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Particulates and crystals stimulate the immune system to induce inflammatory responses. Several
nanometer- to micrometer-sized particulates, such as particle matter 2.5 (PM2.5), diesel particles,
and sand dust, induce pulmonary inflammation and allergic asthma. Conversely, nanometer- to
micrometer-sized crystal, sphere, and hydrogel forms of aluminum salts {referred to as “alum”)
have been used as vaccine adjuvants to enhance antibody responses in animals and humans. Al-
though most of these particulates induce type-2 immune responses in vivo, the molecular and
immunological mechanisms of action as a vaccine adjuvant are poorly understood. In this review,
recentadvances in particulate adjuvant research from the standpoint of innate immune responses
are discussed.

Keywords adjuvant, alum, innate immunity, particulates, vaccine

INTRODUCTION: ADJUVANT AND INNATE IMMUNITY

Immune responses are categorized into two types: innate and adaptive. Innate immu-
nity is mediated by macrophages and dendritic cells (DCs), which engulf and kill mi-
crobes. In contrast, adaptive immunity involves antigen-specific responses mediated
by T cells, B cells, and memory cells. It had long been believed that the innate immune
response functions as a temporal defense system against infection until the ada
immune response can be elicited. However, recent studies have demonstrated t
nate immunity is essential for the effective induction of adaptive immunity [1
Vaccination mimics natural infection and induces pathogen-specific
munity effectively. Typically, vaccines contain two main component
adjuvants. An adjuvant is a substance that enhances antigen-speci
mune responses when used in combination with a specific
is thought to be an activator of innate immunity. In gener.
recognize pathogen-derived factors [e.g. pathogen-ass
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(PAMPs)], through pattern recognition receptors (PRRs) and induce inflammatory re-
sponses. There are four classes of PRRs: Toll-like receptors (TLRs), Nod-like receptors
(NLRs), RIG-I-like receptors (RLRs), and C-type lectin receptors (CLRs) [4-7]. These
receptors “sense” pathogen-derived factors and transduce activating signals into cells,
triggering adaptive immunity against pathogens. Therefore, the ligands for PRRs, such
as PAMPs and damage-associated molecular patterns (DAMPs), exhibit potent adju-
vant properties that elicit adaptive immunity, and PRRs are considered to be receptors
for adjuvants [1, 8].

However, the molecular and immunological mechanisms of many adjuvants used
clinically (or those under development) have yet to be fully elucidated. For example,
oil emulsions (e.g. Freund’s adjuvant and MF-59) and saponin-based adjuvants (e.g.,
QS-21 and ISCOM) exhibit strong adjuvant activities and could be promising can-
didates as adjuvants for new human vaccines [9, 10], yet no specific PRR(s) is
identified.

An increasing number of particulates and nanoparticles have been reported to
exhibit adjuvant activity. A well-known and widely used particulate adjuvant is alu-
minum salts, which is referred to as “alum” [11-13]. The mechanisms of induction of
adaptive immunity by alum or a particulate adjuvant are also unclear, even though
alum has been used as a human vaccine adjuvant for more than 80 years. The induc-
tion of adaptive immunity requires innate immunity. Hence, ithas been proposed that
particulates can activate innate cells, and that this action is accompanied by the induc-
tion of cytokines, chemokines, and other factors.

PARTICULATES AND THE ADJUVANT EFFECT

Several particulates are known to exhibit adjuvant effects in immune responses. Alum
selectively stimulates humoral immune responses, especially type-2 helper (Th2) im-
mune responses, which are characterized by the production of interleukin (IL)-4 and
IL-5 and the induction of immunoglobulin (Ig) E and IgG1 [11-13]. (In the case of
mice, IgG1 is categorized into Th2-dependent antibody, but the IgG isotype for hu-
man Th2 responses has not been clarified fully.) Similar to alum, crystalline silica
(which causes a type of pulmonary fibrosis referred to as “silicosis”) induces Th2 re-
sponses and antigen-specific IgE and IgG1 [14]. It has been reported that synthesized
particles, such as poly(lactic-co-glycolic acid) (PGLA), polystyrene particles, nickel
oxide nanoparticles, and carbon nanotubes, induce humoral immunity, especially
antigen-specific production of IgG1 and IgE [15-19]. Several particulate pollutants,
such as diesel exhaust particles, have been shown to induce Th2 responses after in-
tratracheal instillation and are thought to be the source of allergic diseases [20, 21].
In addition to artificial particulates, several crystals generated in the body induce in-
flammatory responses and possess adjuvant activity. Monosodium urate (MSU) crys-
tals are formed if the concentration of uric acid released from damaged cells reaches
saturation. MSU crystals act as DAMPs, and are the causative agent of gout. MSU
crystals also act as Th2 adjuvants [22-26]. The biocrystalline substance hemozoin is
a hemin detoxification byproduct of malaria parasites. Hemozoin exhibits a potent
adjuvant effect and induces humoral immune responses [27]. Chitin particles, which
are biopolymers of N-acetyl-D-glucosamine found in fungi, helminthes, and insects,
induce the accumulation of IL-4-producing eosinophils and basophils, and are asso-
ciated with allergy [28]. In contrast to PAMPs such as lipopolysaccharide (LPS) and
CpG oligodeoxynucleotides, almost all particulates preferentially elicit Th2 responses
and the induction of IgE. Therefore, it has been hypothesized that the specific sig-
nals evoked by particulates in innate cells are involved in triggering adaptive (Th2)
responses.
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PARTICLE SIZE AND IMMUNE RESPONSES

Particle size is thought to affect particulate-induced immune responses. Sharp et al.
investigated the relationship between particle size and DC activation. They showed
that the polystyrene particles measuring between 430 nm and 1 ym activated DCs ef-
ficiently to produce IL-18 [15]. Hornung et al. demonstrated that the optimal size of
silica crystals engulfed by macrophages was approximately 1 ;m [29]. Coban et al. in-
vestigated the adjuvanticity of hemozoin of different sizes. They reported that hemo-
zoin particles measuring between 50 nm and 200 nm exhibited a stronger adjuvant
effect compared with larger (2-20 um) and smaller (<50 nm) particles [27, 30]. These
results suggest that particles measuring between 200 nm and 1 ;um are the optimal size
for phagocytosis and the stimulation of immune responses.

DEPOT EFFECT

Antigen persistence and prolonged release, an effect referred to as the “depot effect”
(first proposed by Glenny et al. in 1926), is believed to be responsible for the adjuvan-
ticity of alum [31]. Harrison verified this hypothesis in 1935 by transferring the alum
nodules from one guinea pig into a second guinea pig [32]. However, the depot ef-
fect has been questioned in several reports. Holt demonstrated that the antibody re-
sponses were normal if alum nodules were excised 2 weeks after immunization [33]. In
particular, a recent report by Hutchison et al. demonstrated that the removal of the in-
jection site 2 hours after the administration of antigen/alum had no effect on antigen-
specific antibody and T-cell responses [34]. These studies suggest that the antigen
depot does not play an important part in alum adjuvanticity, and that alum exhibits
additional effects that account for its adjuvant properties.

TH2 CYTOKINES AND IL-4-PRODUCING CELLS

Alum preferentially induces Th2 responses (which are characterized by the production
of IgG1 and IgE) and IL-4 is a crucial factor for the induction of such Th2 responses.
Alum and several other particulates induce the recruitment of IL-4-producing myeloid
cells. Jordan et al. reported that alum induces IL-4-producing Gr-17 cells, and that
these cells and IL-4 are required for the expansion of antigen-specific B cells in vivo
[35]. Furthermore, Wang et al. demonstrated that alum-elicited Gr-1* cells are IL-
4-producing eosinophils [36]. As stated above, chitin-induced IL-4-producing cells
were eosinophils and basophils. Moreover, eosinophil recruitment is dependent on
the leukotriene B, produced by macrophages [28]. However, it has been reported that
the antigen-specific antibody responses are normal in several eosinophil-deficient
mice (IL-5-deficient, GATA1A, and Phil mice) compared with wild-type (WT) control
mice after immunization with ovalbumin (OVA)-alum [37]. In addition, Ohnmacht el
al. demonstrated that antigen-specificIgG1 and IgE responses were comparable in WT
and basophil-deficient mice immunized with OVA and alum [38]. These studies sug-
gest that IL-4-producing myeloid cells such as eosinophils and basophils do not par-
ticipate in alum adjuvanticity or Th2 responses. Recently, it has been reported that
CD1d-deficient [both type-I and -II natural killer T (NKT) cell-deficient]-mice, but
not Ja18-deficient (only type-I NKT cell-deficient)-mice exhibited reduced levels of
antigen-specific IgG1 [39]. Type-II NKT cells appear to be required for alum-induced
antigen-specific IgG1 responses in the regulation of IL-4-producing T cells.

There are several reports on IL-4 signaling and alum adjuvanticity [40, 41]. Brewer
etal. reported on the involvement of IL-4 in the immunization of alum using IL-4-, IL-
4Rw-, and STAT6-deficient mice. These strains of mice did not induce the production
of IgE and exhibited reduced levels of IgG1. However, T cells from IL-4Ra- and STAT6-
deficient mice produced normal or higher amounts of IL-4 and IL-5 in response to
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a specific antigen. These results indicate that IL-4- and IL-13-mediated signaling is
required for Th2-associated antibody production but is dispensable for alum-induced
Th2 responses.

Recently, several reports focused on the importance of thymic stromal lymphopoi-
etin (TSLP) on Th2 activation, and Al-Shami et al. demonstrated that TSLP receptor-
deficient mice displayed reduced Th2 responses after immunization with OVA and
alum [42]. However, allergen (without adjuvant)-induced Th2 responses were also re-
duced in TSLP receptor-deficient or anti-TSLP antibody-treated mice [43, 44]. These
results indicate that TSLP receptor-deficient mice are Th1 prone, and that reduced Th2
responses are not specific to immunization with alum.

PARTICULATES AND MYD88 SIGNALING
All TLR ligands are thought to be potent immune adjuvants through the activation
of the adaptor molecules MyD88 and TRIF. Schnare et al. demonstrated that MyD88-
deficient mice produced normal levels of OVA-specific IgG and IgE, but that elevated
levels of total IgE were produced after immunization with OVA in alum [45]. The exces-
sive amounts of total IgE appeared to be caused by the increased production of IL-13
in MyD88-deficient T cells. Gavin et al. also reported alum adjuvanticity in mice defi-
cient in MyD88 and TRIF, which lack TLR signaling. The antibody responses in these
double-knockout (KO) mice were comparable with those in WT mice immunized with
trinitrophenol (TNP)-hemocyanin in alum [46]. These results suggest that TLR signal-
ing does not account for the action of alum and indicate that TLRs may acts as negative
regulators of IgE production. However, Da Silva et al. demonstrated that MyD88 path-
way was required for alum-induced Th2 responses in asthma models [47]. The reason
for these discrepant results is unclear. There might be differences in the alum (Imject
alum, aluminum hydroxide, aluminum phosphate, or aluminum potassium sulfate)
and OVA (endotoxin-free or not) used.

Conversely, hemozoin crystals seem to act as MyD88-dependent adjuvants in nat-
ural and synthetic forms [27, 30]. The mechanism(s) underlying this dissimilarity be-
tween alum and hemozoin particulates remains to be investigated.

NLRP3 INFLAMMASOME

In 2008, several reports focused on the discovery that particulate adjuvants activate the
NLRP3 inflammasome [29, 48]. The inflammasome is a PRR, and there are four classes
ofinflammasome: NLRP1, NLRP3, NLRC4, and AIM2 [5]. The NLRP3 inflammasome is
one of the best characterized inflammasomes and is activated by particulates and crys-
tals [15, 29, 48-53]. NLRP3 forms a multiprotein complex with apoptosis-associated
speck-like protein containing a caspase recruitment domain (ASC) and caspase-1. The
NLRP3 inflammasome promotes the secretion of inflammatory cytokines such as IL-
1 and IL-18 as active mature forms cleaved by activated caspase-1. In addition to ac-
tivation by PAMPs, several reports have demonstrated that particulates such as silica
and alum stimulate macrophages and DCs to produce IL-18 and IL-18 through acti-
vation of the inflammasome, and that alum-induced antigen-specific IgG1 responses
are significantly reduced in NLRP3-, ASC-, and caspase-1-deficient mice [48, 54]. Sim-
ilar to alum, most particulate adjuvants are considered to have an adjuvant effect via
inflammasome activation because silica, asbestos, PLGA, and MSU act as activators
of the NLRP3 inflammasome. However, other reports have shown that the NLRP3 in-
flammasome is not required for antibody production in response to vaccination using
a particulate adjuvant, including alum [27, 37, 55, 56]. These contradictory reports on
the role of the NLRP3 inflammasome may be because of different experimental con-
ditions. Several studies used Imject alum [48, 54, 55], whereas other studies used alu-
minum hydroxide [56]. Differences in genetic background of the animal used, such
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FIGURE L. Proposed mechanisms of particulate adjuvants (alum, MSU, silica) in innate immunity.
Alum induces cell death, and the damaged host cells, such as macrophages and neutrophils, release
genomic DNA and uric acid as DAMPs. The recognition mechanisms of genomic DNA are still un-
clear, but the TBK-1-IRF3 axis plays an important part in IgE production and iMono/iDC migration
via the IL-12p80 production. The released uric acid forms MSU crystals, which are recognized by
lipid sorting on DCs. The engulfed MSU crystals trigger the activation of Syk and PI3Ks, and induce
inflammatory cells or a strong interaction between DCs and CD4% T cells. However, the released
uric acid has not been shown to form crystals at the site of alum injection. Alum and silica stim-
ulate macrophages and DCs to produce NLRP3 inflammasome-dependent IL-18 and IL-18. These
cytokines contribute (at least in part) to acute inflammation and Th2 activation. Macrophages and
DCs also induce PGE3 in response to alum and silica via Syk activation. PGEy is involved in IgE
production. iMonos: inflammatory monocytes; iDCs: inflammatory DCs.

as C57BL/6 [48, 54, 55] and mixed C57BL/6-129 [56], might contribute to the contrast-
ing results. The involvement of inflammasome-dependent cytokines in alum adjuvan-
ticity is an important issue. It has been demonstrated that IL-18 plays an important
part in alum-mediated Th2 responses [57]. However, [L-1 and IL-18 signaling triggers
MyD88-dependent signaling, and MyD88 signaling is dispensable for alum adjuvan-
ticity (as described above). The NLRP3 inflammasome may participate in adjuvant ac-
tivity through IL-18- and IL-18-independent mechanisms, but the role of the NLRP3
inflammasome in the induction of adjuvant activity remains unclear (Figure 1).

MSU AS A DAMP

Uric acid is a purine catabolite that is released from dying or stressed cells. Uric acid
forms MSU crystals if the concentration of uric acid is saturated. Shi et al. demon-
strated that uric acid and MSU crystals act as DAMPs and stimulate DCs to induce
the maturation and activation of cells [58]. Interestingly, similar to alum, MSU crystals
are known to activate Th2 responses preferentially [22-26]. Kool et al. demonstrated
that uric acid is released in the peritoneal cavity after the injection of alum, and that
antigen-specific T-cell responses were prevented after uricase treatment [22]. Alum is
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known to induce cell death, and uric acid and MSU crystals induced by alum cytotoxi-
city appear to contribute to alum adjuvanticity (whether uric acid forms crystal in vivo
in alum-injected sites is of considerable interest). In addition, this study demonstrated
that uric acid-primed inflammatory monocytes and DCs have an importantrole in the
activation of antigen-specific T cells [22]. However, this study reported that MyD88 sig-
naling was required for this mechanism, which is a controversial proposal. Similar to
alum and silica, MSU crystals have been reported to activate the NLRP3 inflamma-
some [50], and this finding is suspected to be linked to the adjuvant activity through
the activation of the NLRP3 inflammasome. However, it has been reported thatIL-15,
MyD88, and the NLRP3 inflammasome are dispensable for uric acid-dependent adju-
vant activity, and that spleen tyrosine kinase (Syk) and PI3-kinase § in inflammatory
monocytes and DCs are required for Th2 activation by uric acid (Figure 1) [25]. Syk
is a nonreceptor tyrosine kinase and a key mediator of immunoreceptor signaling in
immune cells. It has been demonstrated that Syk is involved in particulate-mediated
innate cell activation [17, 51, 59]. The relationship between uric acid-induced Th2 ac-
tivation and Syk is interesting. Although Syk is known to be activated by immunore-
ceptor tyrosine-based activation motif (ITAM)-bearing receptors [60], the underlying
mechanisms of Syk activation by particulates is unclear.

Recently, several studies demonstrated the unique recognition mechanisms of par-
ticulates. Ng et al. analyzed the recognition of MSU crystals by DCs using atomic force
microscopy. MSU crystals were shown to interact with DCs via receptor-independent
mechanisms by directly engaging cell surface lipids (mainly cholesterol) [61]. The ag-
gregation of lipid rafts triggers the recruitment and activation of Syk, and ultimately,
Syk activates PI3-kinase, phagocytosis, and cytokine secretion (Figure 1) [61]. Flach
et al. reported that alum also binds to the surface of DCs, leading to lipid sorting that
is similar to MSU crystal-mediated activation of Syk and PI3-kinase. However, the up-
take of alum is not required, and activated DCs interact with DC4" T cells via binding
with intracellur adhesion molecule (ICAM)-1 and leukocyte function-associated anti-
gen (LFA)-1 (Figure 1) [62]. Syk appears to be a key molecule for the activation of DCs
via lipid sorting, but the mechanisms of Syk activation by MSU or alum are unclear. In
general, Syk is known to be activated by Src family kinases such as Hck, Fgr, and Lyn,
and ITAM-containing FcRy and DNAX-activating protein of 12 kDa (DAP12). How-
ever, DCs double-deficient in ITAM-containing FcRy and DAP12 or triple-deficient in
Src family kinases (Hck™/~, Fgr~/~, and Lyn~/~) retain their function after activation
by MSU crystals [61].

LIPID MEDIATOR

Recently, we found that Th2-inducing particulate adjuvants have another unique
mechanism for the activation of innate immune cells: alum and silica particulates
stimulate macrophages to produce prostaglandins (PGs) in a similar way to the se-
cretion of IL-18 and IL-18 via NLRP3 activation [17]. In addition to proinflamma-
tory cytokines, lipid mediators such as PGs are involved in the induction of inflam-
matory responses. The well-characterized proinflammatory lipid mediator PGE, is a
metabolite of arachidonic acid that is produced by various types of cells, including
antigen-presenting cells [63]. Studies have shown that PGE, suppresses Th1 responses
by elevating intracellular concentrations of cyclic adenosine monophosphate (cCAMP)
in DCs and macrophages, thereby inhibiting the production of IL-12 and interferon
[64-66]. In addition, PGE, enhances IL-23 production by DCs and favors Th17 polar-
ization [67, 68]. More recently, PGE, has been shown to facilitate the differentiation of
Thl cells in the presence of IL-12 and high doses of the co-stimulatory CD28 antibody
via the activation of the PI3-kinase pathway [68]. Thus, PGE, exhibits various functions
in the regulation of immune responses.
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Silica and alum stimulate macrophages and DCs to produce IL-18, IL-18, and PGE,.
The PGE, production induced by silica and alum has been shown to be independent
of the NLRP3 inflammasome because inflammasome-deficient (NLRP3~/~, ASC~/~,
caspase-1~/7) macrophages produced normal levels of PGE, in response to silica and
alum compared with WT counterparts. Treatment with a Syk inhibitor or the knock-
down of Syk using small interfering RNA (siRNA) molecules markedly suppressed the
production of PGE; after stimulation with silica and alum, demonstrating that Syk reg-
ulates particulate-induced PGE, production. In this case, the mechanisms of Syk ac-
tivation by alum and silica are unclear. However, several reports (including those in-
volving studies on MSU crystals) have demonstrated that particulates stimulate innate
immune cells via Syk activation. Therefore, Syk may be a key molecule for particulate-
induced immune responses (Figure 1). PGE, synthesis is regulated by cyclooxyge-
nase (COX) and PGE synthase (PTGES), and COX-2 and PTGES (also known as
mPGES-1) in particular have been reported to regulate stimulation-dependent PGE,
production in macrophages [69]. PTGES-deficient macrophages do not produce de-
tectable amounts of PGE; after stimulation with silica or alum. In addition, PTGES-
deficient mice display reduced amounts of antigen-specific IgE after immuniza-
tion with alum and silica. In contrast, the levels of antigen-specific IgG are nor-
mal in PTGES-deficient mice compared with WT mice. These results indicate that
particulate-induced PGE; is involved in IgE production in vivo (Figure 1) [17]. Several
reports have demonstrated that PGE, facilitates IgE production by the accumulation
of increased levels of intracellular cAMP [70, 71]. Interestingly, neuropeptides such
as vasoreactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating
polypeptide (PACAP) preferentially activate Th2 responses and increase intracellular
cAMP levels in a receptor-dependent manner [72, 73]. In addition, the soluble extract
of birch pollen consists of a lipid that is thought to be the causative agent of allergic
asthma and to resemble the structure and function of PGE,. This lipid induces Th2
responses and intracellular cAMP accumulation in DCs [74, 75]. Agents for cCAMP ele-
vation may act as Th2 adjuvants.

Many particulates that exhibit adjuvant activity, such as MSU crystals, PLGA,
chitin particles, nickel oxide, amorphous silica, and carbon nanotubes, stimu-
late macrophages to produce inflammasome-dependent IL-18 and inflammasome-
independent PGE,. In addition, we have found that, similar to the release of uric acid,
increased amounts of PGE; arereleased from damaged cells, suggesting that PGE; also
works as a DAMP (Kuroda et al., unpublished data). These findings suggest that PGE,
is a useful marker for the screening of particulate (Th2) adjuvants.

RELEASE OF NUCLEIC ACIDS FROM HOST CELLS

Activation of innate immunity by DAMPs appears to be a critical mechanism for
adjuvant activity. Recently, it was reported that the DNA released from host cells
mediates the adjuvant activity of alum [76]. In this study, alum induced the local accu-
mulation of host DNA at the injection site during alum-induced cell death, and inter-
estingly, treatment with DNase I decreased the antigen-specific antibody responses
in mice immunized with OVA in alum. Purified genomic DNA mixed with OVA in-
duced OVA-specific IgG1 and IgE responses as efficiently as the alum adjuvant. These
results indicate that the alum-induced release of host DNA triggers initial innate im-
mune responses. These responses are not dependent on TLRs, RLRs, or inflamma-
somes, and the mechanisms by which the host DNA triggers the immune response
are unclear. However, interferon regulatory factor 3 (IRF3) and TANK-binding kinase
1 (TBK1) are required for the adjuvant activity of alum (Figure 1). It has been reported
that antigen-specific IgE responses, but not IgG1 responses, are significantly reduced
in IRF3-deficient and TBK1/tumor necrosis factor (TNF)-double-deficient mice.
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TABLE 1. Summary of the effect of particulate (alum) adjuvant on immune system

Proposed mechanisms Adjuvant activity References
Depot effect Antigen persistence and o Depot effect is not 33),34)
prolonged release required.
IL-4-producing cells  Th2 and IgE induction e Eosinophils and 37), 38)
and IL-4 signals basophils are not
required.
e IL-4 is required for IgE 40), 41)
production, but not for
Th2 cell differentiation.
MyD88 pathway and  Innate cell activation e MyD88 and TLRs are not 42), 43)
TLRs required.
NLRP3 Activation of NLRP3 o The involvement of 27), 37), 44)
Inflammasome inflammasome and IL-18, inflammasome in 50)~52)
IL-18 release adjuvant activity remain
unclear.
Uric acid Released from damaged cells e Th2 induction by 25), 57)
(MSU crystal) by alum inflammatory
Work as DAMPs monocytes and DCs via
Syk and PI3 kinase
activation.
Lipid mediator Induced from macrophage e PGE; is induced by Syk 17)
and DCs by alum or silica activation and promote
IgE production.
Nucleic acid (DNA)  Released from damaged cells e Th2 and IgE induction by 75)
by alum Work as DAMPs inflammatory

monocytes and DCs
through the secretion of
11.-12p80 and activation
of TBK1-IRF3.

Inflammatory DCs (derived from inflammatory monocytes) were identified as the
cells responsible for the induction of Th2 responses. In addition, a reduced number
of inflammatory DCs in the draining lymph nodes were observed in IRF3-deficient
mice immunized with OVA in alum, and the transfer of WT inflammatory monocytes
to IRF3-deficient mice increased Th2 cytokine and IgE production. This study also
demonstrated that IL-12p80 (a p40 homodimer) is required for alum-induced migra-
tion of inflammatory monocytes, and that treatment with anti-IL-12p80 antibody par-
tially attenuated the IgE responses in alum-treated WT mice (Figure 1). IL-12p80 is
known to induce DC migration and to activate nuclear factor kappa-B (NF-xB) and
p38 MAP kinase but not signal transducers and activator of transcription (STAT) pro-
teins [77, 78]. Identifying the IL-12p80-producing cells involved in responses to alum
or host DNA would be interesting.

IgG1 and IgE responses are uncoupled, i.e. the TBK1-IRF3 axis is required only for
the IgE responses. It is believed that the Th2-related antibodies IgE and IgG1 are regu-
lated by identical mechanisms. As described above, PGE, is only involved in IgE pro-
duction, not IgG1 production. Although the mechanisms of the regulation of IgE and
IgG1 production and the relationship between IRF3 and PGE, remain unclear, the in-
vestigation of these mechanisms may help to improve the adjuvants currently in use.

FUTURE PROSPECTS AND CONCLUSION

A summary of the effects of particulate adjuvants is shown in Table 1. Particulate adju-
vants (including alum) induce adaptive immunity. The development and modulation
of adaptive immunity is regulated by innate immunity. However, the basis for the
adjuvanticity of particulates and the mechanisms by which particulates activate
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innate immunity are not fully understood. Alum has been used as a safe vaccine
adjuvant in humans, but the limitations of alum include local reactions and the
augmentation of IgE antibody responses [11, 79]. These limitations reflect the need
for continuing research, and these limitations may be overcome by elucidation of the
mechanisms of the effect of particulate adjuvants on immune responses.

Alum in combination with another adjuvant, an AS04, a combination of alum with
monophosphoryl lipid A (MPL), has been licensed. In addition, a combination with
potent Thl stimulator such as IL-12 and CpG oligodeoxynucleotides shows a great
promise, with improvement in alum-induced Th2 responses [11, 12, 80]. Other ad-
juvant combinations might be explored further. Thus, advances in adjuvant research
could open new possibilities for the treatment of not only infectious diseases but also
allergic inflammation and cancer.
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ABBREVIATIONS

DC dendritic cell

PAMP  pathogen-associated molecular pattern
PRR pattern-recognition receptor

TLR Toll-like receptor

NLR Nod-like receptor

RLR RIG-I-like receptor

CLR C-type lectin receptor

DAMP damage-associated molecular pattern
Th2 type-2 helper

IL interleukin

Ig immunoglobulin

PGLA  poly(lactic-co-glycolic acid)
MSU monosodium urate

LPS lipopolysaccharide

WT wild-type

OVA ovalbumin

NKT natural killer T

TSLP thymic stromal lymphopoietin

KO knockout

TNP trinitrophenol

ASC apoptosis-associated speck-like protein containing a caspase recruitment
domain

Syk spleen tyrosine kinase
ITAM immunoreceptor tyrosine-based activation motif
ICAM  intracellular adhesion molecule

LFA leukocyte function-associated antigen
DAP DNAX-activating protein of 12 kDa
PG prostaglandin

cAMP  cyclic adenosine monophosphate
siRNA  small interfering RNA
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viP vasoreactive intestinal polypeptide

PACAP pituitary adenylate cyclase-activating polypeptide
(0(0):¢ cyclooxygenase

PTGES PGE synthase

IRF3 interferon regulatory factor 3

TBK1 TANK-binding kinase 1

TNF tumor necrosis factor

NF-«B  nuclear factor kappa-B

STAT signal transducers and activator of transcription
MPL monophosphoryl lipid A
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Introduction

DMXAA was developed as a vascular disruptive agent for use in
cancer therapy. Several clinical trials, including a recently
completed phase III clinical trial for non-small cell lung
carcinoma, have shown that DMXAA is safe and well-tolerated
in humans [1]. It is a cell-permeable small molecule which reduces
tumor load by inducing apoptosis in tumor vascular endothelium
thereby reducing blood flow to solid tumor [2]. Further
investigations into the properties of DMXAA have revealed that
it is a strongly immunogenic molecule. The anti-neoplastic
property of DMXAA is largely attributed to its induction of
TNFo which can be detected in the serum and tumor micro-
environment within hours of administration [3]. It can activate
several inflammatory cell signaling pathways, including extracel-
lular signal-regulated kinases 1 and 2, c-Jun N-terminal kinases,
and cytosolic nucleotide-binding oligomerization domain 1 and 2-
like receptors [4,3]. In addition, DMXAA is a strong inducer of
reactive oxygen species (ROS) [6]. The most striking immuno-
genic feature of DMXAA is its induction of immediate and
predominant type-I-IFN [7]. DMXAA resembles viral infections
and double stranded DNA (dsDNA) in the inflammatory signaling
events it triggers to induce type-I-JFN production [8]. It utilizes
the TBKI1-IRF3 signaling pathway without the involvement of
Toll-like receptors (PLRs) or RNA helicases for its mechanism of
type-I-IFN induction. For the cell signaling cvents that are
upstream of TBK1 phosphorylation, DMXAA was shown to

PLOS ONE | www.plosone.org

initiate the translocation of the E3 ubiquitin ligase tripartite motif
56 (TRIM56) from the cytoplasm into intracellular punctate
structures where the Stimulator of Interferon Genes (STING) was
simultaneously recruited [9]. STING is an adaptor molecule that
is vital (o the induction of type-I-IFN during viral infection [10]
and stimulation with cytosolic dsDNA [11] and the bacterial
second messenger product, cyclic diguanylate (c-di-GMP) [12].
DMXAA was recendy demonstrated to require STING for the
production of IFN- [13]. Due to its ability to induce strong type-
I-IFN, DMXAA was found to be an effective antiviral agent
against influenza [14,15].

In addition to the induction of pro-inflammatory cytokines,
DMXAA can induce the direct activation of antigen presenting
cells (APCs) such as macrophages and dendritic cells (DCs). /n-vivo
administration of DMXAA induced maturation of DCs in
draining lymph node of tumor bearing mice within 24 h. This
was shortly followed by the increasc of tumor antigen specific CD8
T cells and their migration to tumor sites due to chemokines such
as CCL2 and CXCLI10 that were rcleased by the activated APCs
[16]. Based on these immunogenic properties of DMXAA, we
hypothesize that DMXAA could function as an adjuvant. In this
report, we demonstrate in mouse models that DMXAA could
indeed promote the adaptive Immune response in immunization
studies against influenza virus and be a potential adjuvant
candidate.
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Materials and Methods

Mice and immunizations

Ifrar " and Lf3 mice were of C537BL/6 background and IL-
337" mice were of BALB/c background. The development of
these animals was described elsewhere [17-19]. Wild-type (WT)
controls were purchased from CLEA, Japan. All animal experi-
ments were conducted in accordance with the guidelines of the
Animal Care and Use Committee of Rescarch Institute for
Microbial Diseases and Immunology Frontier Research Center of
Osaka University, who specifically approved this study. All animal
experiments were performed to ameliorate suffering according to
the guideline of ASUDC of RIMD and IFREC of Osaka
university. Endotoxin-free chicken egg Ovalbumin (OVA) (Seika-
gaku Biobusiness) was mixed with various adjuvants, including
DMXAA (Sigma-Aldrich), aluminum hydroxide suspension (Sig-
ma Aldrich) and K-type CpG ODN 2006 (InvivoGen), in PBS
prior to immunization. DMXAA was dissolved in 5% NaHCOs3
and was ensured cndotoxin-free by analysis with LAL testing
(Lonza). In all immunization experiments, mice were injected
intradermally at the base of tail on days 0 and 14 and were bled on
day 21.

Generation and in-vitro stimulation of bone marrow
derived dendritic cells

In-vitro grown DCs were prepared by incubating red blood cells-
lysed bone marrow cells from WT and various knockout mice with
20 ng/ml of GM-CSF (Peprotech, NJ, USA) for 5 days as
previously described in [20]. On day 3, DCs were stimulated with
DMXAA, lipopolysaccharides (LPS) (Sigma Aldrich, MO, USA),
and Lipofectamine 2000 (Invitrogen, NY, USA) complexed c-di-
GMP (Biolog, Bremen, Germany) for 6 h before the supernatant
were collected and cytokines mcasured. The level of DC
maturation induced by the various stimuli were determined by
using flow cytometry to detect CD86 expression on CD11c”™ cells
and presented as histogram plots.

Cytokine ELISA

TNFo was measured using the R&D DuoSet® ELISA
Development Systems (R&D Systems). IFNB was measured by
ELISA, using rat monoclonal [7F-D3] antibody to Interferon beta
(ab24324, Abcam) and rabbit polyclonal antibody to Interferon B
(#AB2215, Millipore) and finally with sheep antibody to rabbit
1gG (H&L-HRP; ab97095, Abcam). Standard curves were
generated using recombinant mouse IFNB (12400-1, Interferon
Source PBL). Results reported in the figures are averages of three
samples with errors displayed as standard deviations. Antibody
responses to OVA and SV were determined by ELISA where
plates were coated with OVA protein and SV respectively. The
OVA and SV specific antibodies were detected using goat anti-
mouse IgG, IgG1, IgG2a or IgG2¢-HRP (Southern Biotech). The
relative antibody titers were determined directly from the standard
curve generated from positive serum by solving the regression line
cquation. All ELISAs were developed with the KPL TMB
Microwell Peroxidase Substrate System (KPL).

Influenza virus infection and vaccination

Mice were immunized intradermally, at the base of the tail, on
days 0 and 14, with 100 ug DMXAA and 0.75 pg of New
Caledonia/20/1999 (HIN1), prepared as described [21]. On day
21, the immunized mice were anesthetized with ketamine before
they were intranasally infected with 1x10° pfu of A/Puerto Rico/
8/34 (PR) (HIN1) virus. All efforts were made to reduce suffering
to the animal. Challenged mice were monitored daily for their
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body weight loss and any signs of sickness. Mice that were in a
moribund condition or had loss more than 25% of body weight
were considered to have reached an experimental endpoint and
were humanely euthanized by cervical dislocation.

Statistical analysis

All data were reported as means * standard deviation. Students
t-test was used to compare significant differences between two
groups, whereas one-way analysis of variance with Bonferroni’s
post-test was used to compare differences among three or more
groups. Log-rank (Mantel-Cox) tests was used to analyze
significant difference between survival curves.

Results

DMXAA has adjuvant properties and induces preferential
type-2 response

To determine if the immunogenic property of DMXAA could
adjuvant vaccines, we utilized the OVA model antigen system
where C57BL/6 mice were immunized with OVA mixed with
DMXAA. We found that DMXAA could significantly augment
specific immune responses against OVA, as indicated by the
increase in serum anti-OVA total IgG (tlgG) titers compared to
OVA alone immunized group (Figure 1A). The adjuvant effect
was dependent on the dose of DMXAA. In addition, it was
observed to have noticeable but insignificant adjuvant effect at a
low dose of 10 pg. The immune response induced by the
combination of DMXAA and OVA was long-lasting and could
be detected as late as 150 days after the final immunization
(Figure 1B). To cvaluate its efficacy, we compared DMXAA with
the established adjuvants, Alum and CpG DNA, which induce
predominantly Ty2 and Tyl immune responses, respectively.
Mice immunized with OVA plus DMXAA (100 pg) gencrated
comparable anti-OVA tlgG titers as Alum (665 pg) and CpG
DNA (25 pg) adjuvanted groups (Figure 1C). DMXAA resembled
Alum in generating predominantly Ty2 type responses as
indicated by the induction of higher IgGl than IgG2c titers
(Figure 1D and 1E). In contrast, CpG DNA induced higher IgG2c
and lower IgG1 levels. We have also analyzed OVA specific T cell
responses by stimulating splenocytes of immunized mice with
whole OVA protein or its CD4 and CD8 cpitopes followed by
measuring IFN-y secretion. No T-cell responses could be detected
in OVA plus Alum or DMXAA groups, whereas splenocytes from
the OVA plus CpG group responded with high IFN-y secretion in
the presence CD8 peptide and whole OVA protein (Figure 1F). In-
vivo depletion of CD4 T cells prior to immunization with OVA and
DMXAA completely abrogated the production of OVA-specific
antibodies (Figure 1G), suggesting that the generation of adaptive
immune responses by DMXAA was CD4 T cell-dependent. These
results indicate that DMXAA possesses immuno-stimulatory
properties that can function effectively as an adjuvant for vaccines.

Adjuvant effect of DMXAA is dependent on the type-I-

IFN response induced by IRF3 signaling

DMXAA has been shown to activate the TBK1-IRF-3 signaling
pathway to induce strong IFNB response from mouse embryonic
fibroblasts (MEFs), macrophages and dendritic cells {7]. A recent
study also reported that DMXAA could induce IL-33 up-
regulation through IRF3 dependent mechanism [22]. IL-33
promotes humoral immunity by triggering the release of Ty2
cytokines such as IL-4, IL-5 and IL-13 from polarised naive T cells
[23]. Therefore we would like to determine if the adjuvant effect of
DMXAA requires IRF3-dependent type-I-IFN secretion and
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Figure 1. DMXAA acts as a potent adjuvant. (A) Anti-OVA tlgG titers of C57BL/6 mice immunized with 100 pug OVA plus the indicated doses of
DMXAA (ug). (B) Anti-OVA tigG titers of C57BL/6 mice 21 days and 150 days after immunization with 100 pg OVA and 100 ug DMXAA. (C-E) C57BL/6
mice were immunized twice i.d. with 100 pg OVA plus DMXAA (100 pg), Alum (665 pg) or CpG DNA (25 pg) and the induction of (C) tigG, (D) lgG1
and (E) lgG2c¢ antibody responses against OVA were assessed. (F) IFN-y secretion from splenocytes of immunized mice that were stimulated for 48 h
with CD4 and CD8 OVA peptides and whole OVA protein. (G) Anti-OVA tigG titers of C57BL/6 mice injected iv. with 200 pg anti-CD4 (GK1.5)
antibodies prior to immunization with 100 pg OVA and 100 ng DMXAA. Results presented are representatives of three separate experiments. ¥<0.05,
#* P<0.01, #** P<0.001 by Students t-test when comparing between two groups and one-way ANOVA with Bonferroni’s post-test when comparing

<

three or more groups.
doi:10.1371/journal.pone.0060038.g001

could the induction of preferential T2 type response be due to its
up-regulation of IL-33.

To address this, OVA immunization studies were performed on
mice lacking IRF3 (/3), IFNo receptor (Jfnar”™) and 11L-33 (II-
3377). As observed in Figure 2A, the anti-OVA tlgG (Figure 2A)
titers from 137" and Ifsar”” mice were significantly inhibited
compared to WT C57BL/6 mice. This indicates that the adjuvant
effect of DMXAA was strongly dependent on IRI3 mediated
transcription and responses mediated by type-I-IFN. In contrast to
10‘3‘/ “and Ifnar‘/' mice, 133" mice showed comparable levels of
tlgG antibody response as WT BALB/c immunized mice
(Figure 2B). Moreover, the preference for the induction of IgGl
(Figure 2C) over IgG2a (Figure 2D) subtype as observed in WT
BALB/c mice remained the same in /-33”" mice. To further
support the dependence on IRF3 mediated type-I-IFN for
DMXAA adjuvant effect, bone marrow derived DCs from
B3, Ifar”and WT mice were stimulated with DMXAA
(Figure 2E~G). Cyclic diguanylate (c-di-GMP) is an IRF3-
dependent type-I-IFN inducer and was included as a control. As
observed in figure 2E, /3" DCs were unable to induce IENp
response whilst Jfzar’~ DC responded with levels comparable to
WT DCs. Therefore indicating that the lack of DMXAA adjuvant
effect observed in Ifaar’™ mice was not due to the inability to
induce type-I-IFN but rather it was the inability to respond to it.

PLOS ONE | www.plosone.org

Although /73" and Ifaar”™ mice did not respond to the adjuvant
effect of DMXAA, it was found to be capable of inducing IL-6
(Figure 2F) and TNFa (Figure 2G) response from b3 and Ifar "
DCs. In addition, the DC maturation effect of DMXAA was still
present in /3 and Ifaar”” DCs in the same order of magnitude
as WT DCs (Figure 2H). These data suggest that other stimulatory
pathways of DMXAA remained intact in If3 " mice but they did
not play a role in the adjuvant effects of DMXAA. Collectively, we
demonstrate that the adjuvant effect of DMXAA is directly
dependent on IRF3 mediated type-I-IFN induction and that the
reported IL-33 up-regulation by DMXAA is not involved in
raising immunogenicity of the vaccine or the skewing towards Th2
type response.

DMXAA is a potent adjuvant for influenza split virus
vaccine and enhances protection against influenza
challenge

In our previous report, we have demonstrated that in contrast to
influenza whole virus vaccine (WV), split vaccine (SV) was unable
to induce type-I-IFN production from plasmacytoid DCs [21].
This was due to the lack of RNA content in the SV preparation
required to trigger TLR7 activation. As a result, SV immuniza-
tions were less protective against lethal influenza challenge as
compared to WV immunizations. Hence, we would like to

March 2013 | Volume 8 | Issue 3 | e60038

—251—



DMXAA Works as a FLU Vaccine Adjuvant

—
<
s

™
?

-

&
28
'ﬂ

Anti-OVA tigG titer (x10%) =
Anti-OVA tigG fiter (x10%) [0
- N
L o o
3

-

@
o
lgG2a titer (x10%) I
5 & o

L
L4
@

o
(4
3

&
@

M g

WT  fnar” s WT 533

o
o
I

o o
Qo w,

< (431
@
L3
Anti-OVA 1gG1 titer (x10%) O
P ‘
fen]

o ©
< (4]
> ¢

o
o
Anti-OVA

WT  p3s

m
1
CD

1.2, 3 2
4 JOWT 25) OWT - AW

g itnar™” =71 atmar” E 15 &/
\%0 8 Elfnar £ nar & nar
206 3 2
Z08- £15 5 1
Z (.44 @
£ 04 ot FL Fos

0.2. 05

0 " ey 0 . 0 .

PRS DMXAA c-di-GMP PBS DMAAA  LPS PBS DMXAA  LPS
14 3. 2

. SWT 4 BWT COWT
g 08 =i - :é\zzs a3 4 fé\l.s @ Irf3+
206. £
- 51.5 = 1
z 04 © 9 L
~02 =45 Z 0.5, (1

0 0 e 0 Aoz : -

PBS DMXAA c-di-GMP PBS PBS DMXAA LPS

nstimulated

CDB6 expression
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doi:10.1371/journal.pone.0060038.g002

determine if the type-I-IFN dependent adjuvant effect of DMXAA DMXAA. We found that SV plus DMXAA induced higher tIgG
could adjuvant SV and immunized mice from live flu challenges. antibody responses than SV alone immunizations (Figure 3A).

C57BL/6 WT mice were immunized intradermally with SV Similar to OVA immunization studies, the adjuvant effect of
prepared from New Caledonia/20/1999 (HIN1) and mixed with DMXAA induced higher IgG1 than IgG2c titers to SV (Figure 3B
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and 3C). Next, we challenged the immunized mice with a high
dose of A/Puerto Rico/8/34 (PR) (HIN1). As seen in Figure 3D,
naive mice were quick to succumb to the selected dose of live
influenza challenge whilst SV alone immunized mice were offered
low level protection (Figure 3A). Although SV alone immuniza-
tions had low antibody titers, it was found to be mildly
immunogenic and capable of inducing detectable CXCL10 and
Anti-HA BALF IgA production [21] that may account for the low
level of protective response observed. In contrast, mice immunized
with SV plus DMXAA had significantly higher survival rates than
naive mice and mice immunized with SV alone (Figure 3D). 11
out of 12 mice that were immunized with SV + DMXAA survived
the lethal challenge compared to the 3 out of 12 SV alone group.
It was also observable from the rate of weight-loss that SV plus
DMXAA immunized mice had a lesser degree of disease-induced
morbidity and were able to recover from the infection at a faster
rate than control groups (Figure 3E). To exclude the possible role
of DMXAA-induced innate immune responses in the protection
against lethal challenge, the survival rate of mice injected with
DMXAA alone without SV was determined and found to be
similar as naive mice (Figure 3D). Therefore the protective
response observed in SV + DMXAA immunized group was due to
the adaptive response generated from the immunization and not
the innate immune response triggered by DMXAA. These results
demonstrate that DMXAA is an efficacious adjuvant for SV
vaccine.

DMXAA Works as a FLU Vaccine Adjuvant

Discussion

A large cohort Phase III clinical trial of DMXAA on patients
with non-small cell lung carcinoma was recently halted due to
inefficacy although it was shown to be well tolerated [1]. As
opposed to an earlicr successful Phase II clinical trial [24], the
Phase III trial showed no overall survival between DMXAA and
placebo treated groups. The researchers conducting the clinical
trial reasoned that a smaller sample size in the phase II trial
overestimated the efficacy of DMXAA. The future of DMXAA as
a vascular disruptive agent for cancer therapy is thercfore
uncertain. In this report, we have demonstrated that the
immunogenic properties of DMXAA could be harnessed to
adjuvant vaccines with its acceptable safety profile. A local low-
dose of DMXAA was capable of adjuvanting vaccines with efficacy
that was comparable to the well-studied adjuvants, Alum and
CpG. The adjuvant activity was observed using amounts as low as
10 pg per mouse, which was a smaller dose than the 30 mg/kg
required for the vascular disruptive effect [25]. When extrapolated
to human use, the lower dose required for the adjuvant activity
serves to promote DMXAA as a candidate for vaccine adjuvant.

Despite the activation of several distinct inflammatory signaling
pathways, we narrowed the immune activity responsible for the
adjuvant effect of DMXAA to the IRF3 mediated activation of
type-I-IFN. This is surprising as DMXAA induced biased T2
response while type-I-IFN is commonly associated with the
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doi:10.1371/journal.pone.0060038.g003
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generation of Ty 1 response in-zivo [26]. The recent study reporting
that DMXAA could induce IL-33 up-regulation through IRF3
dependent mechanism made us question if this could be the reason
for the unusual observation [22]. However, immunization studies
performed on f1-33” mice confirmed that IL-33 was not involved
in the adjuvant effect of DMXAA or its skewing towards Ty2
response. We have recently reported that Alum mediates
enhancement of Ty2 response through the DNA sensing pathway
triggered by the release of dsDNA from dying host cells [18].
However, we found that DMXAA did not induce significant
increase in free dsDNA in the peritoneal lavage of mice when
injected intraperitoneally as opposed to Alum (data not shown).
Therefore the mechanism through which DMXAA induced
preferential Ty2 type responses remains elusive and requires
further investigation. It is possible that the production of IL-6 by
DMXAA to be involved as it has been known to inhibit Tyl
polarization by activating NFAT, c-maf and SOCS-1 [27,28] and
induce the humoral immunity promoting cytokine, 1L-21.

The revealing of DMXAA adjuvant property suggests that it
could adjuvant tumor associated antigens and activate the
adaptive immune system against cancer cells as part of its anti-
tumor response. So far, there are no reports on DMXAA raising
humoral immunity against tumor cells with its Ty2 enhancing
capability. However, there is evidence which suggests that
DMXAA could act as a cancer vaccine adjuvant. For example,
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it was demonstrated that the administration of DMXAA in tumor
bearing mice could increase the number of circulating specific
CD8 T-cells [16]. It was also shown to have a positive influence in
a scparate study which investigated if the anti-cancer property of
systemic high-dose DMXAA could work in combination with the
adaptive immune response generated by DNA vaccine to protect
mice against tumor challenges [29].

In summary, results from this report have shown that DMXAA
is capable of functioning as an adjuvant with a defined mechanism
that acts specifically on the IRI3 dependent induction of type-I-
IFN. DMXAA has already been investigated for applications in
antiviral [15] and anti-bacterial [30] therapies and here we
demonstrate that it is capable of adjuvanting vaccines as well.
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Introduction

RIG-I-like receptors (RLRs) are cytoplasmic viral RNA
sensors that play an essential role in Type | interferon (IFN)
expression in response to RNA virus infection [1]. RLRs
recognize cytoplasmic double-stranded RNA (dsRNA) and the
dsRNA analog poly!:C [1]. A recent study reported that RLRs
localize on antiviral stress granules in response to cytoplasmic
polyl:C or viral infection [2]. IPS-1 (also called MAVS, Cardif,
and VISA) is a solo adaptor of RLRs and localizes on the outer-
membrane of mitochondria and peroxisomes [3-7]. A recent
study reported that a part of IPS-1 localizes on mitochondria-
associated membranes (MAMs), which is a distinct membrane

PLOS ONE | www.plosone.org

compartment that links the endoplasmic reticulum (ER) to the
mitochondria [8]. RIG- is then recruited to MAMs to bind IPS-1
[8]. There are several regulatory proteins on mitochondria such
as MFN-1 and MFN-2 [9,10]. Association of RLRs with IPS-1
induces the formation of {PS-1 prion-like aggregates, leading to
TBK1 activation [11] and consequent Type | IFN production
[12,13]. Toll-like receptor 3 (TLR3) also recognizes viral dssSRNA
and polyl:C; however, TLR3 localizes to early endosomes or
the cell surface and requires the adaptor TICAM-1 to induce
Type | IFN expression [14-16].

Cytoplasmic DNA sensors, such as DAl, IFI16, DDX41,
cGAS, and Mre11, recognizes DNA viruses [17-19]. These
DNA sensors recognize not only viral DNA but also cytoplasmic
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