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Figure 5. Suppression of GYHD by UCMS cells transplantation. Although all mice in the control group died or showed severe GVHD at
6 weeks (score 6; 1 mouse, dead; 4 mice), treatment with non-expanded UCMS cells significantly reduced the severity of GVHD (score
3; 1 mouse, score 4; 2 mice, dead; 2 mice) (A). Representative pictures of animals from the control group (B) and non-expanded UCMS
cell-treated group (C) are shown. (D) Survival curve after radiation and allogeneic hematopoietic stem cell transplantation (=5, in each
group). All of the mice in the control group were dead by 25 weeks after allogeneic hematopoietic stem cell transplantation. In contrast,
no mice in the UCMS group were dead after the second infusion of non-expanded UCMS cells. *P<0.05 versus control. Scale bar, 1 cm

(B, C).

Removal of the umbilical artery results in the loss of
Wharton’s jelly, which contains significant numbers
of MSC. Preservation of the blood vessels before
digestion with collagenase and hyaluronidase also
significantly reduced contamination by endothelial
cells. This finding may be attributed to removal of
intact vascular structures from the cell suspension
before digestion with trypsin, as vasculature was not
considerably degraded in the presence of collage-
nase and hyaluronidase according to our protocol.
Furthermore, our method has a significant advan-
tage in that no i wirro cell culture is required for
isolation of MSC from umbilical cord. In contrast,
recently published methods described by Capelli
et al. (11) and Lu ez al. (10) involve cell culture over
several days for isolation of MSC. The advantage of
protocols using  vitro expansion is that non-adhesive
cells can be removed, resulting in an enriched adhe-
sive cell population. However, our results indicate
that freshly isolated and non-selected umbilical cord-
derived cells obtained by our method suppressed

GvHD in an animal model. In vitro expansion of
MSC carries a risk of tumorigenesis (42) and clinical
use of the expanded cells requires strict monitoring
to ensuré safety. Our modified method has signifi-
cant advantages in the reduced time required for the
isolation procedure and its safety, both of which are
important for cell banking. For the studies reported
here, we used only the umbilical cords obtained
at full-term Cesarean sections. It is likely that the
properties and number of MSC in umbilical cord
are similar comparing Cesarean section and vaginal
delivery. Although caution should be taken regarding
cleanliness/sterility after vaginal delivery, we expect
that the same procedure can be used for umbilical
cords obtained at full-term vaginal delivery.

In addition to offering a cell source for regenera-
tive medicine, MSC have the potential to suppress
GvHD after hematopoietic stem cell transplantation.
Although the mechanisms and actual cell fraction
underlying suppression of GvHD by MSC transplan-
tation remains contentious (43), our results indicate



that human umbilical cord-derived non-expanded
MSC suppressed GvHD in a murine model. The
optimal type of MSC for suppression of GvHD, in
terms of source, level of maturity and HLA-matching
to the donor, is unclear. However, our results indi-
cate that non-expanded UCMS cells represent a
potential candidate cell source, particularly when
co-banked with cord blood-derived hematopoietic
cells (provided there is also strict control for con-
tamination with infectious agents with HLA-typing).
Furthermore, co-transplantation of HILA-matched
hematopoietic stem cells and MSC may be advan-
tageous to reduce clearance of transplanted MSC
via immunologic recognition of HILA-matched
hematopoietic cells.

In conclusion, our results indicate that umbili-
cal cord-derived non-expanded MSC represent a
potential cell source for cell banking and subsequent
therapeutic use. Our results indicate that the com-
bination of banking UCMS cells with identical cord
blood-derived hematopoietic stem cells could be an
important source for cell-based therapies in a range
of settings.
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Allogeneic Transplantation of Fetal
Membrane-Derived Mesenchymal Stem Cell Sheets
Increases Neovascularization and Improves Cardiac

Function after Myocardial Infarction in Rats

Shin Ishikane,* Hiroshi Hosoda,"” Kenichi Yamahara,' Yoshiharu Akitake,"? Jung Kyoungsook,l
Kenichi Mishima,? Katsunori Iwasaki,> Michihiro Fujz'wara,3 Mikiya Miyazato,2

Kenji Kangawa,® and Tomoaki Ikeda™>°®

Background. Mesenchymal stem cell (MSC) transplantation has been pursued as a new method to repair damaged
myocardium. We focused on the fetal membrane (FM) as an alternative source to bone marrow (BM)—derived MSCs. In
this study, we investigated whether transplantation of allogeneic FM-MSC sheets could attenuate myocardial dysfunction
in a rat chronic myocardial infarction (MI) model.

Methods. Sheets of allogeneic FM-MSC or autologous BM-MSC were transplanted into the scarred myocardium
4 weeks after coronary ligation.

Results. Four weeks after transplantation, both allogeneic FM-MSC and autologous BM-MSC sheets had significantly
improved cardiac function and reduced myocardial fibrosis compared with the untreated MI group. In both MSC
sheet-transplanted groups, the peri-infarct regional capillary density was increased. Some engrafted MSCs formed
vascular structures and were positive for lectin I and a-smooth muscle actin. The numbers of engrafted cells and
differentiated cells were very low after both types of MSC sheet transplantation. CD3" T cells did not increase in the
transplantation site, but CD163" M2 macrophages increased in the groups transplanted with allogeneic FM-MSC and
autologous BM-MSC.

Conclusions. Transplaniation of allogeneic FM-MSC or autologous BM-MSC sheets attenuated myocardial dysfunction
in a rat MI model to a similar degree. The engraftment rate of transplanted cells and immune cell infiltration into the
transplanted area did not differ between the two types of MSC transplants. M2 macrophage induction has possible in-
volvement in the therapeutic effects of MSC transplantation. Allogeneic FM-MSC sheet transplantation might be a new
therapeutic strategy after ML

Keywords: Fetal membrane, Mesenchymal stem cells, Cell sheet, Myocardial infarction, Allogeneic transplantation.
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yocardial infarction (MI) causes loss of cardiac tissue
and impairment of left ventricular function. Recent
reports suggest that mesenchymal stem cells (MSCs) are a

S.I. participated in research design, performance of the research, data analysis,
and writing of the article. H.H. and T participated in research design,
performance of the research, and writing of the article. K.Y,, KM,, K.I,
M.E, M.M., and K.K. participated in the performance of the research and
contributed new reagents or analytic tools. Y.A. and J.K. participated in the
performance of the research and data analysis.

Supplemental digital content (SDC) is available for this article. Direct URL
citations appear in the printed text, and links to the digital files are
provided in the HTML text of this article on the journal’s Web site
(www.transplantjournal.com).

Received 13 November 2012. Revision requested 8 May 2013.

Accepted 6 June 2013.

Copyright © 2013 by Lippincott Williams & Wilkins

ISSN: 0041-1337/13/9608-697

DOI: 10.1097/TP.0b013e31829f753d

www.transplantjournal.com | 697

Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.



698 | www.transplantjournal.com

valuable cell source for cell therapy after MI and that bone
marrow (BM) represents a major source of MSCs. Several
clinical trials of autologous BM-MSC transplantation for MI
have reported therapeutic success (1-3).

BM harvest is a surgical procedure that requires gen-
eral anesthesia or sedation, and both the proliferative poten-
tial and the differentiation capacity of MSCs seem to decrease
in older donors (4, 5). In addition, BM procurement pro-
cedures in humans may yield low numbers of MSCs after
cell processing. To address this issue, we focused on the fetal
membrane (FM) of the placenta, which is generally discarded
as medical waste after delivery, as an alternative source of
autologous MSCs. Several studies have reported that the
human FM contains multipotent cells similar to BM-MSCs
and that these cells are easy to expand (6, 7). We demonstrated
previously that the allogeneic transplantation of FM-MSCs
did not elicit any lymphocyte proliferative response despite
their allogeneic origin and induced therapeutic effects in a rat
model of hind-limb ischemia and acute myocarditis (8, 9).

In some types of MSC transplantation, dissociated MSCs
are injected into the myocardium to induce cardiac regenera-
tion. However, it is difficult to reconstruct sufficient cardiac
mass in the thinned scar area after MI. Imanishi et al. (10)
reported that approximately 90% of cells injected into the
myocardium are lost within 1 day. Okano et al. recently devel-
oped cell sheets using temperature-responsive culture dishes
(11-14). These cell sheets allow for cell-to-cell connections
and maintenance of adhesion proteins. In a rat MI model,
the engraftment rate of transplanted cells was higher after
transplantation of cell sheets compared with intramyocardial
transplantation of dissociated cells (15, 16). These results
suggest that transplantation of allogeneic FM-MSC sheets
may be a new strategy for the treatment of heart failure.

In this study, we designed a set of experiments with the
following aims: (i) to compare the therapeutic effects of trans-
plantation of allogeneic FM-MSC sheets and autologous BM-
MSC sheets in a rat chronic MI model, (ii) to investigate the
engraftment and differentiation of transplanted MSCs, and (iii)
to investigate whether transplanted allogeneic FM-MSC sheets
evade immune rejection.

RESULTS

Preparation and Transplantation of Two-Layered
MSC Sheets

FM-MSCs derived from green fluorescent protein (GFP)-
transgenic Sprague-Dawley rats (3.3x10° cells) or BM-MSCs
derived from GFP-transgenic Lewis rats (3.3x 10° cells) were
cultured in temperature-responsive 35-mm dishes for 1 day.
When the culture temperature was decreased from 37°C to
20°C, both types of MSC sheets detached spontaneously and
floated into the culture medium as a monolayer MSC sheet
that could be stacked into two-layer constructs (Fig. 1A, C,
and D). We transplanted two-layered FM-MSC sheets or BM-
MSC sheets over the anterior wall of the heart, including the in-

farcted area, and then attached them to the heart surface (Fig. 1B).

Engraftment of Transplanted Allogeneic
FM-MSC and Autologous BM-MSC Sheets in
Infarcted Hearts

One day and 1 and 2 weeks after transplantation, GFP-
positive allogeneic FM-MSCs and autologous BM-MSCs

Transplantation * Volume 96, Number 8, October 27, 2013

were present as sheets on the infarcted area of the anterior
wall (n=3 in each group). GFP-positive allogeneic FM-MSCs
and autologous BM-MSCs were observed in the anterior in-
farcted area 3 and 4 weeks after transplantation (n=4 in each
group) (Fig. 1E). However, semiquantitative analysis demon-
strated that the engraftment rate decreased with time in both
MSC sheet-transplanted groups (Fig. 1F). The engraftment rate
did not differ significantly between the MI groups transplanted
with allogeneic FM-MSC and autologous BM-MSC.

Improvement in Cardiac Function after
Transplantation of Allogeneic FM-MSC and
Autologous BM-MSC Sheets

Heart failure developed 4 weeks after coronary ligation,
as indicated by deterioration of left ventricular function and
thinning of the infarct wall. The ejection fraction, fractional
shortening, anterior wall thickness, posterior wall thickness,
left ventricular diastolic dimension, and left ventricular sys-
tolic dimension measurements at baseline did not differ sig-
nificantly between the three MI groups. One of the 10 rats in
the untreated MI group died on day 53 after coronary ligation;
no rats died in the MI groups transplanted with allogeneic
FM-MSC or autologous BM-MSC.

Hemodynamic analysis revealed significant improve-
ments in the MI group transplanted with allogeneic FM-MSC
compared with the untreated MI group for the left ventri-
cular systolic pressure, maximum dP/dt, and minimum dP/d¢
(P<0.05; n=10 in each group) (Fig. 2B,C; see Table S1, SDC,
http://links.lww.com/TP/A849).

Echocardiographic analysis revealed significant improve-
ments in ejection fraction, fractional shortening, and left ven-
tricular systolic dimension (P<0.05 for each) in the MI group
transplanted with allogeneic FM-MSC compared with the
untreated MI group. Anterior wall thickness was also sig-
nificantly greater in the MI group transplanted with alloge-
neic FM-MSC than in the untreated MI group (Fig. 2D,E;
see Table §2, SDC, http://links.lww.com/TP/A849).

The hemodynamic and echocardiographic parameters
did not differ significantly between the MI groups transplanted
with allogeneic FM-MSC and autologous BM-MSC.

Reduction in Myocardial Fibrosis after
Transplantation of Allogeneic FM-MSC and
Rutologous BM-MSC Sheets

Eight weeks after coronary ligation, Masson’s trichrome
staining of the myocardium from the untreated MI group
demonstrated prominent and diffuse interstitial fibrosis in the
anterior scar area. This was attenuated markedly in the MI
groups transplanted with allogeneic FM-MSC and autologous
BM-MSC (Fig. 3A). Quantitative assessment of myocardial
fibrosis of the left heart showed that the fraction of Masson’s
trichrome-stained collagen volume was significantly smaller
in the MI groups transplanted with allogeneic FM-MSC or
autologous BM-MSC than in the untreated MI group (P<0.05;
n=10 in each group) (Fig. 3B).

Angiogenesis and Differentiation of Transplanted
Allogeneic FM-MSC and Autologous BM-MSC
Sheets in Infarcted Hearts

Four weeks after transplantation, vascularization was
assessed by lectin I staining and was observed in the allo-
geneic FM-MSC-transplanted MI group and the autologous

Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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FIGURE 1. Stacked MSC sheets and their transplantation into infarcted hearts. A, two MSC sheets harvested from
temperature-responsive culture surfaces were stacked successfully, producing a two-layer construct. Scale bar, 10 mm. B,
two-layered MSC sheets were transplanted over the anterior wall of the infarcted heart and formed a stable attachment to the
heart surface (arrows). C, cross-sectional staining of a GFP-expressing two-layered FM-MSC sheet. Scale bar, 100 pm. D,
cross-sectional staining of a GFP-expressing two-layered BM-MSC sheet. Scale bar, 100 pm. E, allogeneic FM-MSCs and
autologous BM-MSCs were present over the area surrounding the scar on days 1, 7, 14, 21, and 28. Scale bar, 100 pm. F,
semiquantitative analysis showed that the engraftment rate of cells decreased with time in both groups transplanted with
MSC sheets (days 1, 7, and 14, n=3 in each group; days 21 and 28, n=4 in each group). Data are expressed as meantSE.

BM-MSC-transplanted MI group (Fig. 4B). Quantitative anal-
ysis showed increased capillary density in the infarcted area
in both MSC-transplanted groups compared with the untreated
MI group (n=6 in each group) (Fig. 4C). The capillary density
in the peri-infarct area was similar in the MI groups transplanted
with allogeneic FM-MSC and autologous BM-MSC; both
values were significantly higher than in the untreated MI
group (P<0.05; n=6 in each group) (Fig. 4D).

GFP-positive FM-MSCs and BM-MSCs were observed
in the peri-infarct area of the anterior wall, but GFP-lectin
I/a-smooth muscle actin (aSMA) double-positive cells were
not observed 1 day or 1 week after transplantation (data not

shown). Two weeks after transplantation, engrafted GFP-
positive FM-MSCs and BM-MSCs formed vascular structures
and were positive for lectin I and a«SMA (Fig, 4E,F). The GFP—
lectin I/aSMA double-positive cells comprised less than 1%
of the engrafted cells.

Immune Responses to Transplanted Allogeneic
FM-MSCs and Autologous BM-MSCs in
Infarcted Hearts

To compare the host immune responses to transplanted
allogeneic FM-MSCs and autologous BM-MSCs, we performed
immunohistochemical staining for CD3 (T cells) and CD68

Copyright © 2013 Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited.
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Effects of transplantation of allogeneic FM-MSC and autologous BM-MSC sheets on hemodynamic and echo-

cardiographic parameters after MI. A, study flowchart. B and C, four weeks after transplantation, left ventricular systolic
pressure and minimum dP/dt had improved significantly in the MI groups transplanted with allogeneic FM-MSC and autolo-
gous BM-MSC compared with the untreated MI group (n=10 in each group). Data are expressed as meantSE. *P<0.05 vs. sham
group; TP<0.05 vs. untreated MI group. D and E, four weeks after transplantation, the ejection fraction and anterior wall
thickness in the MI groups transplanted with allogeneic FM-MSC and autologous BM-MSC had improved significantly com-
pared with the untreated MI group (n=10 in each group). Data are expressed as meantSE. *P<0.05 vs. baseline; 1P<0.05 vs.
time-matched untreated MI group. AWT, anterior wall thickness; EF, ejection fraction; LVSP, left ventricular systolic pressure.

(monocytes and macrophages) in sections of MSC-transplanted
infarcted hearts 4 weeks after transplantation. Compared
with the sham group, the numbers of CD3* and CD68™ cells
in the infarcted and peri-infarct areas were increased in the
untreated MI group and in the MI groups transplanted with
allogeneic FM-MSC or autologous BM-MSC (Fig. 5A,D).
Quantitative analysis demonstrated no significant differences
in CD3" cell infiltration between the MI groups that were
untreated or transplanted with allogeneic FM-MSC and au-
tologous BM-MSC (n=8 in each group) (Fig. 5C).

In the infarcted areas, there were no differences in the
number of CD68" cells between the three MI groups, un-
treated or transplanted with allogeneic FM-MSC or autolo-
gous BM-MSC (n=8 in each group). By contrast, the number
of CD68" cells in the peri-infarct area was significantly higher
in both MSC-transplanted MI groups than in the untreated

Ml group (P<0.05 vs. untreated MI group; n=8 in each group)
(Fig. 5E,F). The intensity of CD3 and CD68 staining did not
differ between the two MSC-transplanted groups. CD163"
cells were observed in the serial sections of the sites infiltrated
by CD68™ cells from all three MI groups (see Figure S2b,
SDC, http://links.lww.com/TP/A849).

DISCUSSION

In the present study, we have demonstrated five points.
First, transplantation of allogeneic FM-MSC sheets and au-
tologous BM-MSC sheets improved cardiac function and
prevented ventricular remodeling in a rat model of MI to a
similar degree. Second, massive angiogenesis was observed in
the areas transplanted with allogeneic FM-MSC sheets and
autologous BM-MSC sheets but was not observed in the area
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FIGURE 3. Masson’s trichrome staining of heart cross-
sections at the left ventricular papillary muscle level from
Ml rats transplanted with allogeneic FM-MSC and autologous
BM-MSC sheets. A, four weeks after transplantation, the
myocardial fibrosis area was smaller in the MI groups trans-
planted with FM-MSC and autologous BM-MSC than in the
untreated MI group. Right row shows a higher resolution of
the image in the black box in the respective left row. Scale
bar, 1 mm (left row) and 500 pm (right row). B, quantitative
analysis demonstrated that the fibrosis area was significantly
smaller in the MI groups transplanted with FM-MSC and
autologous BM-MSC compared with the untreated MI group
(n=10 in each group). Data are expressed as meantSE.
*P<0.05 vs. sham group; 1P<0.08 vs. untreated MI group.

‘Sham

of the infarcted myocardium. Third, transplanted allogeneic
FM-MSCs engrafted in the infarcted myocardium from 1 day
to 4 weeks after transplantation, but the number of engrafted
cells decreased markedly with time. Fourth, some of the en-
grafted FM-MSCs were positive for lectin I or aSMA, but
these cells comprised less than 1% of the engrafted cells. Fifth,
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the engraftment rate and host immune cell responses did not
differ between groups transplanted with allogeneic FM-MSC
and autologous BM-MSC.

Several studies have reported that transplantation of
autologous BM-MSC improves cardiac function in ischemic
heart disease (17-20). However, there are several limitations
when using autologous BM-MSCs for clinical applications,
including the invasiveness of the harvesting procedure, inad-
equate cell numbers, and donor site morbidity (21). We have
reported that allogeneic FM-MSCs are an alternative to au-
tologous BM-MSCs (8, 9). Although allogeneic, transplanted
FM-MSCs exerted therapeutic effects in experimental rat
models of hind-limb ischemia and acute myocarditis and did
not elicit alloreactive lymphocyte proliferation. In this study,
we showed a significant improvement in cardiac function
and a reduction in myocardial fibrosis in rats with chronic
MI that were transplanted with allogeneic FM-MSC sheets or
with autologous BM-MSC sheets. The FM contains large
quantities of MSCs, and their use is considered to present few
ethical concerns; thus, FM-MSCs can provide a cell source for
regenerative medicine (22, 23).

The mechanisms underlying the effectiveness of MSC
therapy in treating ischemic heart failure may involve both the
differentiation of transplanted MSCs into vascular cells and
cardiomyocytes and the secretion of several growth factors
by transplanted cells (paracrine effects). Two to 4 weeks after
transplantation, some of the engrafted FM-MSCs and BM-
MSCs stained positively for lectin | and participated in vessel
formation. Staining for aSMA revealed that both types of
MSC:s differentiated into vascular smooth muscle cells, which
play an important role in vessel maturation. A few engrafted
MSCs may transdifferentiate in the vessel, but the number of
such cells would be insufficient to be the main mechanism
responsible for the therapeutic gain. We did not find desmin-
positive or troponin T—positive engrafted allogeneic FM-MSCs
or autologous BM-MSCs (data not shown). Earlier studies
reported that transplanted MSCs differentiated into cardio-
myocytes, vascular endothelial cells, and smooth muscle cells
(24-26), but more recent studies have reported that trans-
planted MSCs appear to differentiate into these cells at a very
low frequency (27-30).

After the discovery of the paracrine effect of MSCs,
many studies have confirmed that the success of stem cell ther-
apy for heart failure depends on this mechanism mainly by the
promotion of angiogenesis, myocardial protection, and im-
mune regulation (31, 32). In our previous study, transplanted
FM-MSCs and BM-MSCs secreted angiogenic and cardiopro-
tective cytokines, including vascular endothelial growth factor
(VEGF) and hepatocyte growth factor, in the ischemic tissues
(8, 33). These growth factors secreted from engrafted MSCs
may help prevent ventricular remodeling. The response of the
MSC sheets was similar, with large amounts of VEGF secreted
into the culture media by FM-MSCs and BM-MSCs (see Figure
Sla, SDC, http://links.lww.com/TP/A849). In both MI groups
transplanted with MSC sheets, VEGF expression was up-
regulated in the peri-infarct areas (see Figure S1b, SDC,
http://links.Iww.com/TP/A849). These results suggest that the
therapeutic effects observed in our study may be attribut-
able to the paracrine effects of transplanted FM-MSCs rather
than to their differentiation into vascular endothelial cells
and cardiomyocytes.
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FIGURE 4. Vascularization and differentiation into vascular endothelial cells in the myocardial tissue grafted with allo-
geneic FM-MSC and autologous BM-MSC sheets. A, representative measurement section sites. B, four weeks after trans-
plantation, the numbers of lectin I-positive capillaries were greater in the infarcted and peri-infarct areas in the MI groups
transplanted with allogeneic FM-MSC and autologous BM-MSC than in the untreated MI group. Quantitative analysis
demonstrated that the capillary densities in the transplanted area were significantly higher in the MI groups transplanted
with allogeneic FM-MSC and autologous BM-MSC compared with the untreated MI group (infarcted area [C] and peri-infarct
area [D]; n=10 in each group). E, two weeks after transplantation, GFP-expressing FM-MSCs and BM-MSCs were identified in
a thick stratum on the epicardial side of the myocardium. Some allogeneic FM-MSCs and autologous BM-MSCs (green; white
arrows) were positive for lectin I (red). F, some allogeneic FM-MSCs and autologous BM-MSCs (green; white arrows) were
positive for «SMA (red). Nuclei are stained with TOPROS (blue). Scale bar, 50 pm. Data are expressed as mean+SE. *P<0.05
vs. sham group; 1P<0.05 vs. untreated MI group.

MSCs are positive for major histocompatibility com-  that FM-MSCs did not express MHC class II and did not
plex (MHC) I and negative for MHC II and costimulatory  induce alloreactive T lymphocyte proliferation (8). In this
factors such as CD40, CD80, and CD86, so are considered  study, immunohistochemical staining showed few infiltrat-
to be nonimmunogenic (34, 35). We reported previously =~ ing CD3" T cells in the areas transplanted with allogeneic
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FM-MSCs and the infarcted areas at 4 weeks after trans-
plantation, and the infiltrating T cells were almost all CD8"
T cells (see Figure S2a, SDC, http://links.lww.com/TP/A849).
However, there were no differences between the infarcted
hearts transplanted with allogeneic FM-MSC sheets and
untreated infarcted hearts in the number of infiltrating CD3"
and CD8" T cells and the degree of CD3" T-cell infiltration,
and the engraftment rate did not differ between allogeneic
FM-MSC transplantation and autologous BM-MSC trans-
plantation. Thus, this limited T-cell infiltration may have
been caused by chronic myocardial inflammation. In addi-
tion, there were few infiltrating CD45RA™ B cells in the al-
logeneic FM-MSC-transplanted areas (see Figure $3, SDC,
http://links.lww.com/TP/A849). These results suggest that
allogeneic FM-MSCs are unlikely to activate host immune
responses. In contrast, massive CD68" macrophage/monocyte
infiltration was observed in the areas transplanted with
either type of MSCs. There are two conceivable reasons for
this macrophage infiltration. First, the infiltrating macroph-
ages may have phagocytosed apoptotic cells, because terminal
deoxynucleotidyl transferase-mediated dUTP nick-end labeling—
positive cells were observed in areas transplanted with both types
of MSCs (see Figure S4, SDC, http://links.lww.com/TP/A849).
Second, there is a possibility that the macrophage infiltra-
tion was induced by the MSCs. It was reported that MSCs
increased macrophage infiltration via a paracrine mecha-
nism during wound healing after MI (36). There are two types
of macrophages/monocytes: the classically activated proinflam-
matory M1 type and the alternatively activated anti-inflammatory
M2 type (37). In our present study, many of the infiltrating
macrophages were CD163" M2 macrophages (see Figure S2b,
SDC, http://links.Iww.com/TP/A849). M2 macrophages secrete
several angiogenic factors promoting neovascularization (38, 39).
Freytes et al. (40) reported that M2 macrophages mo-
dulated the viability of MSCs, and MSCs were reported to
mediate a switch of macrophages to an anti-inflammatory
activation state, which may be associated with the enhance-
ment of cardiac function (36, 41, 42). Although further
studies are needed, the induction of M2 macrophages may be
one of the therapeutic mechanisms of MSC transplantation
in ML

The mechanisms responsible for the therapeutic effects
of transplantation of allogeneic FM-MSC sheets in chronic
MI are still unclear, and poor long-term survival and low
differentiation rates of both types of transplanted MSC sheets
are limitations of our study. In our previous study using the
MI model, monolayer adipose tissue—derived MSC sheets
gradually grew and developed into a thick stratum (12). The
different results obtained in this study may have been caused
by the difference in the cell sources. Several studies indicate
differences between adipose tissue—derived MSCs and BM-
MSCs (43, 44). Some studies tried to increase the therapeutic
effects of cell transplantation by, for example, gene transduction
or using a combination of drugs (45-48). Xu et al. (49) reported
that lovastatin protected BM-MSCs from hypoxia-induced
apoptosis, and Yang et al. (50) demonstrated that simvastatin
improved the therapeutic efficacy of BM-MSC transplantation
in an acute MI model by promoting cell survival and cardio-
vascular differentiation. These drug treatments may improve
cell viability and increase the therapeutic effects of transplan-
tation of MSC sheets in heart failure.
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In conclusion, transplantation of allogeneic FM-MSC
sheets improved cardiac function in a rat model of MI possibly
by inducing angiogenesis and inhibiting myocardial fibrosis.
The therapeutic effects were similar to those of transplanting
autologous BM-MSC sheets and might be caused by the pa-
racrine effects and the M2 macrophage induction. FM-MSC
could be considered a new cell source, allowing wider clini-
cal applications of MSC transplantation therapy. Although
further experiments are needed to apply the current results
to human cardiomyoplasty, transplantation of allogeneic FM-
MSC sheets may provide a new therapeutic strategy for the
treatment of ML

MATERIALS AND METHODS

Animals

Male 8-week-old Lewis rats (Japan SLC, Hamamatsu, Japan) were used
in this MI model. Male GFP-transgenic Lewis rats (Institute of Laboratory
Animals, Kyoto University, Japan) and female GFP-transgenic Sprague-
Dawley rats (Japan SLC) were also used for the harvest of transplanted cells.
The experimental protocols were approved by the Animal Care Committee
of the National Cerebral and Cardiovascular Center Research Institute
(Osaka, Japan).

Expansion of FM-MSCs and BM-MSCs

The isolation and expansion of FM-MSCs and BM-MSCs were performed
as described previously (see details in the Materials and Methods, SDC,
http://links.lww.com/TP/A849) (8). In all experiments, FM-MSCs and BM-
MSCs were used at passages 4 to 8.

Preparation of MSC Sheets

To prepare MSC sheets, we used 35-mm temperature-responsive dish
(UpCell, CellSeed, Tokyo, Japan). Preparation of MSC sheets was performed
as described previously (see details in the Materials and Methods, SDC,
http://links.lww.com/TP/A849) (12).

Model of MI

To create an MI model, male Lewis rats (220-250 g) were anesthetized,
and the left coronary artery was ligated, as described previously (see details
in the Materials and Methods, SDC, http://links.lww.com/TP/A849) (12).
The sham group underwent thoracotomy and cardiac exposure without
coronary ligation.

We randomly assigned the rats to four groups: (a) rats with chronic heart
failure that underwent transplantation with allogeneic FM-MSC sheets
(allo-FM-MSC-transplanted MI group; n=10), (b) rats with chronic heart
failure that underwent transplantation with autologous BM-MSC sheets
(auto-BM-MSC-transplanted MI group; n=10), (c) rats with chronic heart
failure without transplantation (untreated MI group; n=10), and (d) sham-
operated rats without transplantation (sham group; n=10). Four weeks after
coronary ligation, the allo-FM-MSC—transplanted MI group and auto-BM-
MSC-transplanted MI group underwent transplantation with the respective
two-layered cell sheets. The sheets were placed on the anterior wall, in-
cluding the scar area, and then covered with oxidized regenerated cellulose
(INTERCEED [TC7], Johnson & Johnson Medical, Tokyo, Japan). The other
two groups underwent the same operative procedures without transplantation.

Hemodynamic Studies

Hemodynamic studies were performed 8 weeks after coronary ligation
(4 weeks after transplantation (see details in the Materials and Methods,
SDC, http://links.Iww.com/TP/A849).

Echocardiographic Studies

Echocardiography was performed 4 weeks (before transplantation) and
8 weeks (4 weeks after transplantation) after coronary ligation (see details in
the Materials and Methods, SDC, http://links.lww.com/TP/A849).
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Immunohistochemical Studies
Immunohistochemical details (see Materials and Methods, SDC,
http://links.lww.com/TP/A849).

Statistical Analysis

Data are expressed as mean+SE. Analysis of variance was used to compare
each variable between groups, and the post hoc Tukey’s test was used to locate
significant differences. Differences were considered significant at P<0.05.
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ABSTRACT

Mesenchymal stem cells (MSCs) are an attractive therapeutic cell source for
treating renal diseases. MSCs administration has been shown to improve renal
function, although underlying mechanisms are incompletely understood. We recently
showed that allogenic fetal membrane-derived MSCs (FM-MSCs), which are available
non-invasively in large amounts, had renoprotective effect in an experimental
glomerulonephritis model. Here, we investigated whether allogenic FM-MSCs
administration could protect kidneys from ischemia/reperfusion (I/R) injury.

Lewis rats were subjected to right nephrectomy and left renal I/R injury by

clamping left renal artery as acute kidney injury (AKI) model. After declamping FM-

ed from major histocompatibility complex (MHC) mismatched-

I/R injured rats exhibited incr;ased serum creatmme and BUN, Whereas FM
MSCs administration significantly ameliorated renal function. Histological analysis
revealed that FM-MSCs administration significantly suppressed tubular apoptosis and
infiltration of macrophages and T cells. Administration of FM-MSCs mainly homed into
lung, but increased serum IL-10 levels. Of interest is that renoprotective effects of FM-
MSCs were abolished by using anti-IL-10 neutralization antibody, suggesting that IL-
10 would be one of the candidate factors to protect rat kidney from I/R injury in this
model. We concluded that allogenic FM-MSCs transplantation is a potent therapeutic

strategy for the treatment of AKI.
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INTRODUCTION

Renal ischemia-reperfusion (I/R) injury is a major cause of acute kidney injury
(AKI), which is associated with prolonged hospitalization and excess morbidity and
mortality (38,42). As its prevalence has risen, it is increasingly recognized as a
significant cause of end-stage renal diseases (6). Despite decades of laboratory and
clinical investigations and the advent of renal replacement therapy, no significantly
effective new therapy has been introduced into clinical practice in decades (13,44).
Therefore, due to the clinical importance of renal I/R injury, effective therapy for such

injury should be considered.

al stem cells (MSCs) are multipotent stem cell present in bone
ting
into cellgof different tissue lineages includi adlgp yt@,;},\,oist.egg:ytl(;eé,z and chondrocyte
(9,10,34). Previous studies have shown that BM-MSCs have renoprotective effects and
can ameliorate the renal damage due to AKI induced by ischemia-reperfusion (25,41).
Although BM-MSCs are promising in renoprotective effects, BM aspiration ﬁay be
invasive and sometimes yields low numbers of MSCs after processing. Therefore,
alternative sources of MSCs would be beneficial for both research and therapeutic
purposes. Fetal membrane (FM), which is generally discarded as medical waste after
delivery, has been shown to be a rich, and easily expandable source of MSCs (21,35).

Recently, we established a protocol to isolate MSC from FM, and reported that

administration of allogenic FM-derived MSCs (FM-MSCs) (5x105cells/rat ) as well as

CT-0976 Cell Transplantation Epub; provisional acceptance 02/18/2013



Copyright © 2013 Cognizant Communication Corporation

autologous BM-MSCs (5x105cells/rat ) induced therapeutic angiogenesis in a rat
hindlimb ischemia model (22). Moreover, we reported that same number of FM-MSCs
administration (5x105cells/rat )have a therapeutic effect in anti-Thy1 nephritic rats
(43). These results suggest that this dose is an adequate to improve tissue damage and
allogeneic FM-MSCs proposes an attractive alternative to autologous BM-MSCs as a
source of regenerative therapy.

We previously reported the behavior of transplanted FM-MSCs; a large number
of FM-MSCs were observed in lung, and a small number of FM-MSCs were detected in
liver, spleen and kidney 24 hrs after transplantation, but FM-MSCs were rarely found

in the lung, liver or spleen at 7 days after transplantation and no FM-MSCs were

detected a (2 43). Similar observation was also reported using adipose-

suggested that FM-MSCs contributed to tissue repair by producing humoral factors
rather than by differentiating into inured cell types. Moreover, we showed that FM-
MSCs-secreted prostaglandin E2 (PGE2) were involved renal repair in anti-Thy1
nephritic rats (43). It was reported that PGE2- induced interleukin-10 (IL-10), in
macrophages(29,39) and T cells(11), could possess both anti-inflammatory and |
immunosuppressive properties. As our preliminary experiments revealed that the FM-
MSCs transplanted rats exhibited increased IL-10 production, we hypothesized that
intravenously injected FM-MSCs could stimulate IL-10 secretion via PGE2, and

investigated whether allogenic FM-MSCs administration can be protective against
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renal structural and functional injury in I/R injury as a model of AKI. Furthermore, we
also examined that the role of FM-MSCs-induced IL.-10 by using anti-IL-10 neutralizing

antibody.
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MATERIALS AND METHODS

Animals

All experiments had received prior approval by the Animal Care Committee of
the National Cerebral and Cardiovascular Center Research Institute. Different
strains of rats were used according to their major histocompatibility complex
(MHC) antigen disparity: Lewis (MHC haplotype: RT-11) and ACI (MHC
haplotype: RT-1a) rats (Japan SLC, Hamamatsu, Japan). Green fluorescent

protein (GFP)-transgenic Lewis rats (Institute of Laboratory Animals, Kyoto

apan)mwere used to study the distribution of transplanted FM-MSCs.

Isolation and expansion of FM-MSCs were performed as previously described
(22). In brief, FM was obtained from pregnant rats on day 15 postconception.
Minced FM was digested with type II collagenase solution (300 U/mL
Worthington Biochemical, Lakewood, NJ) for 1 hour at 37°C. After filtration and
centrifugation, FM-derived cells were suspended in a-MEM (Invitrogen,
Carlsbad, CA) supplemented with 10% FBS (Thermo Scientific, Woburn, MA,
USA) and penicillin/streptomycin (Invitrogen) and cultured in standard plastic
dishes. The adherent MSCs populations appeared by days 5-7 and these FM-

MSCs were used for the experiments at passage 3-6.
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