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ABO blood group incompatibility between donor and recipient has been associated with poor transplant
outcomes in allogeneic hematopoietic stem cell transplantation. However, its effect on the outcome of cord
blood transplantation (CBT) has yet to be clarified. We retrospectively analyzed 191 adult patients who
received single-unit CBT after myeloablative conditioning for malignant disease in our institute. Major
mismatch showed a significantly lower incidence of platelet engraftment compared with ABO match as a
reference (hazard ratio, .57; P = .01). Nevertheless, there was no increase in graft-versus-host disease,
transplant-related mortality, and overall mortality after ABO-incompatible CBT. These data suggested that
donor—recipient ABO incompatibility does not have a significant impact on outcome after myeloablative CBT

© 2013 American Society for Blood and Marrow Transplantation.

INTRODUCTION

In contrast to solid organ transplantation, ABO blood
group incompatibility between donor and recipient is
reportedly a more common situation after allogeneic he-
matopoietic stem cell transplantation (allo-HSCT). It is well
known that ABO incompatibility of allo-HSCT can cause an
increased risk of delayed erythroid reconstitution, pure red
cell aplasia, and acute and delayed hemolysis | 1,2 1. However,
the association between ABO incompatibility and trans-
plantation outcomes, such as neutrophil and platelet recov-
ery, graft-versus-host disease (GVHD), and survival, is
controversial | 1,2]. Moreover, most of these studies analyzed
patients receiving allo-HSCT using bone marrow or mobi-
lized peripheral blood as a stem cell source from related and
unrelated donors {1-5].

Cord blood transplantation (CBT) from an unrelated
donor is increasingly used as an alternative transplant
method for adult patients without HLA-compatible related
or unrelated donors. Although most patients receive an HLA-
mismatched cord blood unit, the lower risk of GVHD without
compromising graft-versus-leukemia effects is one of the
most attractive advantages of CBT. We previously reported
that ABO incompatibility influenced platelet engraftment
and transfusion requirement of RBCs and platelets in CBT [5].
However, the effects of ABO incompatibility on GVHD and
survival after myeloablative CBT are limited. In the present
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study, we analyzed the neutrophil and platelet recovery,
GVHD, transplant-related mortality (TRM), relapse, and sur-
vival in myeloablative CBT in adult patients with malignant
disease in our institute.

METHODS

This retrospective study included data from 191 adult patients who
underwent unrelated first allogeneic transplantation using single-unit CBT
at our institute between August 1998 and February 2013. Donor—recipient
ABO compatibility was categorized as follows: ABO match in 55 patients,
major mismatch in 47, minor mismatch in 58, and bidirectional mismatch in
31. All patients received 12 Gy total body irradiation (TBI)-based myeloa-
blative conditioning regimens and cyclosporine with or without short-term
methotrexate as a GVHD prophylaxis, and cord blood units were selected as
reported previously |7.8]. The institutional review board of the Institute of
Medical Science, The University of Tokyo approved this study. This study was
conducted in accordance with the Declaration of Helsinki.

The primary study endpoint was overall survival (0S), defined as the
time from the date of transplantation to the date of death or last contact.
Secondary endpoints were relapse, TRM, GVHD, and neutrophil and platelet
recovery. Relapse was defined by morphologic evidence of disease in pe-
ripheral blood, bone marrow, or extramedullary sites. TRM was defined as
death during a remission. Both acute GVHD (aGVHD) and chronic GVHD
(cGVHD) were graded according to previously published criteria {9.10]. The
incidence of aGVHD was evaluated in all engrafted patients, whereas the
incidence of cGVHD was evaluated in engrafted patients surviving more
than 100 days. Neutrophil engraftment was defined as being achieved on
the first of 3 consecutive days during which the absolute neutrophil count
was at least 0.5 x 10°/L. Platelet engraftment was defined as being achieved
on the first of 3 days when the platelet count was higher than 50 x 10/L
without transfusion support.

Baseline patient and transplant characteristics were compared using the
chi-square test for categorical variables and the Kruskal-Wallis test for
continuous variables. The probability of OS was estimated according to the
Kaplan-Meier method, and groups were compared using the log-rank test.
The probabilities of the others were estimated based on a cumulative inci-
dence method to accommodate competing risks. Multivariate analysis was
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performed with a Cox proportional hazard model adjusted for OS, and a Fine
and Gray proportional hazards model for the others.

The following variables for multivariate analysis were considered: age
(<45 versus >45 years), disease status at CBT (standard risk versus high
risk), cord blood nucleated cell count (<2.5 x 107 versus >2.5 x 107 /kg), cord
blood CD34 -+ cell count (<1 x 10° versus >1 x 10%/kg), HLA disparities
based on antigen level HLA-A and -B and allele level HLA-DRB1 (1 versus 2
versus >3), sex compatibility between donor and recipient (female donor to
male recipient versus other), year of CBT (1998 to 2005 versus 2006 to 2013),
and ABO compatibility between donor and recipient (match versus major
mismatch versus minor mismatch versus bidirectional mismatch), The ABO
match was considered the reference group in the multivariate analyses.

All statistical analyses were performed with EZR, a graphic user inter-
face for R2.13.0 [11]. P <.05 was considered significant. Analysis of data was
performed in August 2013, The median follow-up of surviving patients was
92 months (range, 5 to 181) after CBT in the entire cohort.

RESULTS

The characteristics of patients and cord blood units are
shown in Table 1. There were no significant differences
among the 4 groups, except for HLA disparities. The major
mismatch group contained a slightly higher number of HLA
disparities as compared with the minor mismatch group
(P = .07) or the bidirectional mismatch group (P = .08),
although these were not statistically significant.

The probability of OS at 5 years significantly differed
among the 4 groups in univariate analysis (P = .03)
(Figure 1A). However, multivariate analysis of mortality
adjusting for other variables showed no significant differ-
ence between ABO match and major (hazard ratio [HR], 1.20;
P = .62), minor (HR, .72; P = .41), or bidirectional (HR, 1.76;
P = .14) mismatch (Table 2). In univariate analysis, ABO

Table 1
Characteristics of Patients, Cord Blood Units, and Transplantation

incompatibility was not associated with cumulative inci-
dence of TRM (Figure 1B) or relapse (Table 2). In multivariate
analysis, a trend toward a higher incidence of TRM was
observed in the major mismatch compared with the match
group, but this was not significant (P = .05).

In univariate analysis, there was no significant difference
in the cumulative incidence of grades II to IV aGVHD among
the 4 groups (P =.91) (Figure 1C). In multivariate analysis, a
higher number (>3) of HLA disparities (HR, 1.56; 95% confi-
dence interval [CI], 1.05 to 2.32; P =.02), a higher cord blood
CD34 + cell count (HR, 1.51; 95% CI, 1.05 to 2.18; P =.02), and
older year of CBT (HR, 1.85; 95% CI, 1.30 to 2.65; P <.01) were
associated with a higher incidence of grades II to IV aGVHD,
but ABO incompatibility was not associated with the inci-
dence of grades II to IV aGVHD (Table 2). The cumulative
incidence of grades Il to IV aGVHD significantly differed
among the 4 groups in univariate analysis (P =.02). However,
multivariate analysis adjusting for other variables showed no
significant difference in the cumulative incidence of grades
III to IV aGVHD between ABO match and major (HR, 2.56;
P =.19), minor (HR, .59; P = .56), or bidirectional (HR, 1.46;
P =.67) mismatch (Table 2). In univariate analysis, there was
no significant difference in the cumulative incidence of
extensive cGVHD among the 4 groups (P =.86) (Figure 1D).In
multivariate analysis, older age (HR, 1.85; 95% CI, 1.06 to 3.23;
P =.03) and female donor to male recipient (HR, 1.79; 95% Cl,
1.02 to 3.15; P =.04) were associated with a higher incidence
of extensive ¢cGVHD, but ABO incompatibility was not asso-
ciated with the incidence of extensive cGVHD (Table 2).

Total Match Major Mismatch Minor Mismatch Bidirectional Mismatch P

Number (%) 191 55 (28) 47 (24) 58 (30) 31 (16)

Age, yr, median (range) 40 (16-55) 40 (16-55) 40 (16-53) 40 (16-53) 41 (18-52) 94

Disease type, n (%) .61
AML 101 (52) 30 (54) 24 (51) 30 (51) 17 (54)

ALL 45 (23) 17 (30) 10 (21) 11(18) 7(22)
MDS 25 (13) 5(9) 5(10) 10 (17) 5 (16)
CML 11 (5) 1(1) 4(8) 4(6) 2 (6)
NHL 9(4) 2(3) 4(8) 3(5) 0(0)

Disease status at CBT, n (%) .09
Standard risk 79 (41) 24 (44) 17 (36) 30 (51) 8 (25)

High risk 112 (58) 31 (54) 30 (64) 28 (48) 23 (74)

Conditioning regimen, n (%) .36
TBI12Gy~+Ara-C/G-CSF+CY 131 (68) 34 (61) 33 (70) 40 (68) 24 (77)
TBI12Gy+Ara-C+CY 31 (16) 9 (16) 11(23) 9(15) 2(6)

TBI12Gy+CY 16 (8) 6 (10) 1(2) 5(8) 4(12)
TBI12Gy-+others 13 (6) 6 (10) 2(4) 4(6) 1(3)

GVHD prophylaxis, n (%) .10
Cyclosporine A -+ methotrexate 188 (98) 55 (100) 47 (100) 57 (98) 29(93)

Cyclosporine A 3(1) 0(0) 0(0) 1(2) 2(6)

Number of nucleated cells, x107/kg, median (range) 2.43 (1.32-5.69) 2.52 (1.32-5.50) 2.47 (1.65-4.92) 2.38 (1.51-5.69) 2.58 (1.65-5.07) 79

Number of CD34*cells, x10°/kg, median (range) 92 (.17-7.75) .88 (.28-3.15) 93 (.17-1.99) 91 (.28-7.75)  1.14 (.44-2.84) 20

HLA disparities, n (%) .05
1 23 (12) 4(7) 7 (14) 8(13) 4(12)

2 106 (55) 32 (58) 16 (34) 37 (63) 21 (67)
3 57 (29) 17 (30) 23 (48) 12 (20) 5(16)
4 5(2) 2(3) 1(2) 1(1) 1(3)

Sex compatibility, n (%)

Female donor to male recipient 58 (30) 19 (34) 13 (27) 17 (29) 9(29) .88
Other 133 (69) 36 (65) 34 (72) 41 (70) 22 (70)

Year of CBT, n (%) 58
1998-2005 102 (53) 28 (50) 22 (46) 33 (56) 19 (61)

2006-2013 89 (46) 27 (49) 25 (53) 25 (43) 12 (38)

AML indicates acute myelogenous leukemia; ALL, acute lymphoblastic leukemia, MDS, myelodysplastic syndrome; CML, chronic myelogenous leukemia; NHL,
non-Hodgkin lymphoma, Ara-C, cytosine arabinoside; G-CSF, granulocyte colony-stimulating factor; CY, cyclophosphamide.

~ For disease status at CBT, patients in complete remission (CR) 1 or CR2 without poor prognostic karyotype for AML and AlL, refractory anemia for MDS,
chronic phase for CML, and CR1 or CR2 for NHL were classified as standard risk, whereas patients in all other situations were classified as high risk.

¥ The number of HLA disparities defined as low resolution for HLA-A and -B and high resolution for HLA-DRB1.

,97_



T. Konuma et al. / Biol Blood Marrow Transplant xxx (2014) 1-5 3

Probability

- Match

~~==-= Major mismatch

== Minor mismatch
------ Bidirectional mismatch

Years after transplantation

1.0

0.8 -

e Match

=====- Major mismatch

s Minor mismatch

---~-- Bidirectional mismatch

Cumulative incidence

T T T T T
0 20 40 60 80 100

Days after transplantation

Figure 1. Probability of OS (A), cumulative incidence of TRM (B), grades Ii
compatibility after myeloablative CBT.

ABO incompatibility was not associated with cumulative
incidence of neutrophil engraftment among the 4 groups in
univariate analysis (P =.73). In multivariate analysis, a lower
cord blood CD34 + cell count (HR, .51; 95% (I, .37 to .70;
P < .001), high risk of disease status at CBT (HR, .68; 95% Cl,
.50 t0.93; P=.01), and older year of CBT (HR, .71; 95% (I, .53
to .96; P = .02) were associated with a lower incidence of
neutrophil engraftment, but ABO incompatibility was not
associated with neutrophil engraftment (Table 2Z). The cu-
mulative incidence of platelet recovery was not significantly
different among the 4 groups in univariate analysis (P =.30).
In multivariate analysis, major mismatch (HR, .57; P = .01)
showed a significantly lower incidence of platelet engraft-
ment when compared with ABO match (Table 2). In addition,
a lower cord blood CD34 + cell count (HR, .63; 95% (1, .45 to
.88; P < .01), lower cord blood nucleated cell count (HR, .70;
95% (1, .52 to .94; P =.01), and high risk of disease status at
CBT (HR, .65; 95% (I, .45 t0 .94; P =.02) were associated with
a lower incidence of platelet engraftment.

We also analyzed the effect of major/bidirectional
mismatch group defined as combined group of major and
bidirectional mismatch. However, we were unable to find
any impact of major/bidirectional mismatch on outcomes in
multivariate analysis, except for platelet engraftment
(Supplemental Table 1),

DISCUSSION

The ABO blood group antigens consist of oligosaccharide
glycoproteins and are expressed not only in erythrocytes but
also in neutrophils, platelets, and, vascular endothelial and
epithelial cells. The ABO antigens could be immunological
targets for ABO-incompatible donor or recipient lympho-
cytes, affecting GVHD and engraftment. Many previous
studies have reported an increased risk of aGVHD after ABO-
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to IV aGVHD (C), and extensive cGVHD (D) according to donor—recipient ABO in-

incompatible allogeneic bone marrow transplantation from
related and unrelated donors, particularly in minor and
bidirectional mismatch |{3-51. Igarashi et al. [12] reported an
association between the anti-host isohemagglutinin pro-
duced by donor-derived B lymphocytes and the develop-
ment of aGVHD after minor and bidirectional mismatched
allogeneic bone marrow transplantation and peripheral
blood stem cell transplantation from related and unrelated
donors. These effects might be associated with ABO-
incompatible immune responses against ABO antigens in
vascular endothelial and epithelial cells of recipients. How-
ever, it has been reported that donor-derived iso-
hemagglutinin was not identified in patients after minor and
bidirectional mismatched CBT [12,13]. The higher proportion
of naive B lymphocytes in cord blood grafts might contribute
to defective isohemagglutinin production after ABO-
incompatible CBT, which might have contributed to the low
incidence of severe GVHD even after ABO-incompatible CBT.
Therefore, the effect of ABO incompatibility on transplant
outcome might differ depending on the kinds of stem cell
sources in allo-HSCT.

Several studies have reports on associations between ABO
incompatibility and outcomes after CBT [14-19]. Romee et al.
[14] reported no impact of ABO incompatibility on aGVHD
and ¢GVHD in 503 CBT recipients. Berglund et al. {15} re-
ported an increased incidence of grades II to IV aGVHD in
major mismatch recipients (n = 23) of CBT. Moreover, pre-
vious studies demonstrated lower survival for major
mismatch recipients of single-unit CBT [16.17], whereas
other studies did not [14,18,19]. However, these studies
included a relatively heterogeneous group of patients
receiving single or double CBT after reduced-intensity or
myeloablative conditioning regimen. In most of these
studies, 3 groups of ABO mismatch, namely, major, minor,
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Univariate and Multivariate Analysis of ABO Compatibility for the Outcomes of CBT

Univariate Analysis

Multivariate Analysis

Number Percent (95% Cl) P HR 95% ClI P
0s” At 5 yr .03
Match 55 70.2 (55.3-81.0) 1.00 Reference
Major mismatch 47 64.8 (48.0-77.3) 1.20 .57-2.50 .62
Minor mismatch 58 83.2 (70.1-90.9) 72 33-1.57 41
Bidirectional mismatch 31 546 (35.7-70.1) 1.76 .82-3.77 .14
Relapse At5yr .09
Match 55 26.9 (15.6-39.6) 1.00 Reference
Major mismatch 47 15.8 (6.8-28.2) 54 20-1.42 21
Minor mismatch 58 14.4 (6.6-24.9) 54 22-1.32 .18
Bidirectional mismatch 31 32.5(16.7-49.3) 1.08 43-2.71 .86
TRM At5yr .19
Match 55 8.1 (2.5-18.1) 1.00 Reference
Major mismatch 47 22.2(11.3-354) 3.19 .97-10.46 .05
Minor mismatch 58 7.9 (2.5-17.6) 134 .34-5.33 .67
Bidirectional mismatch 31 16.1 (5.7-31.2) 1.99 49-8.03 33
Grades 1I-IV aGVHD At 100 d 91
Match 55 58.2 (43.9-70.1) 1.00 Reference
Major mismatch 45 66.7 (50.5-78.6) 1.06 .64-1.73 .81
Minor mismatch 58 62.1 (48.1-73.3) 1.11 .68-1.80 .66
Bidirectional mismatch 31 61.3 (41.4-76.2) 1.28 73-2.24 37
Grades 1I-IV aGVHD At 100 d .02
Match 55 5.5 (14-13.7) 1.00 Reference
Major mismatch 45 20.0 (9.8-32.8) 2.56 .63-10.37 .19
Minor mismatch 58 3.4 (.6-10.7) .59 .10-3.46 .56
Bidirectional mismatch 31 9.7 (2.4-23.2) 1.46 .25-8.44 .67
Extensive cGVHD At5yr .86
Match 49 28.6 (16.7-41.6) 1.00 Reference
Major mismatch 40 30.5 (16.9-45.3) 1.18 .56-2.47 .65
Minor mismatch 55 27.9 (16.5-40.4) 1.24 57-2.72 .58
Bidirectional mismatch 21 38.1(17.8-58.3) 1.56 .67-3.63 30
Neutrophil engraftment At60d 73
Match 55 96.4 (83.6-99.2) 1.00 Reference
Major mismatch 47 92.6 (75.2-98.0) .82 .56-1.20 .33
Minor mismatch 58 94.8 (83.3-98.5) 1.09 .78-1.53 .59
Bidirectional mismatch 31 88.7 (64.1-96.8) 1.06 .66-1.68 .80
Platelet engraftment At 100 d 30
Match 55 88.9 (76.0-95.0) 1.00 Reference
Major mismatch 47 70.0 (53.6-81.6) 57 .36-.90 .01
Minor mismatch 58 93.1 (81.2-97.6) 92 .66-1.28 .64
Bidirectional mismatch 31 73.3 (51.5-86.4) 78 .45-1.34 .37

~ HR for overall mortality. In multivariate analysis, there were no significant variables, but there was a trend toward a higher mortality among those with a
high risk of disease status at CBT (HR, 1.60; 95% (I, .88-2.89; P = .11) and female donor to male recipient (HR, 1.64; 95% CI, .94-2.85; P = .07).

T In multivariate analysis, there were no significant variables, but there was a trend toward a higher relapse among those with a high risk of disease status at
CBT (HR, 1.71; 95% CI, .85-3.44; P = .13).

¥ In multivariate analysis, there were no significant variables, but there was a trend toward a higher TRM among those with female donor to male recipient

(HR, 2.05; 95% CI, .87-4.81; P = .09).

% In multivariate analysis, there were no significant variables, but there was a trend toward a higher incidence of grades 1lI-IV aGVHD among those with a
lower cord blood CD34 + cell count (HR, 2.75; 95% Cl, .84-9.00; P = .09) and a high risk of disease status at CBT (HR, 3.98; 95% CI, .80-19.65; P = .08).

and bidirectional mismatch, were not evaluated separately.
Of note, the advantage of our study is the relatively homo-
geneous adult patient population with hematological ma-
lignancies treated with single-unit CBT after 12 Gy TBI-based
myeloablative conditioning regimens and a cyclosporine-
based GVHD prophylaxis. Moreover, 3 groups of ABO
mismatch were evaluated separately. Therefore, we were
able to determine the potential effect of ABO incompatibility
in CBT.

In conclusion, our data showed that ABO incompatibility
affected the incidences of platelet engraftment but did not
have a significant effect on the incidence of GVHD, relapse,
TRM, and OS after CBT. These results should be interpreted
with caution because this retrospective study included a
relatively small number of Japanese patients who received
single-unit CBT after 12 Gy TBIl-based myeloablative
conditioning regimens for hematological malignancies.
Although these findings should be confirmed in large pro-
spective studies, ABO incompatibility does not appear to
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have had a significant impact on the outcome after CBT in
our study.
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ABSTRACT

Key Words:

Cord blood transplantation
Granulocyte colony-stimulating
factor

Acute myelogenous leukemia
Myelodysplastic syndrome

not in remission

High disease burden in myeloablative allogeneic hematopoietic stem cell transplantation is associated with
adverse outcomes in patients with acute myelogenous leukemia (AML) and myelodysplastic syndrome (MDS).
Quiescent leukemia stem cells could be induced to enter cell cycle by granulocyte colony-stimulating factor
(G-CSF) administration and become more susceptible to chemotherapy. We report on the outcome of unrelated
cord blood transplantation (CBT) using a conditioning regimen of 12 Gy total body irradiation, G-CSF—com-
bined high-dose cytarabine, and cyclophosphamide in 61 adult patients with AML or advanced MDS not in
remission. With a median follow-up of 97 months, the probability of overall survival and cumulative incidence
of relapse at 7 years were 61.4% and 30.5%, respectively. In multivariate analysis, poor-risk cytogenetics and
high lactate dehydrogenase values at CBT were independently associated with inferior survival. These data

demonstrate that CBT after G-CSF—combined myeloablative conditioning is a promising curative option for
patients with myeloid malignancies not in remission.

© 2014 American Society for Blood and Marrow Transplantation.

INTRODUCTION

The prognoses of patients with acute myelogenous leu-
kemia (AML) and advanced myelodysplastic syndrome (MDS)
who have not achieved remission after chemotherapy have
been poor. Although allogeneic hematopoietic stem cell
transplantation (allo-HSCT) is the only potentially curative
therapy for such patients, high disease burden has been
reported to be associated with increased relapse or poor
survival rate after allo-HSCT [1-9]. Recently, cord blood (CB)
has been considered an acceptable alternative as a source of
hematopoietic stem cells in unrelated allo-HSCT for adult
patients without HLA-identical related or unrelated donors
19-16]. In comparison with other sources of allo-HSCT, one of
the main advantages of using CB for patients with a high
disease burden who require urgent transplantation is its
rapid and convenient availability. Because it was shown
that administration of granulocyte colony-stimulating
factor (G-CSF) increased the susceptibility of cell-cycle—
specific agent cytarabine in leukemia cells in vitro [17], we
administered G-CSF—combined high-dose cytarabine in
myeloablative conditioning for allo-HSCT [18,19] and re-
ported that a G-CSF—combined conditioning regimen pro-
vided better engraftment and survival results in cord blood

Financial disclosure: See Acknowledgments on page 400.
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Hematology/Oncology, Institute of Medical Science, University of Tokyo,
4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
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transplantation (CBT) for myeloid malignancies {13-16]. The
objective of this retrospective study was to confirm the
effects of CBT after G-CSF—combined myeloablative condi-
tioning in adult patients with myeloid malignancies not in
remission and to identify variables influencing long-term
outcomes. :

PATIENTS AND METHODS
Patients and Transplantation Procedures

This retrospective study included 61 consecutive adult patients who
underwent unrelated transplantation using single-unit CB for AML or
advanced MDS not in remission at our institute between 1998 and 2013.
Thirty-two patients were included in our previous study [15,16] and
extended the follow-up. The diagnoses of AML and MDS were made ac-
cording to the World Health Organization classification. Advanced MDS was
defined as having refractory anemia with excess blasts type 1 or refractory
anemia with excess blasts type 2 by World Health Organization classifica-
tion. Myeloid malignancies not in remission were defined as more than 5%
blasts in the bone marrow (BM), or circulating blasts in peripheral blood (PB)
or central nervous system. The cytogenetic subgroups were defined ac-
cording to the Southwest Oncology Group/Eastern Cooperative Oncology
Group criteria for AML [20] and International Prognostic Scoring System
criteria for MDS [21]. All patients received 12 Gy total body irradiation (TBI)
in 4 divided fractions on days —8 and —7, cytarabine on days —5 and —4
(total dose 12 g/m2, and 3 g/m2 every 12 hours for 2 days) with 5 pg/kg
G-CSF (lenograstim) from 12 hours before the first dose of cytarabine to the
end of cytarabine dosing, and cyclophosphamide (total dose 120 mg/kg) on
days —3 and -2 [15,16]. Fifty-eight patients received cyclosporine (CSP)
(3 mg/kg/day) with a short course of methotrexate (15 mg/m2 on day +1
and 10 mg/m2 on days +3 and +6), and 3 patients received CSP only as graft-
versus-host disease (GVHD) prophylaxis. CB units were obtained from the
Japanese Cord Blood Bank Network. Donor-recipient HLA-matching status
was based on antigen level HLA-A and -B and on allele level HLA-DRB1
typing. All patients received similar supportive care and CB units were

1083-8791/$ — see front matter © 2014 American Society for Blood and Marrow Transplantation.
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Table 1
Characteristics of Patients, Cord Blood Units, and Transplantation
Characteristic Value
No. of patients 61
Sex
Male 36 (59)
Female 25 (41)
Age, median (range), yr 41 (18-55)
CMV serostatus
Positive 54 (86)
Negative 7(11)
Disease type
De novo AML 24 (39)
AML secondary to MDS 24 (39)
Advanced MDS" 13 (21)
Cytogenetics'
Good 1(2)
Intermediate 27 (44)
Poor 30 (49)
Unknown 3(5)
Bone marrow blasts at CBT, median (range), % 17.7 (1.4-86.0)"
< 25% 39
> 25% 22
Peripheral blood blasts at CBT, median (range), % 6.5 (0-68.5)
Absent 12
Present 49
LDH at CBT
< ULN 41 (67)
> ULN 20(33)
Disease status at CBT*
Untreated 31(51)
Primary refractory 14 (23)
Refractory relapse 16 (26)
Time from diagnosis to CBT, median (range), mo 7 (1-219)
Conditioning regimen
TBI12Gy+Ara-C/G-CSF+CY 61
GVHD prophylaxis
CyclosporineA+methotrexate 58 (95)
CyclosporineA 3(5)

Number of nucleated cells, median (range), »107/kg
Number of CD34 cells, median (range), »10°/kg
HLA disparities”

243 (1.32-5.50)
1.03 (.21-2.27)

1 13 (21)
2 32(52)
3 14 (22)
4 2(3)

CMYV indicates cytomegalovirus; AML, acute myelogenous leukemia; MDS, myelodysplastic syndrome; CBT, cord blood transplantation; LDH, lactate dehy-
drogenase; ULN, upper limit of normal; TBI, total body irradiation; Ara-C, cytosine arabinoside; G-CSF, granulocyte colony-stimulating factor; CY, cyclophos-
phamide; GVHD, graft-versus-host disease; HLA, human leukocyte antigen.

Data presented are n (%) unless otherwise indicated.

= Advanced MDS are defined as having refractory anemia with excess blasts-1 (RAEB-1) or RAEB-2 by WHO criteria.
' The cytogenetic subgroups according to the Southwest Oncology Group/Eastern Cooperative Oncology Group criteria for AML and International Prognostic

Scoring System criteria for MDS.

¥ Untreated was defined as no treatment before conditioning regimen, indicating that the majority of patients with AML secondary to MDS or advanced MDS
received CBT as an up-front treatment. Primary refractory was defined as failure to achieve complete remission with induction chemotherapy. Refractory relapse
was defined as failure to achieve complete remission with salvage chemotherapy after first or subsequent relapse.

% The number of HLA disparities, defined as the low resolution for HLA-A and -B and the high resolution for HLA-DRB1.

¥ The 5 patients with less than 5% blasts in the bone marrow included circulating blasts in peripheral blood (n = 3) or central nervous system (n = 2).

selected, as previously reported |15,16). The institutional review board of the
Institute of Medical Science, University of Tokyo approved this study. This
study was conducted in accordance with the Declaration of Helsinki.

End Points and Statistical Analysis

The primary study end point was overall survival (0S), defined as time
from the date of transplantation to the date of death or last contact. Sec-
ondary end points were relapse, including disease progression before
engraftment; transplantation-related mortality (TRM); neutrophil and
platelet engraftment; acute graft-versus-host disease (aGVHD); and chronic
GVHD (cGVHD). Relapse was defined as morphologic evidence of disease in
PB, BM, or extramedullary sites. TRM was defined as death during remission.
Neutrophil engraftment was defined as the first of 3 consecutive days during
which the absolute neutrophil count was at least .5 x 10°L. Platelet
engraftment was achieved on the first of 3 days when the platelet count was
higher than 50 x 10%/L without transfusion support. Both aGVHD and
cGVHD were graded according to the previously published criteria [22,23].

The incidence of aGVHD was evaluated in all engrafted patients, whereas the
incidence of cGVHD was evaluated in engrafted patients surviving more
than 100 days.

The probability of OS5 was estimated according to the Kaplan-Meier
method, and the groups were compared using the log-rank test. The prob-
abilities of relapse, TRM, neutrophil and platelet engraftment, and acute and
chronic GVHD were estimated based on a cumulative incidence method to
accommodate competing risks [24]. Multivariate analysis was performed
with a Cox proportional hazard model adjusted for OS and Fine and Gray
proportional hazards model for relapse {25]. The following variables were
considered: age (< 45 versus > 45 years), disease type (de novo AML versus
AML secondary to MDS versus advanced MDS), cytogenetic risk (other than
poor versus poor), proportion of blasts in BM (< 25 versus > 25%), the
presence of blasts in PB (absent versus present), lactate dehydrogenase
(LDH) at CBT (< upper limit of normal versus > upper limit of normal),
disease status at CBT (untreated versus primary refractory versus refractory
relapse), cord blood nucleated cell count (< 2.5 versus > 2.5 x 107/kg),
and HLA disparities based on antigen level HLA-A and -B and allele level
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HLA-DRB1 (< 2 versus > 3). All statistical analyses were performed with EZR
(Saitama Medical Center, Jichi Medical University, Saitama, Japan), a
graphical user interface for R 2.13.0 (R Foundation for Statistical Computing,
Vienna, Austria) [26]. P <.05 was considered significant. Analysis of data was
performed in August 2013.

RESULTS

Patient and CB unit characteristics are shown in Table 1.
The median age was 41 years (range, 18 to 55 years), the
median number of nucleated cells was 2.43 x 107/kg (range,
1.32 to 5.50 x 107Jkg), and the median number of CD34-+
cells was 1.03 x 10°/kg (range, .21 to 2.27 x 10°/kg). Disease
types were de novo AML in 24 patients, AML secondary to
MDS in 24, and advanced MDS in 13. The majority of patients
with de novo AML with multilineage dysplasia (n = 2), AML
secondary to MDS (n = 19), or advanced MDS (n = 10)
received CBT as an up-front treatment, which was classified
as untreated group (n = 31). Among patients with primary
refractory status (n = 14), 3 patients received CBT after the
first cycle of induction chemotherapy. The median number of
prior chemotherapy treatments before CBT for primary re-
fractory status was 3 (range, 1 to 5). The median time from
diagnosis to CBT was 7 months (range, 1 to 219 months), and
the median period of follow-up for survivors after CBT was
97 months (range, 5 to 181 months).

The cumulative incidence of neutrophil recovery was 93.4%
(95% confidence interval [Cl], 81.0% to 97.8%) at 60 days after
CBT with a median time to achieve greater than .5 x 109/L
neutrophils of 22 days (range, 18 to 41 days). Disease pro-
gression before engraftment occurred in 2 patients. The cu-
mulative incidence of platelet recovery was 78.7% (95% (],
65.7% to 87.2%) at 100 days after CBT with a median time to an
untransfused platelet count greater than 50 x 10%/L of 50 days
(range, 30 to 179 days). The cumulative incidences of grade 11
to IV acute GVHD and extensive chronic GVHD were 62.3%
(95%Cl, 48.7% to 73.2%) at 100 days and 32.9% (95% Cl, 21.4% to
449%) at 3 years after CBT, respectively. The probability of
0OS at 7 years was 61.4% (95% Cl, 47.1% to 72.9%). The cumu-
lative incidence of relapse at 7 years was 30.5% (95% Cl, 19.2%
to 42.6%). The cumulative incidence of TRM at 100 days and at
1vear was6.6%(95% Cl, 2.1% to 14.7%) and 8.2% (95% Cl, 3.0% to
16.9%), respectively (Figure 1).

In multivariate analysis, poor-risk cytogenetics (hazard
ratio [HR], 7.14; 95% CI, 2.33 to 21.80; P <.001) and high LDH
value (HR, 4.00; 95% CI, 1.33 to 12.07; P =.013) were asso-
ciated with inferior survival (Figure 2, Table 2). De novo AML
(HR, 9.66; 95% CI, 1.06 to 87.75; P =.044), primary refractory
status at CBT (HR, 6.47; 95% (I, 1.86 to 22.51; P =.003), and
high LDH value (HR, 3.75; 95% Cl, 1.11 to 12.57; P=.032) were
associated with an increased relapse incidence (Table 3,
Supplemental Figure 1). In contrast, the proportion of blasts

T. Konuma et al / Biol Blood Marrow Transplant 20 (2014) 396—401

in BM and the presence of blasts in PB did not show any
impact on survival and relapse incidence.

DISCUSSION

Previous reports have suggested that the only potentially
curative therapy for patients with myeloid malignancies not
in remission is allo-HSCT. However, the incidence of relapse
has been reported to be high, and several reports showed
long-term survival rates of only 10% to 30% [1-6]. Several
factors, including blasts in BM or PB, cytogenetics, and donor
availability, have been associated with outcome. In this study,
poor-risk cytogenetics and high LDH value were significantly
associated with inferior OS. De novo AML, primary refractory
status, and high LDH value were associated with increased
relapse. However, we found no impact of disease burden on
survival and relapse. In fact, several retrospective studies did
not show any advantage of induction chemotherapy before
allo-HSCT to reduce the disease burden for patients with
advanced MDS or AML secondary to MDS {27-29]. Therefore,
the majority of patients with advanced MDS or AML sec-
ondary to MDS received G-CSF—combined myeloablative
conditioning followed by CBT without prior induction
chemotherapy in our institute.

After physicians have decided that allo-HSCT is appro-
priate for patients with myeloid malignancy not in remission,
the elective timing of the transplantation is the main
advantage of CBT. In fact, CBT timing is decided depending on
the patient’s conditions, such as control of infection and
disease burden. Such elective timing of CBT might have
contributed to disease burden not being shown to influence
outcome in our study. On the other hand, the use of CB as a
source of hematopoietic stem cells could offer the opportu-
nity for patients to receive allo-HSCT without related or
unrelated donors. Moreover, the lower incidence of severe
GVHD without compromising graft-versus-leukemia effects
in CBT may also have contributed to long-term survival in our
study.

Relapse is the most important cause of treatment failure
after allo-HSCT, particularly in patients with myeloid malig-
nancies not in remission. This is mainly due to the residual
leukemic cells that have escaped the cytotoxic effect of con-
ditioning before transplantation. To reduce disease relapse,
the role of a more intense conditioning regimen has been
analyzed extensively [30]. Since chemosensitization of leu-
kemia cells with G-CSF enhances the cytotoxicity of the
cell-cycle—specific agent cytarabine {17], we administered
G-CSF—combined high-dose cytarabine in the standard con-
ditioning regimen of TBI/cyclophosphamide. The clinical
efficacy of concomitant use of G-CSF with chemotherapy has
remained controversial in newly diagnosed or relapsed re-
fractory AML and MDS [31,32]. Recently, Pabst et al. reported
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Figure 1. Probability of overall survival and cumulative incidences of relapse and transplant-related mortality after G-CSF—~combined myeloablative CBT. Overall
survival (A), relapse (B), and transplantation-related mortality (C) in 61 patients with AML or advanced MDS not in remission after G-CSF—combined myeloablative

CBT.
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Figure 2. Adjusted probabilities of overall survival in 61 patients with AML and advanced MDS not in remission after G-CSF—combined myeloablative CBT. The
adjusted probabilities of overall survival grouped according to the disease type (A), cytogenetic risk (B), the proportion of blasts in bone marrow (BM) (C), the
presence of blasts in peripheral blood (PB) (D), the lactate dehydrogenase (LDH) value at cord blood transplantation (CBT) (E), and disease status at CBT (F).

Multivariate analysis for overall survival is shown in Table 2.

Table 2

Univariate and Multivariate Analysis of Prognostic Factors for Survival

Variable Univariate Analysis Multivariate Analysis
Number 7-year OS (95% CI) P Hazard Ratio’ 95% Cl P

Age

< 45 years 36 63.5 (44.1-77.7) 1

> 45 25 58.7 (36.7-75.4) .555 69 .25-1.86 464
Disease type

Advanced MDS 13 59.3 (27.5-81.0) 1

AML secondary to MDS 24 744 (51.6-87.6) .58 13-2.54 471

De novo AML 24 474 (23.0-68.4) 234 97 .18-5.16 978
Cytogenetics'

Other than poor 31 80.3 (61.3-90.6) 1

Poor 30 38.9 (18.8-58.6) .002 7.14 2.33-21.80 <.001
Bone marrow blasts at CBT, %

< 25 39 58.0 (40.8-71.8) 1

> 25 22 68.2 (41.2-84.7) 297 .59 .16-2.09 418
Peripheral blood blasts at CBT

Absent 12 66.7 (33.7-86.0) 1

Present 49 60.2 (44.0-73.1) 983 118 34-4.10 787
LDH value at CBT

< ULN 41 67.4 (48.9-804) 1

> ULN 20 50.0 (27.1-69.2) 147 4.00 1.33-12.07 013
Disease status at CBT

Untreated 31 71.1 (50.1-84.5) 1

Primary refractory 14 50.0 (22.9-72.2) 276 .78-9.77 114

Refractory relapse 16 50.0 (20.2-74.1) 234 1.75 .30-10.22 530
Number of nucleated cells, %107/kg

>25 29 59.2 (37.9-75.3) 1

<25 32 64.1 (44.3-78.4) 989 .99 .38-2.58 989
HLA disparities’

<2 45 60.3 (43.7-734) 1

>3 16 65.0 (35.1-83.7) 597 .98 30-3.18 975

MDS indicates myelodysplastic syndrome; AML, acute myelogenous leukemia; CBT, cord blood transplantation; LDH, lactate dehydrogenase; ULN, upper limit of
normal; HLA, human leukocyte antigen; OS, overall survival; Cl, confidence interval.

+ Hazards ratio for overall mortality.

! The cytogenetic subgroups according to the Southwest Oncology Group/Eastern Cooperative Oncology Group criteria for AML and International Prognostic

Scoring System criteria for MDS.

! The number of HLA disparities defined as the low resolution for HLA-A and -B and the high resolution for HLA-DRB1.
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Table 3
Univariate and Multivariate Analysis of Prognostic Factors for Relapse

Variable Univariate Analysis Multivariate Analysis
Number 7-year Relapse (95% Cl) P Hazard Ratio 95% Cl P

Age

< 45 36 29.3 (15.0-45.2) 1

> 45 25 32.0 (14.9-50.6) 567 1.62 .50-5.17 420
Disease type

Advanced MDS 13 7.7 (4-30.5) 1

AML secondary to MDS 24 29.8 (12.9-49.0) 4.37 .38-49.80 230

De novo AML 24 434 (22.4-62.7) .096 9.66 1.06-87.75 .044
Cytogenetics’

Other than poor 31 23.0 (9.9-39.2) 1

Poor 30 38.2(20.5-55.7) 163 2.33 90-5.97 .078
Bone marrow blasts at CBT, %

< 25 39 26.0 (13.3-40.6) 1

>25 22 39.2 (18.0-59.9) 397 1.72 .57-5.16 330
Peripheral blood blasts at CBT

Absent 12 16.7 (2.3-42.8) 1

Present 49 33.8 (20.6-47.4) .309 3.08 40-23.70 .280
LDH value at CBT

< ULN 41 25.6 (13.1-40.1) 1

> ULN 20 40.0 (18.5-60.8) 240 3.75 1.11-12.57 .032
Disease status at CBT

Untreated 31 17.8 (6.3-34.1) 1

Primary refractory 14 50.0 (21.4-73.3) 6.47 1.86-22.51 .003

Refractory relapse 16 37.5 (14.5-60.7) .043 1.36 .26-7.05 71
Number of nucleated cells, x107/kg

>25 29 35.5(18.3-53.1) 1

<25 32 25.3 (11.7-41.5) 525 54 .14-2.12 380
HLA disparities’

<2 45 34.0 (20.4-48.1) 1

>3 16 20.3 (4.5-43.9) .306 .53 .11-2.49 420

MDS indicates myelodysplastic syndrome; AML, acute myelogenous leukemia; CBT, cord blood transplantation; LDH, lactate dehydrogenase; ULN, upper limit of

normal; HLA, human leukocyte antigen; Cl, confidence interval.

= The cytogenetic subgroups according to the Southwest Oncology Group/Eastern Cooperative Oncology Group criteria for AML and International Prognostic

Scoring System criteria for MDS.

¥ The number of HLA disparities defined as the low resolution for HLA-A and -B and the high resolution for HLA—DRB1.

significantly improved survival with concomitant use of
G-CSF with escalated-dose, but not with conventional-dose
cytarabine {31]. In the setting of allo-HSCT, the conditioning
regimen consisting of G-CSF—combined high-dose cytarabine
and TBI 12 Gy was feasible and might reduce post-
transplantation relapse in patients with AML [18,19]. The
presence of quiescent leukemia stem cells (LSCs), which are
thought to be resistant to chemotherapy, might contribute to
relapse after treatment Recently, a xenograft model
demonstrated that cytarabine with G-CSF recruited quiescent
LSCs into a phase of the cell cycle, leading to enhanced
elimination of LSCs within the niche [33]. This effect might
have contributed to reduced relapse in our study. Although
these findings should be confirmed in prospective studies,
the combination of G-CSF—combined myeloablative condi-
tioning with CBT offered a promising curative option for
patients with myeloid malignancies not in remission.
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Visceral varicella zoster virus infection after
allogeneic stem cell transplantation

N. Doki, S. Miyawaki, M. Tanaka, D. Kudo, A. Wake, K. Oshima,
H. Fujita, T. Uehara, R. Hyo, T. Mori, S. Takahashi, S. Okamoto,
H. Sakamaki, for the Kanto Study Group for Cell Therapy. Visceral
varicella zoster virus infection after allogeneic stem cell transplantation.
Transpl Infect Dis 2013: 15: 314-318. All rights reserved

Abstract: Introduction. Varicella zoster virus (VZV) disease is one
of the major infectious complications that can occur after allogeneic
hematopoietic stem cell transplantation (allo-HSCT). Many reports
have shown visceral VZV infection, a special type of VZV disease, to
be rare. However, few studies so far have included a large number
of patients.

Findings. Visceral VZV infection was found in 20 (0.8%) of 2411
patients who underwent allo-HSCT at our hospitals. Seventeen (85%)
patients were taking immunosuppressive agents at the time of
presentation with zoster. The presenting symptom was abdominal
pain in 16 patients (80%), unconsciousness in 3 patients (15%), and
no symptoms in 1 patient. The mean time interval from allo-HSCT to
symptomatic visceral VZV infection was 273 days (103-800 days).
The eruptions appeared within 3 days (0-13) after the first
symptoms. Treatment with intravenous acyclovir was initiated
before the appearance of eruptions in 3 of 18 patients (all 3 survived)
with vesicular eruptions, the same day in 12 patients (11 survived, 1
died), and after the appearance in 3 patients (1 survived, 2 died).
The overall mortality was 20%.

Conclusion. In conclusion, these data confirm that the incidence of
visceral VZV infection is infrequent, but this disease is serious.
When patients being treated with immunosuppressive agents
demonstrate abdominal pain or unconsciousness, the possibility of
visceral VZV infection should be considered as well as earlier
therapeutic intervention.
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Varicella zoster virus (VZV) infection is a common
complication after hematopoietic stem cell transplan-
tation (HSCT), and affects about 18-50% (1, 2) of
HSCT recipients. The majority of these infections are

314

the result of reactivation of a preexisting infection
among adult recipients. Approximately 20% (1, 3) of
these cases subsequently develop cutaneous dissem-
ination, whereas visceral dissemination occurs in only
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