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injection of 1000 1U of eCG to induce estrus. Ovulation was induced by an intramuscular injection of
1500 IU of hCG (Kawasaki Pharmaceutical, Kanagawa, Japan) given 66 h after the injection of eCG.
Sperm-injected embryos cultured for 1-3 days were surgically transferred into the oviducts of
recipients approximately 48 h or 72 h after hCG injection.

All but one of the pregnant recipients were laparotomized to recover fetuses at 47-65 days of

gestation, and the remaining recipient was allowed to farrow.

PCR and Southern blot analyses

Genomic DNA was extracted from tail biopsies of fetuses and newborn piglets using proteinase
K (Life Technologies Corporation, Carlsbad, CA, USA) and purified by the phenol-chloroform
method. To identify Tg pigs, DNA samples were analyzed by PCR using the following primers:
5’-caatgatggctccagggtaa (forward) and 5°-ctecttgaagtegatgecctt (reverse).

For Southern blot analysis, genomic DNA extracted as described above was digested with the
PstI restriction enzyme (Takara Bio), separated by gel electrophoresis, and transferred onto a nylon
membrane (GE Healthcare, Buckinghamshire, UK), which was then hybridized with the DIG-labeled
probes prepared by PCR using the following primers: 5’-caatgatggctccagggtaa (forward) and
5’-ggtggtgcagatcagettca (reverse). The signal (i.e., binding of the probe) was detected by chromogenic
methods. The number of transgene copies integrated into the porcine genome was determined by
comparison of the hybridization signal with that of the copy-number control, which was diluted to

make a standard series (1-100 copies per diploid genome).

Pancreas-specific fluorescence expression in Tg fetuses and G1 offspring
The tails of the fetuses (day 47-65) obtained from autopsies of the sacrificed pregnant pigs were
used to extract genomic DNA. Tg fetuses were identified by PCR. Fetal viscera were also removed,

and the expression of green fluorescence in the organs was analyzed by fluorescence stereomicroscopy
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(MVX10, Olympus, Tokyo, Japan; excitation wavelength of 460-480 nm; absorption filter of 495-540
nm). Pancreatic tissue samples from fetuses were fixed in 4% paraformaldehyde and used to prepare |
paraffin-embedded sections  (hematoxylin/eosin stain). The paraffin-embedded sections were also
analyzed by fluorescence microscopy (Olympus BX52; excitation wavelength of 460-480 nm;
absorption filter of 495-540 nm).

A subset of the founder Tg pigs was allowed to grow to maturity and was mated with wild-type
pigs. The offspring (G1) obtained were sacrificed when they reached the age of 27 days to examine
pancreas-specific fluorescence expression by fluorescence stereomicroscopy.

Pancreatic tissue samples of the founder Tg pig (GO) were double-stained using. anti-insulin
(1:500; LS-C24686, LifeSpan-BioSciences, Seattle, WA, USA) and anti-GFP-(1:500-1:1000; #598,
MBL Co., Ltd., Nagoya, Japan) antibodies to determine the Venus-expressing cells in the pancreatic
islets. Alexa Fluor® 594 goat anti-guinea pig IgG (A11076, Life Technologies) and Alexa Fluor® 488
donkey anti-rabbit IgG (A21206, Life Technologies) were used as the secondary antibodies. The tissue
sections were also double-stained for glucagon and Venus. For glucagon staining, anti-glucagon

antibody (1:500; G2654) and Alexa Fluor®594 goat anti-mouse IgG (A 11020, Life Technologies) were

-employed. After antibody treatments, the sections were mounted in Vectashield mounting medium

(Vector Laboratories, Burlingame, CA, USA) containing 4,6 -diamidino-2-phenylindole (DAPI) for
nuclear counterstaining and observed by confocal laser scanning microscopy (FV1000-D; Olympus

Corporation, Tokyo, Japan).

Fluorescence in situ hybridization

Peripheral blood cells derived from the two Tg founder pigs (male and female) were cultured in
RPMI1640 containing 20% (v/v) FBS for 3 days. The cells were then cultured with 30 pg/ml BrdU for
5 h, followed by incubation with 0.02 pug/ml colcemide for 1 h, After fixation with methanol-acetic

acid (3:1 ratio), the cells were spread on slides and air-dried. The cells were then stained with Hoechst
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33258 and treated with UV light for G-banding. Pdx/-Venus DNA was labeled with Cy3 as a probe
and hybridized at 37 C overnight. After stringent washing, the bound label was detected with

anti-Dig-Cy3 using Leica DRAM2 and CW4000 FISH software.

Tracing of pancreatic islets by fluorescence after ectopic transplantation

Pancreatic islets were isolated from a 4.5-month-old Tg pig using a conventional method. The
pancreas collected from a Tg pig was distended by infusion with Liberase DL (Roche Diagnostics,
Indianapolis, IN, USA) suspended in Hank’s balanced salt solution (HBSS; Life Technologies),
followed by a static incubation in an empty 125 ml storage bottle for 30 min at 37 C. Then the
digesting pancreatic tissue was gently shaken with 7 mm Teflon® beads in RPMI 1640 (Life
Technologies). Digestion was terminated by the addition of cold HBSS containing 10% (v/v) FBS,
100 TU/ml of penicillin, 100 mg/ml of streptomycin, and 2.5 pg/ml amphotericin B. The digested
tissue was passed through a 500 pm stainless steel mesh screen. The tissue effluent was collected in 50
ml conical tubes and centrifuged for 2 min at 155 xg at 4 C. The islets were purified using a
Histopaque®-1.077 gradient with RPMI 1640. Following centrifugation at 1700 xg for 17 min at 4 C,
the islets were collected from the interface between the RPMI 1640 and Histopaque®-1.077. Purified
islets were washed by centrifugation at 155 xg for 2 min at 4 C in RPMI 1640 supplemented with 10%
(v/v) FBS. The purity of the isolated islets was confirmed to be over 90% by microscopic inspection
after Dithizone (5 mg/ml, in DPBS) staining.

Fluorescence in the isolated islets was observed by fluorescence stereoscopic microscopy
(MVX10, Olympus). Isolated islets were then transplanted under the renal capsules of anesthetized
NOD/SCID mice (CLEA Japan, Inc., Tokyo, Japan). Kidneys were removed either immediately or at
one month after transplantation and analyzed by fluorescence stereomicroscopy (MVX10, Olympus)

to determine whether the islets could be traced using Venus fluorescence as an indicator.
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Results

Efficiency of production of Pdx1-Venus Tg pigs by ICSI-MGT

The ICSI-MGT method was selected for creating Pdxl-Venus-Tg pigs. In total, 370
sperm-injected embryos were transferred into four recipients, all of which became pregnant.

Three of the recipient pigs were autopsied at 47-65 days of gestation, and 16 fetuses were
recovered for analysis (Table 1). The production efficiency of fetuses was. betweeh 4 and 8%, as each
recipient received approximately 80 embryos. Seven of the 16 fetuses were Tg (43.8%), including
approximately 30% of the fetuses in two of the recipients and all three fetuses in one recipient. Overall,
2.4-3.7% of the transferred embryos produced Tg fetuses.

The fourth pregnant pig, which received 127 embryos, was allowed to farrow and produced six

(4.7%) piglets, two of which were Tg (one female and one male).

Pancreas-specific expression of Venus in Tg fetuses and offspring

The viscera of the seven Tg fetuses obtained were examined by fluorescence stereomicroscopy,
and we found that all the fetuses had pancreas-specific expression of Venus fluorescence (Fig. 2A, B).
The Southern blot analysis of genomic DNAs indicated an integration of 5 to 100 copies of the gene.
Although the fluorescence intensity tended to be greater in fetuses with higher copy numbers (>15),
except for a female fetus (W8-1) harboring 30 copies of the gene, pancreas-specific expression was
clear in all fetuses regardless of the copy number (Table 2).

A histological analysis of pancreatic tissues of four Tg fetuses showed that Venus fluorescence
was present in cells determined to be acinar cells based on their appearance. This expression pattern
was consistent among all fetuses analyzed (Fig. 2C, D).

The two founder (GO; male and female) Tg pigs grew normally to adulthood and were crossed
with wild-type pigs to produce G1 offspring of six litters. Of the 22 G1 pigs obtained from the male

founder and the 28 G1 pigs derived from the female founder, the transgene was transmitted to ten
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(45.5%) and 16 pigs (57.1%), respectively, indicating that the transgene was transmitted in the
Mendelian fashion. It was found that 10 and 30 transgene copies were integrated into the genomes of
the male and female founder pigs, respectively. FISH analysis of these founder Tg pigs revealed that
concatemerized transgenes were integrated into a single site on the chromosomes (Suppl. Fig. 1).

Four 27-day-old G1 piglets (Tg female and male, non-Tg female and male) were autopsied to
examine fluorescence expression in their viscera. The pancreas, duodenum, small intestine, liver,
spleen, kidneys, skin, heart, lungs, and stomach were observed under a fluorescence stereomicroscope.
This analysis confirmed the retention of pancreas-specific fluorescence expression (Fig. 3A and Suppl.
Fig. 2) as in the founder Tg fetuses. Green fluorescence was not detected in the viscera of non-Tg pigs.
The pancreatic tissue of the G1 Tg pigs showed green fluorescent spots throughout (Fig. 3A),
indicating Pdx-Venus expression in islets. Venus expression was found to be confined to p-cells in the

pancreatic tissue after double staining with anti-insulin and anti-GFP antibodies (Fig. 3B).

Tracing of the fluorescence expression of pancreatic islets

To further examine the potential of Pdx/-Venus Tg pigs for future use in pancreatic islet
research, we investigated the traceability of the pancreatic islets using their fluorescence as an
indicator. As shown in Fig. 4, Venus fluorescence expression patterns were clearly observed under a
fluorescence stereomicroscope, which confirmed clear fluorescence spots in the islets (Fig. 4A, A).
The isolated islets were transplanted under the renal capsules of NOD/SCID mice, and the
transplanted islets could clearly be identified ‘by their fluorescence. The fluorescence of the

transplanted pancreatic islets was still clear at 30 days after transplantation (Fig. 4C, C’).
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Discussion

This report describes the production of the first Pdx]-Venus Tg pig expressing green fluorescent
protein specifically in the pancreas, particularly in B-cells. Pdx1 is a key molecule with an important
role in pancreatic stem cell differentiation into B-cells [12, 13, 22, 23]..In fact, Pdx! knockout mice
reportedly suffer impaired pancreatic development [12, 24]. The identification and separation of
PdxI-positive cells is therefore expected to stimulate new developments in research on islet
architecture during the ontogeny and differentiation of p-cells from precursors [13, 25, 26]. Research
on pancreas development and f-cell differentiation is also expected. to lead to the pathophysiological
analysis of diabetes and the development of new therapeutic methods [27]. In particular, the
neogenesis of B-cells has been a recent focus in diabetes research [28-31].

In research using laboratory rodents, Pdx1%"" mice [32] and mouse insulin I gene promoter
(MIP)-GFP Tg mice [33] have been created and used to conduct research on pancreatic development
and differentiation. However, in research using pigs, a Tg model that is useful for the study of B-cell
biology, including the identification of progenitor cells, has not been available. Considering that the
importance of pigs, as a large laboratory animal with several similarities to humans, in translational
research is now recognized and that research is being undertaken on the clinical applications of
porcine islet transplantation [34]; the Pdx!-Venus pig we have produced has strong potential for use as
an effective research tool. The Expression pattern of the Pdx!-Venus in the islet of our transgenic pigs
was similar to that reported previously in the Pdx1%*™ mice [32].

In the present study, we employed the mouse Pdx/ promoter to drive the Venus expression in
the transgenic pigs. However the transgene was expressed in a highly tissue-specific manner. In fact,
Pdx1-Venus expression was confined to the pancreas during the early fetal stage (day 47) and at the
adult stage. Pdx/ is also known to be expressed in the duodenum at the fetal stage [13]. Further studies
need to be undertaken to examine the expression of the Pdx/-Venus in the early stages of

pancreatogenesis in the transgenic pig fetuses.
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Concerning Pdx/-Venus expression in the islets, we observed that cells that were Venus positive
were also insulin-positive. cells. This pig is, accordingly, very useful for tracking the behavior of
pancreatic progenitor cells and B-cells.

Pdx1-Venus is also useful as a cell marker following islet transplantation. The clinical
application of islet transplantation using human islets has been hampered, as is the case with other
transplants, by the shortage of donor organs. However, if xenogeneic pancreas transplantation—more
specifically, the transplantation of pig islets to humans—becomes possible, substantial advances will
be made in treatments for diabetes patients [35]. Xenogeneic transplantation will require further basic
studies, including a long-term follow-up of islets transplanted to animals. Pdx/-Venus Tg pig islets
will serve as a very useful tool in such research. For example, production of insulin or C-peptide from
the transplanted islets may be correlated with the Pdx!-Venus expression that indicates the viability of
B-cells. We have already produced diabetic model Tg pigs by mutant hepatocyte nuclear factor-1a
gene transfer [2]. Transplanting islets from PdxI-Venus Tg pigs using such diabetic models should
provide knowledge that can be extrapolated from large animals to humans.

Pdx1-Venus Tg pigs were observed to show a high level of green fluorescence expression in the
pancreas (B-cells) with normal pancreas function. This finding was confirmed by the pigs’
physiological characteristics, including growth, casual blood glucose levels, postprandial blood
glucose and insulin levels, and blood biochemical parameters, which were measured during the period
from the postweaning through the growth stages (Suppl. Text, Suppl. Fig. 3, and Suppl. Table 1).
Based on these results, we hypothesize that Pdx/-Venus Tg pigs may also be suitable as donor animals
in studies of islet transplantation.

In this study, we introduced transgenes using the ICSI-MGT method. We previously reported
that the application of ICSI-MGT is highly effective for introducing exogenous genes to porcine IVM
oocytes [2, 17]. In this study, approximately 30-100% of the fetuses/piglets obtained in each litter

were Tg, once more demonstrating the high efficiency of the 1ICSI-MGT method. The production
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efficiency of Tg fetuses or piglets obtained in this study was equal or rather higher compared with our
previous studies, probably due to lower detrimental effect of the transgene expression (2, 36, 37]. In
vitro maturation of pig oocytes is now an established method, and the combination of IVM oocytes
and the I[CSI-MGT method can accordingly be considered a practical method for generating Tg pigs.
Our previous research confirmed that transgenes introduced by the ICSI-MGT method
generally insert into a single site on the host genome as concatemers [17, 38]. In the founder Tg pigs
used for generating G1.offspring in this study, it was shown that the transgenes did concatamerize and
integrated into a single site of the chromosome as shown in our previous studies [17, 38]. No
significant differences in growth were observed in fetuses with transgene copy numbers between 5 and
100. The level of transgene expression is considered to be more readily influenced by the integration
site on the chromosome than by the integrated copy number [39, 40]. Even so, in the case of Tg

individuals with an exceptionally high number of integrated transgenes, it is possible that high-level

_transgene expression may influence normality in piglets and affect their long-term survival. Because

the copy number of the integrated genes is affected by various factors related to the binding of DNA to
sperm [38, 41, 42], the preliminary optimization of the transgene-sperm co-incubation will be critical
for the efficient production of Tg pigs using the ICSI-MGT method.

In conclusion, building on our current knowledge, this study verifies that using IVM oocytes
and ICSI-MGT together is an effective method for producing Tg pigs. Additionally, because the
Pdx1-Venus Tg pigs produced in this study express green fluorescent protein specifically in the
pancreas (B-cells) and maintain normal physiological function, we can conclude that this large animal

model is suitable for research on pancreatic development and regeneration as well as diabetes.
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484  Table 1. Efficiency of the ICSI-MGT method for the production of Tg pig fetuses and offspring

485  carrying the PdxI-Venus gene.

No." of embryos Production  efficiency of * Production efficiency of Tg

Recipient
transferred fetuses or offspring (%) fetuses or offspring (%)™
Fetus W8 83 8.4 [7/83] 28.6 [2/7]
W9 81 3.7 [3/81] 100 [3/3]
Wil 79 7.6 [6/79] 33.3 [2/6]
Offspring W10 127 4.716/127] 33.3 {2/6]

486  "'No. of fetuses or piglets / No. of embryos transferred x 100
487 ™ No. of Tg fetuses or piglets / No. of fetuses or piglets obtained x 100

488
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Table 2. Expression of the PdxI-Venus gene in Tg pig fetuses produced by the ICSI-MGT method.

Fluorescence Transgene  copy
Fetus F etal age Fetal sex
intensity number
W8-1 Day 48 F + 30
W8-5 Day 48 F + 5
WO-1 Day 47 F + S
W9-2 Day 47 M ++ 15
W9-3 Day 47 M ++ 70
W11-2 Day 65 F + 5
WI11-5 Day 65 F ++ 100<
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Rabbit f-globin gene sequiene

Figure 1. Structure of an expression vector for the Pdx]-Venus cDNA.

A schematic presentatioh of the PdxI-Venus transgene uséd to generate transgenic pigs. The fusion
gene (8.4 kb) consists of 6.5 kb of the mouse Pdx1 promoter and a rabbit B-globin gene including an

insertion of 0.72 kb Venus cDNA in the 3™ exon and a polyadenylation signal in the 3 —flanking

region. Transcription and translation start site are indicated by +1 and M, respectively.
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Figure 2. Pancreas-specific expression of the PdxI-Venus gene in the Tg pig fetus.
Bright-field (A) and fluorescence micrdééopic (B) observation of th‘e pancreas (arrowheads). Acinar
cells (C, HE stain) showed prominent Venus expfesSidri (D). D, duodenum; L, liver; Si, small

intestine; Sp, spleen; St, étOmaCh. SCale bars =5 mm (A, B); 50 um (C, D).
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Figure 3. Expression of the Pdx1-Venus gene in the pancreas of a Tg pig.

(A) Green fluorescent spots were observed by fluorescence stereomicroscopy throughout the
pancreatic tissue of the Tg pigs (left panel), indicating Pdx! Venus expression in islets.

Right panel: pancreatic tissue of a control wild-type pig. The inset in each panel presents a bright-field
image of the tissue. Scale bars = 2.5 mm.

(B) Immunohistochemical staining of pancreatic islets of a Pdx-Venus Tg pig. Merged images of the
Tg pig islet demonstrated that the expression of the PdxI-Venus gene was confined to B-cells (top left),

whereas this gene was not.expressed in glucagon-producing cells (top right). Scale bars = 50 pum.
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