates that glycolytic flux is increased

short S v — Myc-Pgam
exposure — Pgam
Table 3. Expression of the Pgam protein in NTg or Pgam2
Pgam mice with the sham operation or transverse aortic
g constriction.
long : * — Myc-Pgam
exposure Cowmer T ——Pgam
Sham TAC
NTg Pgam2 NTg Pgam2
GAPDH
(n=4) (n=4) (n=4) (n=4)
NTg Pgam2 NTg Pgam2 Pgam/GAPDH 10 + 04 131 x23" 07201 46 xo06"
Sham TAC Values are expressed as the mean = SEM. NTg: non-transgenic mice; Pgam2:
. L ) . phosphoglycerate mutase 2 transgenic mice; TAC: transverse aortic constriction.
Figure 8. Pgam protein in NTg or Pgam2 mice with the sham or The mean value of NTg mice with the sham operation was used as a standard.
TAC operation. A representative western blot of NTg or Pgam2 mice *p<0.05 versus the same genotype with the sham operation. 1p<<0.05 versus
with the sham or transverse aortic constriction {TAC) operation. NTg mice with the same operation.
doi:10.1371/journal.pone.0072173.g008 doi:10.1371/journal.pone.0072173.t003
PLOS ONE | www.plosone.org 10 August 2013 | Volume 8 | Issue 8 | 72173

—177—



Overexpression of Pgam2 Perturbs Heart Metabolism

0
NTgPgam2NTgPgam2

NTgPgam2MTgPgam2

Sham TAC Sham TAC
FS o PWT
(%) 1.2 %

0 4
NTgPgam2NTgPgam2

Sham TAC Sham TAC
B
Heart weight / Body weight Lung weight / Body weight
(mg/g {mglg)
9. -
84 16 1
71 * )
5{—== ] -
4 8] ‘
31 4 1
NTg Pgam2 NTg Pgam2 NTg Pgam2 NTg Pgam2
Sham TAC Sham TAC
o
Sham TAC Fibrosis area

(%) wt

15

NTg

10

o 1l

NTg Pgam2 NTg Pgam?2
Sham TAC

Pgam2

Figure 9. Pgam2 mice developed systolic dysfunction and myocardial fibrosis in response to pressure overload. (A) A representative
M-mode echocardiogram is shown in the left panel. The left ventricular end-diastolic dimension (LVDd) was higher and %FS was lower in Pgam2 mice
with TAC than in NTg mice with TAC. Dd: LVDd; Ds: left ventricular end-systolic dimension; HR: heart rate; bpm: beats per minute; FS: fractional
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shortening; PWT: posterior wall thickness. (B) The heart weight/body weight ratio and lung weight/body weight ratio of Pgam2 mice were higher
than those of NTg mice with TAC. (C) Myocardial fibrosis was analyzed using Sirius Red staining. The ratio of the fibrotic area to the whole short-axis
sectional area was calculated. Myocardial interstitial fibrosis was observed in NTg mice with TAC. Myocardial fibrosis was enhanced in Pgam2 mice
with TAC. Values are the mean = SEM. *p<0.05 versus the same genotype with the sham operation. Tp<<0.05 versus NTg mice with the same
operation. # p=0.08 vs NTg mice with the sham operation. Sham-operated NTg mice: n =6; sham-operated Pgam2 mice: n=4; NTg mice with TAC:

n=8; Pgam2 mice with TAC: n=6.
doi:10.1371/journal.pone.0072173.g009

[18]. Although we did not measure the actual glycolytic flux, we
suggest that it was not changed in Pgam? hearts for the following
reasons. First, uptake of the glucose analog and G6P was not
changed, which indicates that the level of glucose that enters the
glycolytic pathway may not be changed. Second, although the
levels of metabolites just upstream and downstream of Pgam were
changed, those in the initial steps of glycolysis and of lactate, an
end product of glycolysis, remained unchanged. The intermediary
metabolites of glycolysis, such as 3PG, 2PG, and PEP, were shown
to be increased, and 3PG, 2PG, and PEP have been reported to
inhibit PFK activity in plants [38]. Indeed, PFK activity was
decreased and may have canceled the increase in Pgam enzymatic
activity. The decrease in the gene expression of the rate-limiting
enzymes of glycolysis may have also attenuated the booster effects
of Pgam?2 overexpression on glycolytic flux. The different effects of
Pgam?2 overexpression on glucose metabolism in MEFs and
murine hearts may be due to metabolic differences between
cultured fibroblasts and intact heart tissue.

The major biological function of mitochondria is ATP synthesis
via oxidative phosphorylation. In addition, mitochondria play an
important role in various cellular functions including redox
homeostasis, calcium regulation, apoptosis, and the synthesis and
catabolism of metabolites. A number of i vitro and i vivo methods
have been used to examine the various functions of mitochondria,
and have advantages and limitations [41,42]. The capacity for
ROS generation measured i vt using isolated mitochondria was
increased, while TBARS, a marker of ROS measured i vivo, did
not change in Pgam?2 mice. Mitochondrial morphology was also
normal on electron microscopic analysis. Differences in the
markers of ROS between  zitro and i viwo analyses may be
explained by other cellular factors that may have regulated the
mitochondrial functions observed i viwo, over those observed
uvitro. In addition, the abnormal functions of isolated mitochondria
in the presence of normal mitochondrial morphology have been
previously reported [43]. We speculate that, in spite of relatively
normal morphology, persistent Pgam2 overexpression perturbed
some of the functions of mitochondria and increased susceptibility
to stress.

The mechanism by which Pgam2 overexpression impairs
mitochondria is unknown and requires further investigation.
However, Pgam2 overexpression also reduces mitochondrial
respiration in MEFs [44]. One possibility is that the accumulation
of glycolytic and TCA cycle intermediates caused mitochondrial
dysfunction. Phosphoenolpyruvate (PEP) was shown to inhibit
mitochondrial respiration [45], and was 2.3-fold higher in Pgam?2
mice. Mitochondrial complex II is composed of ubiquinone
oxidoreductase and succinate dehydrogenase (SDH), which
oxidizes succinate to fumarate, reduces ubiquinone, and connects
the TCA cycle and mitochondrial respiration. TCA cycle
intermediates are known to regulate complex II activity and
ROS generation [46]. Amino acids have also been shown to
regulate mitochondrial function. The depletion of endogenous
GSH increased mitochondrial ROS [47] and decreased mito-
chondrial respiration [48]. Aspartate and betaine protected
cardiac mitochondrial function in a rat model of myocardial
infarction [49,50]. Proline and betaine were also shown to protect
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Figure 10. The expression of genes related to mitochondrial
function under the TAC operation. The expression of genes related
to mitochondrial energy metabolism was decreased in NTg mice with
TAC. The genes presented here are (A) transcriptional regulators, (B)
fatty acid metabolism, (C) the TCA cycle, and (D) mitochondria. Pgam2
overexpression further decreased the expression of some of these
genes, such as ERRa, Tfam, MCAD, Cox5a, and Cox7al with TAC. Values
are the mean = SEM. N: NTg mice. P: Pgam2 mice. *p<0.05 versus the
same genotype with the sham operation. 1p<<0.05 versus NTg mice
with the same operation. Sham-operated NTg mice: n=8; sham-
operated Pgam2 mice: n=8; NTg mice with TAC: n=10; Pgam2 mice
with TAC n=14.

doi:10.137 1//journal.pone.0072173.g010
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mitochondrial electron transport chain Complex II in plants [51].
GSH, aspartate, betaine, proline, and spermidine levels were
decreased in Pgam?2 mice.

Furthermore, the mechanism by which Pgam2 overexpression
changed the gene expression of mitochondrial proteins is currently
unknown. However, communication between mitochondria and
the nucleus may influence many cellular activities [52], and has
been referred to as “mitochondrial retrograde signaling”. Signal-
ing pathways known to be involved in this communication are the
target of rapamycin (TOR) and calcium signaling. Thus, we
speculate that mitochondrial retrograde signaling may be involved
in the impaired gene expression of mitochondrial protein;
however, further studies are required.

The effects of the persistent overexpression of Pgam2 on fatty
acid metabolism are less clear because our metabolomic analysis
was unable to measure lipids and fatty acids. However, it is likely
that the persistent overexpression of Pgam2 modified fatty acid
metabolism. The gene expression of CD36/fatty acid translocase
(CD36/FAT) was normal in Pgam2 mice (Figure 6B), which was
consistent with the normal uptake of '*I-9MPA (Figure 2A and
Table S2). However, the gene expression of GPT-1b, which is
necessary for the uptake of fatty acids by mitochondria, was
decreased. In addition, gene expression levels of PPARo, PPARS,
and ERRa were decreased in Pgam?2 mice (Figure 6A).

The heart oxidizes the most efficient fuel for respiration in order
to adapt to changes in cardiac workload, oxygen supply, and
substrate availability in an appropriate manner. The normal heart
exhibits such “metabolic flexibility”, the loss of which is
hypothesized to be involved in the development of heart failure
[53]. In this study, the persistent overexpression of Pgam2 may
have modified glucose, fatty acid, and mitochondrial metabolism,
impaired metabolic flexibility and predispose Pgam2 mice to
cardiac dysfunction under stressed conditions, such as dobutamine
infusion and pressure overload.

Myocardial fibrosis was shown to be induced by several
conditions, such as mechanical stress, myocardial ischemia, and
inflammation [54]. It has recently become clear that energy
metabolism in the cell is closely linked to inflammation [55]. For
example, proinflammatory macrophages show a shift from
oxidative phosphorylation to glycolysis, which mimics the meta-
bolic change known as the Warburg effect in cancer cells.
Mitochondrial dysfunction has been shown to induce inflamma-
tory responses [56,57]. In addition, perturbations in energy
metabolism predispose the heart to significant myocardial fibrosis
under stressed conditions [58,59]. Thus, we suggest that a
modification in energy metabolism by persistent Pgam2 overex-
pression may be one of the causes of the significant fibrosis
observed in response to pressure overload.

Limitations of this study

We did not directly measure glycolytic flux, and, instead,
estimated the flux from the results of metabolomic analysis and
uptake of a glucose analog. In addition, the findings of the present
study need to be interpreted with caution when we consider the
role of Pgam in cardiac physiology and pathophysiology for the
following reasons. First, a large amount of the Pgam protein was
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Figure S1 The antibody against Pgaml also served as
that against Pgam2 with a similar sensitivity. FLAG-
tagged murine Pgaml or Pgam? was transfected into murine
embryonic fibroblasts defective in p53. Total cellular lysates were
analyzed by western blotting. The antibodies used were anti-
Pgam] (1:1000; Abcam, Cambridge, UK; Ab2220) and anti-
FLAG (1:1000; Sigma, St. Louis, MO, USA; F1804). The similar
sensitivities of the anti-Pgam] antibody against the two isoforms of
Pgam proteins were confirmed.

(TIF)

Figure S2 Mitochondrial morphology and a marker of
ROS were normal in the heart tissue of Pgam?2 mice. (A)
Ultrastructural analysis of Pgam? mice. Electron micrographs of
histological sections of the left ventricle prepared from 12-week-old
Pgam?2 mice and non-transgenic littermates. The insets on the
right panel are high-magnification images of the indicated portions
(squares) of the images on the left. The morphology of
mitochondria in Pgam2 mice was normal. Nucl: nucleus. The
bar represents 1 pm. The density (number per 100 pm?) and the
size (um:)) of mitochondria within a cardiomyocyte were observed
by electron microscopy (lower panels). Values are the mean &
SEM (n =3 for each groups). (B) TBARS as a marker of oxidative
stress. Thiobarbituric acid reactive substances (IBARS) levels
were normal in the heart tissue of Pgam2 mice. Values are the
mean = SEM. NTg mice: n=7; Pgam?2 mice: n=8.
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Abstract Coronary artery disease and cardiac morphol-
ogy and function were evaluated in 51 patients with
hypertrophic cardiomyopathy (HCM), without typical
chest pain, using cardiac computed tomography (CT). This
study investigated the prevalence of coronary artery dis-
ease, the indicators of obstructive coronary stenosis, and
the magnitude of left ventricular (L'V) hypertrophy. The
patients’ mean coronary artery calcium score was 198.8 +
312.0 and was positively correlated with the number of
coronary risk factors (r = 0.32; P < 0.05). Of the 51
patients with HCM, 42 (82.4 %) had some degree of ste-
nosis and 8 (15.7 %) had obstructive stenosis. Noncalcified
and mixed plaques were detected in 14 (27.5 %) and 11
(21.6 %) patients, respectively. Multivariate logistic
regression revealed that diabetes was an independent
indicator of the presence of obstructive stenosis in HCM
patients. Multivariate linear regression revealed that low
estimated glomerular filtration rates and high triglyceride
concentrations were independent indicators of higher LV
mass indexes. In conclusion, cardiac CT revealed that
coronary artery disease was common among patients with
HCM. The presence of obstructive coronary stenosis and
the magnitude of LV hypertrophy were related to the pre-
sence of diabetes, triglyceride levels, and estimated glo-
merular filtration rate.
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Introduction

Hypertrophic cardiomyopathy (HCM) is a common genetic
cardiac disease with a prevalence of 0.2 %, characterized by a
small left ventricular (LV) cavity and regional myocardial
hypertrophy [1]. Many HCM patients remain stable
throughout their lives; however, a small but significant
minority experience sudden cardiac death, heart failure, or
atrial fibrillation [2-5]. Coronary artery disease is an impor-
tant cause of sudden cardiac death and heart failure, and
reportedly has adverse effects on the prognosis of patients
with HCM [6]; however, its prevalence and risk factors have
not been sufficiently evaluated in patients with HCM.

Cardiac computed tomography (CT) permits a mini-
mally invasive evaluation of coronary artery stenosis and
plaques [7-9] as well as the morphology and function of
the left ventricle and left atrium [10, 11]. Cardiac CT has
also been reported to be useful for the evaluation of
myocardial fibrosis in patients with HCM [12, 13]; how-
ever, there have only been a few reports on the evaluation
of coronary artery anatomy and cardiac morphology and
function [13-17]. We believe that the evaluation of coro-
nary plaques by cardiac CT may be useful for managing
patients with HCM because the presence of coronary artery
disease, detected by catheter-based angiography, is asso-
ciated with a worse prognosis in patients with HCM [6].
The purposes of this study were: (1) to investigate the
prevalence of coronary artery disease, and (2) to determine
the indicators of obstructive coronary stenosis and the
magnitude of L'V hypertrophy in patients with HCM, using
cardiac CT.
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Patients and methods
Patients

Between April 1, 2010 and August 31, 2012, 61 consecu-
tive HCM patients underwent cardiac CT at Nara Medical
University and Yamato-Kashihara Hospital and were
enrolled in this study. The exclusion criteria were as fol-
lows: (1) history of myocardial infarction; (2) percutaneous
transluminal septal myocardial ablation, coronary inter-
vention, or coronary artery bypass grafting; (3) typical
chest pain defined as pressure-like retrosternal pain exac-
erbated by exercise and relieved at rest or by administration
of nitroglycerin [18]; (4) structural heart disease, as evi-
denced by previous echocardiography; (5) secondary car-
diomyopathy, such as Fabry disease, amyloidosis, and
mitochondrial cardiomyopathy, which presents as an
HCM-like disease complicated by diabetes [19]; and (6)
poor image quality and insufficient clinical data. Conse-
quently, 10 patients were excluded from the analyses,
allowing the retrospective analysis of 51 HCM patients.
The present study was performed under clinical research
protocols in accordance with the Helsinki Declaration of
1975.

HCM was diagnosed by the presence of LV hyper-
trophy (wall thickness of >15 mm) on cardiac CT
images, in the absence of other cardiac or systemic
diseases that could have resulted in the hypertrophy [1].
LV outflow obstruction was defined as a peak intra-
ventricular pressure gradient of >30 mmHg by continu-
ous-wave Doppler echocardiography under resting
conditions [20].

The following cardiovascular risk factors were evalu-
ated in each patient: age, gender, presence of hyperten-
sion, dyslipidemia, diabetes mellitus, and current smoking
habits [21]. Advanced age was defined as >45 years for
men and >55 years for women. Diabetes was defined as a
nonfasting blood glucose level of >200 mg/dl, a fasting
blood glucose level of >126 mg/dl, or current treatment
with hypoglycemic agents. Dyslipidemia was defined as a
low-density lipoprotein (LDL)-cholesterol level of >140
mg/dl, a high-density lipoprotein (HDL)-cholesterol level
of <40 mg/dl, a triglyceride level of >150 mg/dl, or the
current use of a statin or fibrate. Hypertension was
defined as systolic blood pressure (BP) of >140 mmHg,
diastolic BP >90 mmHg, or the current use of an anti-
hypertensive drug for the treatment of blood pressure
elevation. Patients were defined as current smokers if they
had smoked regularly within the past 12 months. The
estimated glomerular filtration rate was calculated by the
modified formula proposed by the Japanese Society of
Nephrology [22].

@ Springer

Cardiac computed tomography

Cardiac CT was performed using a 128-slice dual-source
scanner (Somatom Definition Flash; Siemens Medical
Solutions, Forchheim, Germany) at the Nara Medical
University or using a 128-slice single-source scanner
(Somatom Definition AS+; Siemens Medical Solutions) at
the Yamato-Kashihara Hospital. $-Blockers were admin-
istered to patients with heart rates of >75 beats/min at the
Yamato-Kashihara Hospital, but not at the Nara Medical
University; nitrates were administered before the CT
examination at both sites.

First, the coronary artery calcium score was measured,
and noncontrast images were obtained with prospective
electrocardiographic (ECG) gating. Next, for coronary
angiography, a nonionic contrast medium, iopamidol
(50-70 ml; 370 mg I/ml; Iopamiron 370; Bayer-Schering
Pharma, Leverkusen, Germany), was injected at a rate of
4.0 mV/s through the right antecubital vein, followed by the
injection of 40 ml of a 50:50 mixture of saline and contrast
medium, at the same rate. The scan was performed using
retrospective ECG gating and the bolus tracking method;
images were obtained in a craniocaudal direction during a
single inspiratory breath-hold.

Cardiac CT data sets were reconstructed at a 0.75-mm
slice thickness and 0.4-mm slice increments, during the
phase with the fewest motion artifacts, to evaluate the
coronary artery, and at a 1.0-mm slice thickness and 1.0-
mm slice increments at 10 % intervals throughout the
cardiac cycle for the evaluation of cardiac morphology and
function.

Two experienced cardiologists, blinded to the patient’s
background information, analyzed each patient’s cardiac
CT images using a three-dimensional image analysis
workstation (TeraRecon Aquarius Workstation; TeraRec-
on, San Mateo, CA, USA). The coronary artery calcium
score was calculated using the Agatston method [23]. Next,
all interpretable coronary segments were evaluated for the
presence of atherosclerotic plaque, using the 17-segment
model of the American Heart Association [24]. Plaques
were classified as noncalcified plaques, calcified plaques,
and mixed plaques, as described previously [25, 26]. The
noncalcified component of a plaque was defined as a lesion
with a CT value higher than that of the neighboring soft
tissue and a CT value lower than that of the luminal con-
trast. A calcified component was defined as a lesion with a
CT value higher than that of the luminal contrast. A plaque
containing a calcified component representing <25 % of its
volume was visually categorized as a noncalcified plaque;
25-75 % as mixed plaque; and >75 % as calcified plaque.
In segments containing more than one plaque, the charac-
teristics of the most stenotic plaque were recorded. For
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Fig. 1 Representative cases of hypertrophic cardiomyopathy with hypertrophied right ventricular trabeculation in the interventricular septum (a,
arrows) and with abnormal regional left ventricular bulging (b, arrowheads)

each patient, the segment number containing each type of
coronary plaque was determined. Coronary artery stenoses
were visually classified as none (without any plaque),
nonobstructive (<50 % luminal narrowing), or obstructive
(>50 % luminal narrowing).

Cardiac morphology and function were evaluated only
in patients with normal sinus rhythm. The end-diastolic and
systolic phases were visually determined by the cinematic
display. Septal wall thickness and septum-to-lateral wall
thickness ratios were measured at the end-diastolic phase.
The location of maximal LV wall thickness, hypertrophied
right ventricular trabeculation in the interventricular sep-
tum (Fig. la, arrows), and abnormal regional LV bulging
(Fig. 1b, arrowheads) were evaluated according to the
report by Sipola et al. [27]. Next, multiplanar reformations
in the short-axis orientation (thickness, 1.0 mm; interslice
gap, 10 mm) were calculated from the axial images. LV
endocardial and epicardial contours at end-diastole and
systole, as well as left atrial (LA) endocardial contours at
end-systole, were manually traced, as previously described
[10, 11]. Pulmonary veins and LA appendages were
excluded from the left atrium at their ostia. The following
parameters were calculated using the modified Sympson
rule: left ventricular end-diastolic volume (LVEDV),
LVEDYV index, myocardial volume, LV end-systolic vol-
ume (LVESV), LVESV index, LV ejection fraction
(LVEF), maximum LA volume obtained at end-systole
(LAV), and LAYV index. LV mass was calculated by mul-
tiplying the myocardial volume by the myocardial specific
gravity (1.05 g/em®). The magnitude of the LV hypertrophy
was evaluated by calculating the LV mass index.

Statistics

We used JMP (SAS Institute, Cary, NC, USA) to analyze
the data. Data are presented as mean = standard deviation.
The Chi-square test or Fisher’s exact test was used for the
analysis of univariate associations between categorical
variables, and the Mann—-Whitney U test was used for
continuous variables. Indicators of the presence of
obstructive coronary stenosis were determined using mul-
tivariate logistic regression analysis of clinical character-
istics with a P value less than 0.1 in the univariate analysis,
and indicators of LV mass index were determined using
multivariate linear regression analysis. P < 0.05 was con-
sidered statistically significant.

Results

The study subjects consisted of 51 HCM patients (31 men
and 20 women; mean age 68.6 + 11.8 years), whose
characteristics are shown in Table 1. Hypertension, dysli-
pidemia, diabetes, and current smoking were observed in
16 (31.4 %), 28 (54.9 %), 8 (15.7 %), and 4 (7.8 %)
patients, respectively. The average number of traditional
coronary risk factors in each patient was 2.7 &= 1.1. Based
on the medical history, we noted that a family history of
HCM and coronary artery disease was present in 3 (5.8 %)
patients each. The estimated glomerular filtration rate was
slightly low (62.6 + 20.6 ml/min/1.73 m?), and the level of
plasma B-type natriuretic peptide was high (197.6 £ 250.2
pg/ml).

@ Springer

—188—



Heart Vessels

Table 1 Clinical characteristics of patients with hypertrophic cardiomyopathy

Total (N = 51) With obstructive Without obstructive P value
stenosis (n = 8) stenosis (n = 43)
Age (years) 68.6 + 11.8 70.6 £ 9.6 68.2 £ 123 0.96
Men 31 (60.8) 7 (87.5) 24 (55.8) 0.13
Body mass index (kg/m?) 243 £ 34 234 £ 47 234 £ 47 0.49
Hypertension 16 (31.4) 3(37.5) 13 (30.2) 0.69
Dyslipidemia 28 (54.9) 4 (50.0) 25 (58.1) 071
Diabetes mellitus 8 (15.7) 4 (50.0) 49.3) <0.05
Current smoking habits 4(7.8) 2 (25.0) 247 0.12
No. of coronary risk factors 27 £11 34 £09 25+ 1.1 <0.05
Laboratory findings
Fasting blood glucose (mg/dl) 110.6 + 26.3 117.9 + 232 109.4 + 269 0.3
HbAlc (%) 6.0+ 05 63+ 0.5 59+ 04 0.06
Triglycerides (mg/dl) 138.8 = 60.5 139.3 £ 51.6 136.6 £ 60.9 0.65
Total cholesterol (mg/dl) 196.3 £ 34.0 199.0 + 28.5 1952 + 346 0.68
LDL-C (mg/dl) 1144 + 29.1 113.6 £ 235 114.6 + 304 091
HDL-C (mg/dl) 534 +12.7 534 £+ 134 53.4 £ 126 0.97
Serum creatinine (mg/dl) 09402 0.9 £ 0.2 09+02 0.81
eGFR (ml/min/L732) 62.6 £ 20.6 64,3 £ 120 62.6 + 22.0 0.49
BNP (pg/ml) 197.6 + 2502 1312 +£ 773 210.9 £+ 270.7 0.69
Medical therapy
Oral antidiabetic agents 7 (13.7) 3 (37.5) 4(9.3) 0.07
ACE inhibitor 9 (17.6) 1(12.5) 8 (18.6) 1
ARB 30 (58.8) 5(62.5) 25 (58.1) 1
B-Blocker 27 (52.9) 1(12.5) 26 (60.5) <0.05
Calcium antagonist 18 (35.3) 2 (25.0) 16 (37.2) 0.7
Statinsg 13 (25.5) 2 (25.0) 11 (25.6) 1

Values are mean =+ standard deviation or number (%) of patients

HbAlIc hemoglobin Alc, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol, eGFR estimated glomerular
filtration rate, BNP B-type natriuretic peptide, ACE angiotensin-converting enzyme, ARB angiotensin receptor blocker

Cardiac CT provided evaluable coronary angiography
images for all subjects, and the coronary artery disease
analysis is summarized in Table 2. The mean coronary
artery calcium score was 198.8 &= 312.0 and was positively
correlated with a number of coronary risk factors (r = 0.32,
P < 0.05). Coronary stenosis was not observed in 9 (17.6
%) patients, whereas some degree of stenosis was detected
in 42 (82.4 %) patients, including 34 (66.7 %) with non-
obstructive stenosis and 8 (15.7 %) with obstructive ste-
nosis. Among the patients with obstructive stenosis, 2 (4
%) patients were considered to be severe enough to warrant
percutaneous coronary intervention. Calcified plaques,
noncalcified plaques, and mixed plaques were detected in
40 (78.4 %), 14 (27.5 %), and 11 (21.6 %) patients,
respectively. Next, to determine the indicators of the pre-
sence of obstructive coronary stenosis, the clinical char-
acteristics were compared between HCM patients with and
without obstructive coronary stenosis (Table 1). Diabetes
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was common among HCM patients with obstructive cor-
onary stenosis (50.0 % vs 9.3 %, P < 0.05), and these
patients also had a greater number of coronary risk factors
(3.4 £ 09 vs 25 £ 1.1, P < 0.05) than those without
obstructive stenosis. Hemoglobin Alc (HbAlc) levels
tended to be higher in HCM patients with obstructive ste-
nosis than in those without obstructive stenosis (6.3 + 0.5
vs 5.9 £+ 0.4, P = 0.06). The results of the analysis of
indicators of obstructive coronary stenosis are shown in
Table 3. In the univariate logistic regression analysis,
diabetes and current smoking were found to be signifi-
cantly correlated with obstructive stenosis. Multivariate
logistic regression revealed that diabetes was an indepen-
dent indicator of obstructive stenosis in patients with HCM
(odds ratio, 10.00; 95 % confidence interval, 1.37-93.34;
P < 0.05).

Cardiac morphology and function were analyzed in a
total of 46 HCM patients, after the exclusion of 5 without
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Table 2 Evaluation of coronary artery disease by cardiac computed
tomography in patients with hypertrophic cardiomyopathy

Table 4 Evaluation of cardiac morphology and function by cardiac
computed tomography in patients with hypertrophic cardiomyopathy

Total (n = 51)

Agatston score
Mean score 198.8 & 312.0
No. of patients with score:

0 12 (23.5)
1-99 17 (33.3)
100-399 14 (27.5)
>400 8 (15.7)
No. of patients with coronary stenosis
None 9 (17.6)
Nonobstructive stenosis 34 (66.7)
Obstructive stenosis 8 (15.7)
No. of patients with coronary plaques
Calcified plaques 40 (78.4)
Noncalcified plaques 14 (27.5)
Mixed plaques 11 (21.6)

Vaues are mean =+ standard deviation or number (%) of patients

Table 3 Indicators for obstructive coronary stenosis in patients with
hypertrophic cardiomyopathy

Odds 95 % confidence P value
ratio interval
Univariate analysis
Advanced age 1.52 0.54-23.8 1.00
Men 5.54 0.63-49.0 0.09
Hypertension 1.38 0.29-6.67 0.68
Dyslipidemia 0.72 0.16-3.27 0.70
Diabetes mellitus 9.75 1.76-54.8 <0.005
Current smoking 6.83 0.80-58.0 <0.05
habits
Multivariate analysis
Men 6.41 0.84-146.4 0.08
Diabetes mellitus 10 1.37-93.3 <0.05
Current smoking 293 0.15-52.4 0.46

habits

normal sinus rthythm (Table 4). LV outflow obstruction was
detected in 5 (10.9 %) patients. Septal wall thickness and
septum-to-lateral wall thickness ratios were significantly
increased at 21.9 & 5.7 mm and 2.4 £ 1.1, respectively.
Maximal wall thickness was located in the apical wall in 7
(15.2 %), in the anterior free wall in 10 (21.7 %) patients,
in the septal wall in 28 (60.9 %), and in the inferior wall in
1 (2.2 %). Hypertrophied right ventricular trabeculation in
the interventricular septum and abnormal regional LV
bulging were observed in 21 (45.7 %) and 14 (30.4 %)
patients, respectively. Among the 46 analyzed patients,

Total (N =
46)
Septal wall thickness (mm) 21.9 £ 57
Septum-to-lateral wall thickness ratios 24+ 1.1
Location of maximal wall thickness
Anterior free wall 10 21.7)
Septal wall 28 (60.9)
Inferior wall 1.2
LV obstruction 5 (10.9)
Hypertrophied right ventricular trabeculation in the 21 (45.7)
interventricular septum
Abnormal regional LV bulging 14 (30.4)
LVEDV (ml) 128.5 &
35.6
LVEDYV index (ml/m?) 78.6 + 21.8
LVESV (ml) 43.6 + 307
LVESV index (ml/m®) 272 +£20.7
LVEF (%) 67.9 £ 157
LV mass (g) 161.7 &
58.7
LV mass index (g/m®) 974 =+ 28.9
LA volume (ml) 100.3 £
347
LA volume index (ml/m?) 61.5+ 214

Values are mean =+ standard deviation or number (%) of patients

LV left ventricular, LVEDV left ventricular end-diastolic volume,
LVESV left ventricular end-systolic volume, LVEF left ventricular
ejection fraction, LA left atrial

LVEF was preserved at 67.9 &= 15.7 %. The LV mass index
and LA volume index, reflecting L'V diastolic function,
were considered to be elevated, at 97.4 & 28.9 g/m2 and
61.5 + 21.4 ml/m?, respectively, as opposed to the values
reported in studies performed on normal subjects [28, 29].
The predictors of LV mass index were evaluated by an
analysis that accounted for age; body mass index; systolic
and diastolic blood pressure; levels of HbAlc, triglycer-
ides, LDL-cholesterol, and B-type natriuretic peptide;
estimated glomerular filtration rate; and Agatston score
(Table 5). In the univariate linear regression analysis, the
estimated glomerular filtration rate was significantly cor-
related with L'V mass index (f, —0.51; standard error, 0.21;
P < 0.05), whereas the body mass index and triglyceride
levels showed a tendency to be associated only with LV
mass index. Multivariate linear regression revealed that the
low estimated glomerular filtration rate (f8, —0.53; standard
error, 0.17; P < 0.01) and high triglyceride concentrations
(B, 0.16; standard error, 0.06; P < 0.05) were independent
indicators of a high LV mass index.
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Table 5 Indicators for left ventricular mass index in patients with
hypertrophic cardiomyopathy

b Standard error P value

Univariate analysis

Age —0.18 0.37 0.63
Body mass index 1.99 1.15 0.09
Systolic BP 0.27 0.22 0.23
Diastolic BP 0.39 0.35 027
HbAlc —7.83 11.13 0.49
Triglycerides 0.13 0.078 0.09
LDL-C 022 0.17 0.21
eGFR —0.51 021 <0.05
BNP 0.0091 0.018 0.62
Agatston score 0.015 0.014 029
Multivariate analysis

Body mass index 1.24 1.11 0.27
Triglycerides 0.16 0.06 <0.05
eGFR —0.53 0.17 <0.01

BP blood pressure, HbAIc hemoglobin Alc, LDL-C low-density
lipoprotein cholesterol, eGFR estimated glomerular filtration rate,
BNP B-type natriuretic peptide

Discussion

In the present study, coronary artery disease and cardiac
morphology and function were evaluated in patients with
HCM, using cardiac CT. In particular the study investi-
gated the prevalence of coronary artery disease, the indi-
cators of the presence of obstructive coronary stenosis, and
the magnitude of LV hypertrophy. The prevalence of
obstructive coronary stenosis was approximately 16 % in
HCM patients without ty}fical chest pain. Moreover, the
coronary calcium scores were relatively high, and elevated
according to the increase in the number of coronary risk
factors. These results suggest that coronary artery disease is
common among HCM patients, even without typical chest
pain, and that the management of coronary risk factors is
equally important for HCM patients and the general
population.

In addition, a number of patients with HCM had non-
calcified and/or mixed plaques, both of which are reported
to be closely related to cardiovascular events. In a study on
cardiac CT and intravascular ultrasonography by Pundziute
et al. [30], noncalcified and mixed plaques were more
commonly detected in patients with acute coronary syn-
drome than in those with stable coronary artery disease;
they also noted that thin-cap fibroatheromas, which
increased the risk of plaque rupture causing acute coronary
syndrome, were frequently observed in patients with mixed
plaques. With these observations in mind, we speculate that
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many HCM patients may undergo sudden cardiac death
resulting from coronary artery disease rather than from
arrhythmias. Further evaluation of the prognostic value of
coronary artery disease in patients with HCM is thus
required.

HCM patients with obstructive coronary stenosis com-
monly had diabetes, which was a significant predictor of
the presence of obstructive stenosis in both the univariate
and multivariate regression analyses. Diabetes is one of the
important risk factors for coronary artery disease, and can
often mask the symptoms of coronary artery disease due to
autonomic denervation of the heart, resulting in delayed
diagnosis [31]. Therefore, diabetic HCM patients should
undergo screening tests, such as cardiac CT, for coronary
artery disease.

A novel finding regarding cardiac morphology in HCM
patients was that the low estimated glomerular filtration
rates and high triglyceride concentrations were indepen-
dent indicators of a high L'V mass index. Other studies have
shown that the magnitude of the L'V hypertrophy is closely
related to sudden cardiac death and poor prognosis in
patients with HCM [32]; however, its indicators have not
been sufficiently investigated. We believe that identifica-
tion of the indicators of the magnitude of LV hypertrophy
in HCM patients may provide useful information for
prognostic evaluations. Renal dysfunction and hypertri-
glycemia have been reported to be associated with the
magnitude of LV hypertrophy in studies not involving
HCM patients. Park et al. [33] reported that renal dys-
function was closely associated with high LV mass
indexes, even after adjusting for variables such as age,
gender, anemia, albuminuria, detection of markers of
mineral metabolism, hypertension, and diabetes. Schillaci
et al. [34] also reported that hypertriglycemia was inde-
pendently associated with high LV mass indexes after
taking into account the effects of age, body mass index,
blood pressure, and smoking in women. The results of
these reports are similar to the present results. The precise
mechanism(s) by which estimated glomerular filtration rate
and triglycerides can predict the magnitude of LV hyper-
trophy in patients with HCM is open to further
investigation.

Differentiating HCM from hypertensive heart disease is
occasionally difficult. However, the present subjects had
significantly increased septum-to-lateral wall thickness
ratios, and any one of asymmetrical LV hypertrophy,
hypertrophied right ventricular trabeculation in the inter-
ventricular septum, or abnormal regional LV bulging.
These findings are characteristic of HCM [27], and we
believe that HCM can be diagnosed clinically and mor-
phologically, as accurately as possible, by differentiating it
from hypertensive heart disease.
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Limitations

Our study findings should be carefully interpreted in light
of the following limitations. First, our study was retro-
spective, with small sample sizes, at two centers, and the
prevalence of coronary artery disease can vary according to
patient characteristics such as age, gender, and coronary
risk factors. Second, the effects of coronary artery disease
on the prognosis of patients with HCM could not be
demonstrated because of the absence of follow-up data.
Third, genetic diagnoses can more accurately diagnose
HCM [35, 36], but could not be performed because of the
retrospective nature of the study and high expenses asso-
ciated with such diagnoses. Further investigations are thus
required to overcome these limitations.

Conclusion

Coronary artery disease was common among patients with
HCM. The presence of obstructive stenosis and the mag-
nitude of L'V hypertrophy were closely related to diabetes,
triglyceride levels, and the estimated glomerular filtration
rate. Cardiac CT can provide important information
regarding coronary artery disease and cardiac morphology
and function in patients with HCM.
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