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= Abstract

To. date CXCR4 and E-cadherm doub!e»pos;twe ce!ls detected by ﬂow cytometry have been used to identify the
_ differentiation of embryonic stem (ES) cells or induced plurlpotent stem (iPS) cells into definitive endoderm (DE) lineages.
Quantification of DE differentiation from ES/iPS cells by using flow cytometry is a multi-step procedure including
dissociation of the cells, antibody reaction, and flow cytometry analysis, To establish a quick assay method for quantification
of ES/iPS cell differentiation into the DE without dissociating the cells, we examined whether secreted Cerberus? (Cer1)
protein could be used as a marker, Cerl is a secreted protein expressed first in the anterior visceral endoderm and then in
the DE. The amount of Cer1 secreted correlated with the proportion of CXCR4+/E-Cadherin+ cells that differentiated from

- mouse ES cells, In addition, we found- that human-iPS cell-derived DE also expressed the secreted CER1 and that the
expression level correlated with the proportion of SOX17-+/FOXA2+ cells present. Taken together, these results show that
Cer1 (or CER1) serves as a good marker for quantification of DE differentiation of mouse and human ES/iPS cells.
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Introduction

Embryonic stem (ES) cells are derived from a pluripotent inner
cell mass, which can be cultured indefinitely in an undifferentiated
state and can be differentiated into most cell types in an organism.
Therefore, ES cells have been proposed as a source of surrogate
cells for use in regenerative medicine.

The definitive endoderm (DE) gives rise to the gastrointestinal
organs, such as stomach, pancreas, liver, and intestine. The
gastrointestinal organs are of great importance in their therapeutic
aspects. Studies of ES cells have demonstrated that ES cell
differentiation recapitulates early signaling events of differentiation
into the 3 germ layers. Recent progress has identified several germ
layer-specific markers of the early DE. Sox17 (Sry-box—containing
gene 17), which encodes an endodermal HMG (high mobility
group)-box transcription factor, is a DE-specific marker [1].
CXCR4 (C-X-C chemokine receptor type 4), which is expressed
in the mesoderm, is also expressed in the DE and is widely used in
combination with E-cadherin for the prospective isolation of
embryonic or ES cell-derived DE cells [2]. Our group previously
identified DAF1 (decay accelerating factor)/CD55 as a novel DE
marker [3]. Yasunaga et al., reported the use of the Soxl7
promoter to drive the expression of the surface antigen-GFP (green
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fluorescent protein) fusion protein, which genetically marked the
DE with GFP.

Cerberusl (Cerl; also known as Cerberus like 1 [Cerll] or
Cerberus related gene [Cerrl]) is a secreted protein, which belongs
to the cysteine knot superfamily and includes TGF (transforming
growth factor) Bs and BMPs (bone morphogenetic proteins). Cerl
is first expressed in the anterior visceral endoderm at E6.5 and at
E7.0 in the distal visceral endoderm and the definitive endoderm,
which emanates from the anterior portion of the primitive streak.
Cerl is expressed in the anterior DE at E7.5 and is expressed in
the foregut at the headfold stage. Later, Cerl is expressed in a
limited region in the somatic mesoderm, the pre-somitic meso-
derm, and the presumptive foregut endoderm. Cerl belongs to the
Cer/Dan gene family, which contains the secreted antagonists of
Nodal, Wnt, or BMP signaling pathways, and plays an important
role in regulating these signals [4] [5][6] [7][8] [9].

We previously established a procedure to induce ES cells to
sequentially differentiate into the mesendoderm, DE, and, finally,
regional specific definitive endodermal tissues i zifro in a manner
that mimics early embryonic inductive events @ viwo by culturing
ES cells on a monolayer of M15 cells [10] [11]. This MI15
monolayer culture procedure turned out to be useful not only in
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directing DE lineages, but also in directing the ES cells to the previously described [11] [12]. A mouse iPS cell line (20D17)

ectoderm and mesoderm lineages upon altering the culture [14] and a mouse ES cell line (EB3) [15] were also used for
conditions [12]. We performed gene array analysis of the ES endoderm differentiation. The mesonephric cell line M15 [16] was
cell-derived lineage-specific progenitors and demonstrated that kindly provided by Dr. T. Noce (Mitsubishi Kagaku Institute of
genes enriched in each cell population are expressed in the normal Life Science, Tokyo, Japan) and Dr. M. Rassoulzadegan
embryos in a coordinated temporal-spatial fashion [3] [13]. (University of Nice-Sophia Antipolis, Antipolis, France) and is

Murine Cerberus 1 (Cerl) is one of the genes that was up-regulated available from the European Collection of Cell Cultures (ECACC
greater than 5-fold in both E-Cadherin+/CXCR4+ DE- and E- 95102517). M15 cells were treated with mitomycin C (Sigma) and
Cadherin+/DAF1+ DE-derived from ES cells. Its expression were used as previously described [10] [11][12]. Use of the human
persisted in the DE in early embryos and, therefore, might serve as ES cells was approved by the Kumamoto University Institutional
a good marker for detecting differentiation to DE. Here, to enable Review Board and followed the hES cell guidelines of the Japanese
quick identification and quantification of the DE in whole ES cell government. Undifferentiated human ES cells (khES3) [17] and
cultures, we established ELISA systems to measure the amount of iPS cells (201B7 and 253G1) [18] were maintained as described

the secreted protein of mouse Cer! and human CERI. [11].
Materials and Methods Differentiation of ES and iPS Cells

. For definitive endoderm (DE) differentiation, mouse ES/iPS
Cell Lines cells were cultured on M15 cells with added recombinant human

The ES cell line, SK7 [10], containing a Pdx] promoter-driven  activin-A at 10 ng/ml (R&D Systems, Inc) and/or human bFGF
GFP reporter transgene, was cultured and differentiated as at 5 ng/ml (Peprotech) for 3-7 d, as indicated. They were
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conditions [12] [25]. ES cell-derived differentiated cells of the ectoderm (ECT) (SSEA1~/FIk1~/PGFRa-), mesoderm (MES) (E-cadherin+/PDGFRau+),
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10 uM. (Q) Time-dependent expression of Cer? and Sox17 detected by real-time PCR. (D, E, F) Immunocytochemical analysis. At D7, almost all Foxa2+
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doi:10.1371/journal.pone.0064291.g001
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doi:10.1371/journal.pone.0064291.g002

subsequently analyzed using flow cytometry to assay for DE or
Cerl expression [10]. Human ES/iPS cells were cultured on a
fibronectin- (Sigma) coated plate in RPMI-1640 (Invitrogen)
supplemented with activin-A (100 ng/ml) and a B27 supplement
without insulin (2%; Invitrogen) for 6 d [11] [19]. For re-plating of
the DE cells, the cells were first dissociated with 0.25% trypsin-
EDTA (Invitrogen) and then plated with a 10% FBS medium at
concentrations of 0.25 x 10°, 0.5 x 10°, or 1.0 x 10° cells/well on
a matrigel (BD) pre-coated 96-well plate. For neuroectoderm
differentiation, ES cells were cultured on MI15 cells in a
differentiation medium supplemented with 10 pM SB431542 (a
TGFf inhibitor) (Calbiochem, San Diego) [12]. For mesoderm
differentiation, mouse ES cells were cultured on M15 cells in a
differentiation medium supplemented with 25 ng/ml BMP7 (R&D
Systems, Inc.) [12]. Human iPS cells were grown using Stemline 11
serum-free medium (Sigma) supplemented with 50 ng/mL BMP4
(Peprotech) and ITS (Invitrogen) [20]. For hepatic differentiation
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of mouse ES cells and human 1PS cells, differentiation were done
as described ([11] [21].

Real-time and Semiquantitative Reverse Transcription-
polymerase Chain Reaction (RT-PCR) Analysis

RNA was extracted from ES cells using the TRI Reagent
(Sigma) or RNeasy micro-kit (Qiagen) and then treated with
DNase (Sigma). Three micrograms of RNA was reverse-tran-
scribed using MMLYV reverse transcriptase {Toyobo) and oligo-dT
primers {Toyobo). The primer sequences were as follows: Cer/
forward 5'-GTCCAGGCTTGGAAGATTC-3'and reverse 5'-
AGGGCACAGTCCTGCAGGTC-3'; Soxl7 forward 3'-GAA-

CAGTTGA- GGGGCTACAC-3' and reverse 5
GTTTAGGGTTTCTTAGATGC-3'; Foxa? forward 3'-

TGGTCACTGGGGACAAGGGAA-3' and reverse 3'-GCAA-
CAACAGCAATAGAG- AAC-3'; Flkl forward 5'-CACCTGG-
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doi:10.1371/journal.pone.0064291.g003

CACTCTCCACCTTC-3" and reverse 5'-GATTTCATCC-
CACTACCGAAAG-3'; Zcl forward 5'-TCGTGTCTCCCA-
CAAC- AGAC-3' and reverse 5'-GGGGTGTCTCGAGTT-
CAGG-3'; Human GAPDH forward 5'-
CGAGATCCCTCCAAAATCAA-3'  and reverse 5-CAT-
GAGTCCTTCCACGATACC- AA-3"; Human SOXI7 forward
5'-ACTGCAACTATCCTGACGTG-3" and reverse 5'-AG-
GAAATGGAGGAAGCTGTT-3'; and Human CER! forward
5'-ACAGTGCCCTTCA-GCCAGACT-3' and reverse 5'-
ACAACTACTTTTTCACAGCCTTCGT-3'.

The PCR conditions for each cycle were: (1) denaturation at
96°C for 30 s, (2) annealing at 60°C for 2 s, and (3) extension at
72°C for 45 s. RT-PCR products were separated using 5% non-
denaturing polyacrylamide gel electrophoresis, stained with SYBR
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Green I (Molecular Probes), and visualized using a Gel Logic 200
Imaging System (Kodak).

Immunocytochemical Analysis

Differentiated ES cells were fixed in 4% paraformaldehyde in
phosphate-buffered saline (PBS) for 30 min at room temperature,
permeabilized with 0.1% Triton-X100 (Nacalai Tesque) in PBS,
blocked with 20% Blocking One (Nacalai Tesque), and then
incubated with a diluted antibody in 20% Blocking One in PBST
(0.1% Tween-20 in PBS) for 16 h at 4°C. After washing with
PBST, cells were incubated with a secondary antibody and 6-
diamidino-2-phenylindole (DAPI) (Roche Diagnostics) in PBST
for 2 h. The following antibodies were used as primary antibodies:
rabbit anti-AFP (A0008, Dako), rat anti-mouse Cerl (MAB1986,
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doi:10.1371/journal.pone.0064291.g004

R&D Systemns, Inc), goat anti-mouse Cerl (AF1986, R&D
Systems, Inc), mouse anti-human CER1 (MAB1075, R&D
Systems, Inc), goat anti-human CERI (AF1075, R&D Systems,
Inc), rabbit anti-Foxa2 (70-633, Millipore), goat anti-T (AFP2085,
R&D Systems, Inc), and Alexa 488-568 or 633-conjugated
secondary antibodies (Molecular Probes).

Flow Cytometry Analysis

Cells were dissociated with a cell dissociation buffer (Invitrogen),
adjusted to 1 x 10° cells/50 pl, and stained with their
corresponding antibodies. The following antibodies were used:
biotin- or Alexa 488-conjugated anti-E-cadherin monoclonal
antibody (mAb) ECCD2, and biotin- or phycoerythrin (PE)-
conjugated anti-CXCR4 mAb 2Bl11 (BD Pharmingen). The
stained cells were analyzed using a FACS Canto (BD Pharmin-
gen). Data were recorded using the BD FACSDiva Software
program (BD Pharmingen) and analyzed using the Flowjo
program (Tree Star).

Western Blot Analysis

Cells and supernatants were lysed in a sample buffer (30 mM
Tris-HCI [pH 6.8], 5% glycerol, and 1% SDS (sodium dodecyl
sulfate) and boiled for 3 min at 95°C. The samples were separated
on SDS-PAGE, transferred onto a PVDF membrane (Immobilon;
Millipore, Bedford, MA) and detected with a goat anti-mouse
Cerl or goat anti-human CERI antibody. Horseradish peroxi-
dase-conjugated (Santa Cruz Biotechnology) antibodies were used
as secondary antibodies (at 1:20,000 dilution). The chemilumines-

PLOS ONE | www.plosone.org

32

A Rapid ELISA Assay for the Definitive Endoderm

cent signals were detected with ECL Plus (GE Healthcare) and
scanned by ImageQuant LAS 4000 (GE Healthcare).

Immunoprecipitation

The culture supernatants were incubated with a binding buffer
(30 mM KCl, 5 mM MgCly, | mM EDTA, 20 mM Tris-HCI,
pH 8.0, and 0.1% Triton X-100), prewashed protein G-Sepharose
beads (GE Healthcare), and goat anti-mouse Cerl or goat anti-
human CERI antibody at 4°C for 16 h. Then, the precipitated
proteins were subjected to western blot analysis.

ELISA for Detecting Murine Cer1 and Human CER1

A goat anti-mouse Cerl or goat anti-human CERT1 antibody at
1 pg/ml in PBS was immobilized onto 96-well plates (Nunc,
MaxiSorp) for 16 h at 4°C. After washing with 0.05% Tween-
20 in PBS (PBST), the plate was blocked with blocking one
(Nacalai) in PBST. Standards or samples were added and allowed
to react with the immobilized antibody at 25°C for 60-120 min.
After washing with PBST, horseradish peroxidase-conjugated rat
anti-mouse Cerl or mouse anti-human CERI1 antibody, prepared
by using an easy labeling kit (Dojindo), were added and
subsequently incubated at 25°C for 60 min. After washing with
PBST, a TMB substrate solution (Kirkegaard & Perry Laborato-
ries) was added to each well. Enzyme activity was determined by
measuring the absorbance at 450 nm after termination of the
reaction by the addition of equal 0.1 M sulfuric acid.

Preparation of Standard Human Cerberus Protein

A cDNA fragment of human CER/ (nt. 1-804; NP_005445.1aa:
1-267) [22] was sub-cloned into a pCold I vector (TAKARA) with
the His-tag sequence in the N-terminal. The CER1 recombinant
protein was produced in the Escherichia coli strain Rosetta-gami
(DE3) (Novagen). The bacteria were incubated overnight in Luria-
Bertani (LB) medium at 37°C and cooled on ice for 15 min.
Protein production was promoted in 0.1 mM isopropyl-f-D-
thiogalactopyranoside (IPTG) and incubated at 16°C for 16 h.
The bacterial cells, collected by centrifugation, were immediately
frozen in liquid Ny and stored at —70°C until use. The bacteria
cells were sonicated on ice containing a protease inhibitor cocktail
(Nacalai). The supernatant was precipitated with a 30% saturation
of ammonium sulfate on an ice bath. The precipitate was re-
dissolved in a Tris buffer containing 5 mM imidazole and a
protease inhibitor cocktail. It was then poured onto a Ni
Sepharose 6 Fast Flow (GE Healthcare) medium, pre-equilibrated
with the same buffer, and gently swirled at 4°C for 16 h. After
washing with the same buffer containing 100 mM imidazole,
hCERI was eluted in a stepwise manner (150-250 mM imidaz-
ole). The eluted hCER1 protein was concentrated with a filtration
system (PALL), quantified by a Protein Quantification kit
(Dojindo), and analyzed with 12.5% SDS-PAGE. The protein
was stained with Coomassie Brilliant Blue (CBB) to show a single
band of recombinant human CER1 protein.

Results

Murine Cerberus 1 is a Secreted Protein Expressed in the
Definitive Endoderm Derived from Mouse ES Cells

Cerl was one of the genes that were specifically up-regulated
into the mesendoderm and CXCR4+/E-cadherin+ or DAF1+/E-
cadherin+ DE populations at differentiation days (D) 5, 7, and 8
compared to that in undifferentiated ES cells, ectoderm (ECT), or
paraxial mesoderm (PAM) in our gene array analysis (Fig. 1A) [3].
Cerl expression was maintained in the Pdx//GFP-positive or
negative populations (Fig. 1A; D8 DE GFP+ and D8 DE GFP”).
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doi:10.1371/journal.pone.0064291.g005

Cerl was also expressed in the DE. To confirm Cer] expression in
the DE, ES cells were selected to undergo differentiation in the
cells of the 3 germ layers. Semiquantitative RT-PCR  analysis
revealed that, when ES cells underwent endoderm differentiation
through the addition of activin A and bFGF, Cer] expression was
up-regulated in conjunction with the expression of DE markers
Foxa? and Sox17. This was not observed when ES cells were
differentiated into the mesoderm, marked by Flkl expression
triggered by BMP7, or neuronal ectoderm differentiation, marked
by Zicl expression, when added with SB431542, an inhibitor for
TGFp signaling (Fig. 1B). Time-dependent expression ol Cer/
detected by real-time PCR revealed that Cer/ expression reached
peak differentiation on D6, which then decreased on D7. The
expression of Sox/7 [1], a DE marker, showed a similar pattern
(Fig. 1C). Immunocytochemical analysis using an anti-Cerl
polyclonal antibody confirmed that Cerl was expressed in
Foxa2+/Sox17+ DE cells. Furthermore, these Cerl+ cells did
not express T, a mesoderm marker, or a visceral endoderm marker
AFP at D7 under this condition (Fig. 1E-F). T or AFP was
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expressed in mouse ES cell-derived mesoderm or hepatic cells
(Figure 1G, H).

We then confirmed the expression of the Cerl protein in the
differentiated ES cells. The crude lysate from the ES cells derived
from DE were extracted and subjected to a western blot analysis.
Under non-reduced and reduced conditions, Cerl was detected as
an 80-kDa or a 39-kDa protein, respectively, indicating that Cerl
exists as a dimer, which has a slightly larger molecular weight than
the 32 kDa previously reported [5]. We then asked whether we
could detect the secreted Cerl protein. Secreted Cerl in the
culture supernatant was immunoprecipitated with a polyclonal
antibody against Cerl. Western blot analysis revealed that Cerl
was precipitated as a 39-kDa protein (Fig. 11, arrow head).

These results indicate that the Cerl protein is expressed and
secreted upon the differentiation of ES cells into DE.
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Establishment of an ELISA System for Quantification of
the Secreted Mouse Cer1 Protein

To quantify the secreted Cerl protein, we established an ELISA
assay system. Fig. 2 shows a schematic drawing of the ELISA assay
system. The polyclonal anti-Cerl antibody was immobilized onto
96-well plates. Then, serial dilutions of standard Cerl samples
were added. The HRP conjugated anti-Cer]l monoclonal antibody
was used to detect Cerl, and the substrate was added to visualize
HRP activity (Fig. 2A). The Cerl standard curve showed a good
correlation between HRP activities and concentrations of the Cerl
protein (Fig. 2B).

We then used this ELISA system to quantify the secreted Cerl
protein in the differentiated ES cells (Fig. 2C). ES cells were
differentiated into the DE lineage. Culture supernatants from
differentiation D1 to D7 were assayed for ELISA and immuno-
precipitation, which was followed by a western blot analysis.
Secreted Cerl was detectable from differentiation on D5, which
further increased on D7 (Fig. 2C, upper panel). Immunoprecip-
itation analysis confirmed that the secreted Cerl protein was
present in the supernatant (Fig. 2C, lower panel).

The Amount of Secreted Cer1 Protein Correlates with the
Proportion of DE Derived from Mouse ES/iPS Cells

To test if the secreted Cerl protein could be used to assess the
proportion of the DE, we examined the correlation of the amount
of secreted Cerl with flow cytometry analyses of the DE
population. ES cells differentiated into the DE with the addition
of activin A and bFGF, which gave rise to different proportions of
the DE. The cells were then subjected to flow cytometry analysis
for Cxcrd+/E-cadherint DE cells or an ELISA assay for
quantification of the amount of the Cer] protein secreted. Culture
supernatants were collected on differentiation D5 or D7, 48 h after
replacement with fresh media. At the same time, cells were
analyzed by flow cytometry on D5 or D7. The amount of secreted
Cerl protein was higher on D7 than on D5 (Fig. 2C; Fig. 3), while
the amount of secreted Cerl correlated with the proportion of
Cxcrd+/Ecadherint cells on D5 and D7 of the DE, respectively
(Fig. 3A, B). We also confirmed these results with a mouse ES cell
line (EB3) and a mouse iPS cell line (20D17). Cerl secretion
correlated with the proportion of the Cxerd+/Ecadherint DE cells
at D7 in these cell lines, which showed a different propensity for
differentiation into the DE (Fig. 3C). Therefore, measuring the
secreted Cerl protein on the same differentiation day was useful to
quantify DE population size from the ES/iPS cells.

Establishment of an ELISA System for Quantification of
the Secreted Human CER1 Protein

To examine if the ELISA system (see above) could be applied to
human ES/iPS cells, we differentiated a human iPS (hiPS) cell line
(201B7) [18] into the DE. CERI expression was detected on D2
and was coordinated with SOX17 expression, as detected by semi-
quantitative RT-PCR analysis (Fig. 4A). We prepared the
recombinant human CER1 protein for use as the standard protein
for the ELISA assay. A His-tagged recombinant human CERI
protein was over-expressed in the bacteria and Ni-affinity
chromatography was purified into a single band, as revealed by
12.5% SDS-PAGE and CBB staining (Fig. 4B). Immunoprecip-
itation followed by western blot analysis of the culture supernatant
from the hiPS cell-derived DE on D5 confirmed the expression of
CERI (Fig. 4C). The recombinant CER1 was then used as the
standard for the ELISA assay to- quantify the amount of CER1
(Fig. 4D).
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CER 1 is a Secreted Protein Expressed in the DE Derived
from Human ES/iPS Cells

Next, we examined the correlation of the amount of secreted
CER1 with immunocytochemical analyses of the DE population.
Since the 201B7 hiPS cell line showed a low propensity for
differentiation into the DE, we then used another hiPS cell line
(253G1) [18]. 253G1 cells were differentiated into the DE and
subjected to immunocytochemical analysis for SOX17+'FOXA2+
cells or ELISA assay to measure the amount of CERI secreted.
The secreted CER1 protein amount correlated with the amount of
SOX17+/FOXA2+ cells (Fig. 5A). Similar to observations made
using mouse Cerl, human CERI1 was expressed in SOX17+/
FOXA2+ DE cells (Fig. 5B, C) and did not overlap with T or AFP
expression (Fig. 5D). T or AFP was expressed in human iPS cell-
derived mesoderm or hepatic cells (Figure 1E, F). We re-plated
cells in several cell densities on D4 (Fig. 5G). One day after re-
plating (D5 equivalent), an ELISA assay and immunocytochemical
analyses were performed. As a result, more than 90% of the cells
were SOX17+ DE cells, and the amount of human CERI
increased depending on the cell numbers seeded (Fig. 5G). The
ELISA assay of 201B7 and human ES cell line (khES3) revealed
that human CERI! secretion correlated with the amount of
SOX17+/FOXA2+ DE cells in both human iPS and ES cells
(Fig. 5H). Taken together, the presented ELISA assay system
enables the quantification of the amount of CER1 protein secreted
and the proportion of DE differentiation of human ES/iPS cells.

Discussion

Here, we described the development of an ELISA assay system
for detecting murine Cerl protein or human CER1 secreted from
the DE cells derived from mouse ES cells or human iPS cells.
Quantification of the Cerl protein using the ELISA assay system
revealed an approximate correlation with the amount of DE cells,
thereby indicating that the Cerl ELISA system could be used for
quick quantification of the number of DE cells derived from mouse
or human pluripotent cells.

In our mouse ES cell differentiation system, where the DE and
its derivatives could be induced, we observed the expression of
Cerl in mesendoderm cells, which were then up-regulated in D3
DE. High expression of Cerl was maintained through D7 and D8
DE in the Pdxl-positive and Pdxl-negative cells. Cerl was also
expressed in the DAF14/E-Cadherint DE [3]. This result is in
agreement with our previous results that DAF1+/E-Cadherint is a
good marker to detect the late DE, where CXCR4 expression
decreased rapidly after establishment of the DE. Cerl transcript
expression seemed to come to a peak before the secreted Cerl
protein. This may be a reflection of the fact that the accumulation
of the Cerl protein takes time, and there is a time lag between Cer/
transcription and the secreted protein expression.

Cerl is a secreted protein and is reported to be modified by N-
glycosylation [5]. Our results suggested that the Cerl expressed in
mouse ES cells and human iPS cells are also N-glycosylated. Cerl
is known to primarily be expressed in early mouse embryos, first in
the anterior visceral endoderm and anterior DE where it functions
to bind and block Nodal and BMP signaling but not Wnt signaling
[6] [23][24]. Cerl expression in the anterior DE disappeared at
later stages. Therefore, Cerl is a marker for anterior DE, but not
for the entire DE, in a stage dependent manner. Although Cerl is
reported to be expressed later in the mesoderm [5], we did not
observe Cerl expression in our ES cell differentiation system,
where mesoderm cells could be induced by adding BMP (Fig. 1A,
B) [12]. This might be due to the limited expression region of the
Cerl in the mesoderm and the low expression of Cerl, which
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might not be detected in this narrow window of time. In both
mouse and human differentiated cells, Cerl was expressed in
Sox17+/Foxa2+ cells. These Cerl+ cells did not express T or AFP
under our differentiation conditions (Fig. 1D-F and Fig. 5B-D).
However, since Cerl is a marker for anterior DE, but not for the
entire DE and is expressed in the mesoderm or visceral endoderm,
we should be aware that the amount of Cerl is not always
proportional to the total amount of DE in the various conditions of
differentiation. Therefore, confirmation using other markers for
DE, or differentiation using another protocol, is recommended.
Taken together, our present ELISA system for measuring the
amount of mouse Cerl or human CERI secreted allows quick
quantification of the DE in living ES/iPS cells. Secreted Cerl or
CERI protein levels could be used as a parameter for comparing
the propensity of differentiation into the DE among different ES/
iPS cell lines. An ELISA assay for detecting Cerl or CERI
secretions offers an easy and quick analysis and could be applied to
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large-scale analyses. It is useful for monitoring differentiation of
ES/iPS cells, particularly in experiments such as chemical
screenings for drugs that potentiate subsequent differentiation of
the DE lineages.
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