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Genetic Characterization of Hepatitis C Virus in Long-
Term RNA Replication Using Li23 Cell Culture Systems
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Abstract

Background: The most distinguishing genetic feature of hepatitis C virus (HCV) is its remarkable diversity and variation. To
understand this feature, we previously performed genetic analysis of HCV in the long-term culture of human hepatoma
HuH-7-derived HCV RNA-replicating cell lines. On the other hand, we newly established HCV RNA-replicating cell lines using
human hepatoma Li23 cells, which were distinct from HuH-7 cells.

Methodology/Principal Findings: Li23-derived HCV RNA-replicating cells were cultured for 4 years. We performed genetic
analysis of HCVs recovered from these cells at 0, 2, and 4 years in culture. Most analysis was performed in two separate parts:
one part covered from the 5’'-terminus to NS2, which is mostly nonessential for RNA replication, and the other part covered
from NS3 to NS5B, which is essential for RNA replication. Genetic mutations in both regions accumulated in a time-
dependent manner, and the mutation rates in the 5’-terminus-NS2 and NS3-NS5B regions were 4.0-9.0x107% and 2.7-
4.0x1073 base substitutions/site/year, respectively. These results suggest that the variation in the NS3-NS58 regions is
affected by the pressure of RNA replication. Several in-frame deletions (3-105 nucleotides) were detected in the structural
regions of HCV RNAs obtained from 2-year or 4-year cultured cells. Phylogenetic tree analyses clearly showed that the
genetic diversity of HCV was expanded in a time-dependent manner. The GC content of HCV RNA was significantly
increased in a time-dependent manner, as previously observed in HuH-7-derived cell systems. This phenomenon was
partially due to the alterations in codon usages for codon optimization in human cells. Furthermore, we demonstrated that
these long-term cultured cells were useful as a source for the selection of HCV clones showing resistance to anti-HCV
agents.

Conclusions/Significance: Long-term cultured HCV RNA-replicating cells are useful for the analysis of evolutionary
dynamics and variations of HCV and for drug-resistance analysis.
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mechanisms underlying HCV replication [6,7]. HCV replicon
RNA (approximately 8 kb) is a selectable, bicistronic HCV RNA
with the first cistron, the neomycin phosphotransferase (Neo™)
gene, being translated under control of the HCV internal
ribosome entry site (IRES) and the second cistron, the NS3-
NS5B regions, being translated under control of the encephalo-
myocarditis virus (EMCV) IRES. Genome-length HCV RNA
(approximately 11 kb) possesses the Core-NS5B regions in
substitution for the INS3-5B regions of the replicon in addition
to the replicon structure. It was reported that infections HCV
particles are not produced in genome-length HCV RNA-

Introduction

Hepatitis C virus (HCV) infection frequently causes chronic
hepatitis, which progresses to liver cirrhosis and hepatocellular
carcinoma. Such persistent infection has now become a serious
health problem, with more than 170 million people worldwide
infected with HCV [1]. HCV is an enveloped positive single-
stranded RNA (9.6 kb) virus belonging to the Flaviviridae family,
and the HCV genome encodes a large polyprotein precursor of
approximately 3000 amino acid (aa) residues. This polyprotein is
cleaved by a combination of host and viral proteases into at least

10 proteins in the following order: core, envelope 1 (E1), E2, p7,
nonstructural protein 2 (NS2), NS3, NS4A, NS4B, NS5A, and
NS5B [2,3].

The mitial development of a cell culture-based replicon system
[4] and a genome-length HCV RNA-replicating system [5] using
genotype 1b strains led to rapid progress in investigations into the

PLOS ONE | www.plosone.org

68

replicating cell systems using genotype 1b strains [6,8]. However,
in 2005, an efficient virus production system using the JFH-1 strain
of genotype 2a was developed using HuH-7-derived cells [9].
Since then, this infectious HCV system became a powerful tool to

study the full viral life cycle [10].
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The most distinguishing feature of the HCV RNA is its
remarkable diversity and variation. To date, six major HCV
genotypes, cach having a large number of subtypes, have been
found to show more than a 20% difference at the nucleotide level
compared with any other genotypes [11,12]. An approximately 5—
8% difference at the nucleotide level has been observed within a
single genotype [3]. Furthermore, an approximately 1% difference
at the nucleotide level is also observed among HCV genomes in an
individual [13]. Although genetic analyses of HCV using in vivo
specimens have estimated that the genetic mutation rate of HCV is
1.4-1.9x107? base substitutions/site/year [14-16], the potential
variability of HCV is not clear due to the selective pressure of
immune system functions i viwo [17,18].

To define the actual genetic mutation frequency of HCV, we
previously performed genetic analysis of HCV [19,20] using
human hepatoma HuH-7 cell culture-based HCV  replicon
systems or genome-length HCV RNA-replication systems. In
studies using the 1B-1 or O strain of genotype 1b, the
accumulation of genetic mutations (mutation rate is 3.0-
4.8 x107? base substitutions/site/year), the enlargement of genetic
diversity, and an increase in GC contents of HCV RNA were
observed in a time-dependent manner during a 2-year cell culture
[19,20]. These results suggest that the long-term culture of HCV
RNA-replicating cells is useful for understanding the evolutionary
dynamics and variations of HCV. However, HuH-7-derived cells
are the only cell culture system used thus far for robust HCV
replication [6,7]. Therefore, it remains unclear whether our results
obtained from HuH-7-derived HCV RNA-replicating cell culture
systems reflect the general features of HCV’s genetic diversity and
variation. On the other hand, in 2009 we established four new
human hepatoma Li23 cell-derived genome-length HCV RNA (O
strain of genotype 1b; GenBank accession no. AB191333)-
replicating cell lines, OL (polyclonal; a mixture of approximately
200 clones), OL8 (monoclonal), OL11 (monoclonal), and OL14
(monoclonal) [21], and have been culturing them for more than 4
years. Since we demonstrated that the gene expression profile of
Li23 cells was distinct from those in HuH-7 cells [22], and that
anti-HCV targets in Li23-derived cells were distinct from those in
HuH-7-derived cells [23-25], we expected to find distinct HCV
variability and diversity from those observed previously in HuH-7-
derived cells. To clarify this point, we carried out comprehensive
genetic analysis of HCVs obtained from 0-year, 2-year, and 4-year
cultures of OL, OL8, OL11, and OL14 cells, and compared them
with the original ON/C-5B/QR,KE,SR RNA [21].

Here, we report the evolutionary HCV dynamics occurring in
the long-term replication of genome-length HCV RNAs using
Li23-derived cell culture systems.

Materials and Methods

Cell Cultures

The human hepatoma Li23 cell line, which was established and
characterized in 2009, consists of human hepatoma cells from a
Japanese male (age 56) [21]. The Li23 cells were cultured in
modified medium for human immortalized hepatocytes, as
described previously [21,26]. Genome-length HCV RNA-repli-
cating cells (Li23-derived OL, OL8, OL11, and OL14 cells) were
cultured in the medium for the Li23 cells in the presence of
0.3 mg/ml of G418 (Geneticin, Invitrogen, Carlsbad, CA). These
cells were passaged every 7 days for 4 years. HCV RNA-
replicating cells possess the G418-resistant phenotype, because
Neo® as a selective marker was produced by the efficient
replication of HCV RNA. Therefore, when HCV RNA is
excluded from the cells or when its level decreases, the cells are
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killed in the presence of G418. In this study, OL, OL8, OL11, and
OL14 cells were renamed OL(0Y), OL8(0Y), OL11(0Y), and
OL14(0Y) cells, respectively, to specify the time at which the cells
were established. These “0Y” cells of passage number 3 were used
in this study. Two-year cultures of OL(0Y), OL8(0Y), OL11(0Y),
and OL14(0Y) cells were designated OL(2Y), OL8(2Y), OL11(2Y),
and OLI14(2Y) cells, respectively. Four-year cultures of OL(0Y),
OL8(0Y), OL11(0Y), and OL14(0Y) cells were designated OL(4Y),
OL8(4Y), OL11{(4Y), and OL14(4Y) cells, respectively.

Quantification of HCV RNA

Quantitative reverse transcription-polymerase chain reaction
(RT-PCR) analysis for HCV RNA was performed using a real-
time LightCycler PCR (Roche Diagnostics, Basel, Switzerland) as
described previously [21,27]. Experiments were done in triplicate.

Western Blot Analysis

The preparation of cell lysates, sodium dodecyl sulfate-
polyacrylamide gel electrophoresis, and immunoblotting analysis
with a PVDF membrane was performed as described previously
[28]. The antibodies used to examine the expression levels of HCV
proteins were those against NS4A (a generous gift from Dr. A.
Takamizawa, Research Foundation for Microbial Diseases, Osaka
University) and NS5B (a generous gift from Dr. M. Kohara,
Tokyo Metropolitan Institute of Medical Science, Japan). Anti-p-
actin antibody (AC-15; Sigma, St. Louis, MO) was also used to
detect B-actin as an internal control. Immunocomplexes on the
membranes were detected by enhanced chemiluminescence assay
(Western Lightning Plus-ECL; Perkin-Elmer Life Sciences, Bos-
ton, MA).

RT-PCR and Sequencing

To amplify genome-length HCV RNA, RT-PCR was per-
formed separately in two fragments as described previously
[21,27]. Briefly, one fragment covered from the 5'-terminus to
NS3, with a final product of approximately 5.1 kb, and the other
fragment covered from NS2 to NS5B, with a final product of
approximately 6.1 kb. These fragments overlapped at the NS2
and NS3 regions and were used for sequence analysis of the HCV
open reading frame (ORF) after cloning into pBR322MC [28].
SuperScript II (Invitrogen, Carlsbad, CA) and KOD-plus DNA
polymerase (Toyobo, Osaka, Japan) were used for RT and PCR,
respectively. Plasmid inserts were sequenced in both the sense and
antisense directions using Big Dye terminator cycle sequencing on
an ABI PRISM 310 genetic analyzer (Applied Biosystems, Foster
City, CA). The nucleotide sequences of each of 10 (OL cell series)
or 3 (OL8, OL11, and OLIl4 cell series) independent clones

obtained were determined.

Molecular Evolutionary Analysis

Nucleotide and deduced aa sequences of the clones obtained by
RT-PCRs were analyzed by neighbor-joining analysis using the
program GENETYX-MAC (Software Development, Tokyo,
Japan).

Antiviral Assay

To monitor the anti-HCV activity of telaprevir, genome-length
HCV RNA-replicating cells were plated onto 6-well plates (2x10°
cells for OL(0Y) cells or 8x10* for OL(4Y), OL8(4Y), OL11(4Y),
or OL14(4Y) cells per well). After 24 hrs in culture, the cells were
treated with telaprevir (a generous gift from Dr. T. Furihata,
Chiba University, Japan) at 0.2 uM or 0.4 pM for 3 days. After
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Figure 1. Characterization of genome-length HCV RNA-replicating cells after 4 years in culture. (A) Quantitative analysis of intracellular
genome-length HCV RNA. The total RNAs from OL(4Y), OL8(4Y), OL11(4Y), and OL14(4Y) cells used were analyzed. The levels of intracellular genome-
length HCV RNA were quantified by LightCycler PCR. OL(0Y) and Li23 cells were used as a positive and a negative control, respectively. (B) Western
blot analysis. The cellular lysates from the cells used for RT-PCR analysis were also used for comparison. NS4A and NS5B were detected by Western
blot analysis. B-actin was used as a control for the amount of protein loaded per lane.

doi:10.1371/journal.pone.0091156.g001

treatment, the cells were subjected to quantitative RT-PCR We next examined whether infectious HCV particles are
analysis for HCV RNA. produced from genome-length HCV RNA-replicating cells after
4 years of culture, although it has been reported that infectious

Statistical Analysis particles were not produced in genome-length HCV RNA-
The significance of differences among groups was assessed using replicating cell systems [6,8]. To clarify this point, we performed
Student’s #test. P<0.05 was considered significant. infection experiments to HCV (JFH-1) susceptible HuH-7-derived

RSc and Li23-derived ORLS cells [21] using the supernatant of
OL(0Y), OL(4Y), OL8(4Y), OL11(4Y), or OL14(4Y) cells as an

Results ) ) or .
inoculum. At 7 days and 8 days post-infection, we quantified the

Efficient replication of genome-length HCV RNA is Core in the supernatants by enzyme-linked immunosorbent assay

maintained in long-term cell culture and HCV RNA in the cells by quantitative RT-PCR. The results

To prepare the specimens for the genetic analysis of HCV, (Fig. S1) showed that both Core and HCV RNA were not detected

genome-length HCV  RNA-replicating OL(0Y), OL8(0Y), in our Iopg-ter@ culturfzd cells, suggesting that the cells produced
OL11(0Y), and OL14(0Y) cells were cultured for 4 years. Since no infectious virus particles over time.

we previously demonstrated that the levels of HCV RNAs

increased in all cases after 2 years of constitutive HCV RNA Genetic variations of genome-length HCV RNAs during
replication [26], in the present study we examined the levels of  long-term cell culture

intracellular HCV RNAs after the cell culture of 4 years by To clarify the genetic variations of HCVs during the period of
quantitative RT-PCR. The results revealed that the levels of HCV cell culture, we carried out sequence analysis of genome-length
RNAs in all cases were significantly higher than that of OL(0Y) HCV RNAs obtained from OL2Y), OL(4Y), OL8(2Y), OL8(4Y),
cells (Fig. 1). Western blot analysis for HCV NS4A and NS5B also OLI11(2Y), OL11(4Y), OLI142Y), and OLI14(4Y) cells. The
showed that the expression levels in all cases were higher than that determined nucleotide sequences of genome-length HCV RNAs
of OL(0Y) cells. However, the present results were matched with were compared with those of the original ON/C-5B/QR,KE,SR
previous findings regarding a 2 year-culture [26], revealing that RINA [21] used for the establishment of the OL(0Y), OL8(0Y),
the levels of HCV RNAs of OL8(#Y) and OL11(4Y) cells become OL11(0Y), and OL14(0Y) cell lines. To compare the nucleotide
lower than those of OL8(0Y) or (2Y) and OL11(0Y) or (2Y) cells, sequences, the data on genome-length HCV RNAs from OL(0Y),
respectively. Unlike the results for the OL8 or OLII series, the OL3(0Y), OL11(0Y), and OL14(0Y) cells were also used [21].
levels of HCV RNAs of OL4Y) or OL14(4Y) cells were each Most of the sequence analysis was performed in two separate parts:

maintained throughout cultures of 2 years and 4 years. Overall, we one part covers from the 5'-terminus to NS2, which is mostly
showed that the HCV RNA levels in all cases were more than nonessential for RNA replication, and the other part covers from
5%10° copies/pug of total RNA, indicating that efficient HCV NS3 to NS5B, which is essential for RNA replication. The results
RINA replication occurred during those 4 years. revealed that the numbers of base substitutions in both regions
PLOS ONE | www.plosone.org 3 March 2014 | Volume 9 | Issue 3 | e91156
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Figure 2. Genetic variations occurring in long-term replication of genome-length HCV RNAs. (A) Genetic variations in the 5’-terminus-
NS2 regions. The left vertical line indicates the mean numbers of base substitutions detected per cDNA clone, by comparison with ON/C-5B/QR KE,SR
RNA [21]. The right vertical line indicates the mean numbers of aa substitutions in the Core-NS2 regions deduced per cDNA clone, by comparison
with the original aa sequences deduced from ON/C-5B/QR, KE, SR RNA [21]. (B) Genetic variations in the NS3-NS5B regions. The mean numbers of

base substitutions and aa substitutions are indicated as shown in (A).
doi:10.1371/journal.pone.0091156.9002

increased in a time-dependent manner (Fig. 2A and 2B). The
numbers of deduced aa substitutions in HCV ORFs correlated
well with the numbers of base substitutions of genome-length
HCV RNAs (Fig. 2A and 2B). These base substitutions were
considered mutations that occurred during the intracellular
replication of genome-length HCV RINA. Based on the results
after 2 or 4 years in culture, we calculated the apparent mutation
rates of genome-length HCV RNAs in these cell lines. For this
analysis, genome-length HCV RNA was divided into three parts:
the 5'-terminus-EMCV IRES regions (partly essential for RNA
replication), the Core-NS2 regions (nonessential for RNA replica-
tion), and the NS3-NS5B regions (essential for RNA replication).
The results revealed that the mutation rates (base substitutions/
site/year) in the three distinct regions calculated from the data of
the 2-year culture were about the same as the mutation rates
calculated from the data of the 4-year culture (Fig. 3). These results
suggest that genetic variations of HCV have occurred at the same
speed for four years in Li23-derived genome-length HCV RNA
replicating cells. Furthermore, we noticed that the mutation rates
in the NS3-NS5B regions (2.7-4.0 x 10 %) were lower than those in
the 5'-terminus-EMCV IRES regions (4.1-6.9x107%) and the
Core-NS2 regions (5.3-9.1x107?) (Fig. 3). Moreover, we exam-
ined the numbers of synonymous (dS) and nonsynonymous (dN)
mutations with transition (T's) or transversion (Tv) in two divided
regions (Core-NS2 and NS3-NS5B). The results are summarized
in Table 1. The dN/dS ratio in the Core-NS2 and NS3-NS5B
regions were 1.55 to 3.00 and 0.45 to 1.06, respectively. These
values imply the positive selection in Core-NS2 regions and the
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purifying (stabilizing) selection in NS3-NS5B regions except
OL11(2Y) and OL8(4Y) cells. Since the dN/dS ratios in NS3-
NS5B regions of OL11(2Y) and OL8(4Y) cells were 1.06 and 1.03,
respectively, we can estimate that neutral selection acted in these
cells. In addition, the Ts/Tv ratios in the Core-NS2 and NS3-5B
regions were 3.50 to 7.21 and 3.58 to 10.08, respectively. These
results showed a tendency similar to that found in a previous study
[20] using HuH-7-derived genome-length HCV RNA-replicating
cells, suggesting that the NS3-NS5B regions, which are essential
for RNA replication, are evolutionally limited. Together these
results indicate that HCV can mutate at the same level in both
HuH-7-derived cells and Li23-derived cells.

Characterization of aa substitutions in HCV ORFs during
long-term cell culture

We next characterized aa substitutions in HCV ORFs that
occurred during 4 vyears in culture of OL(0Y), OLS8(0Y),
OL11(0Y), and OL14(0Y) cells. The conserved aa substitutions
(mutated in all 10 clones sequenced in the cases of OL2Y) or
OL(4Y) cells and mutated in all 3 clones sequenced in the cases of
OL8(2Y), OL8(4Y), OL11(2Y), OLI11(#Y), OLI14(2Y), or
OL14(4Y) cells) are summarized in Table 2 (Core-p7 regions)
and Table 3 (NS2-NS5B regions). Among the many aa
substitutions, only 19 were the same as those detected in the 2-
year culture of one of five kinds of HuH-7-derived genome-length
HCV RNA (O strain of genotype 1b)-replicating cell lines [20]
(Tables 2 and 3). In addition, 17 aa were substituted to the type of
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Figure 3. Mutation rates of genome-length HCV RNAs in long-
term cell culture. The mutation rates of three regions (5’-terminus-
EMCV-IRES, Core-NS2, and NS3-NS5B) of genome-length HCV RNAs (OL,
OL8, OL11, and OL14) were calculated using the sequence data
obtained from 2- or 4-year cell culture. The vertical line indicates the
means of the mutation rates calculated using the nucleotide sequences
of 10 clones (OL) or 3 clones (OL8, OL11, or OL14) of genome-length
HCV RNAs, by comparison with the original sequence (ON/C-5B/
QR,KE,SR RNA) [21].

doi:10.1371/journal.pone.0091156.g003

JFH-1 strain (genotype 2a: accession number AB237837) (Tables 2
and 3). We noticed that 12 aa substitutions were commonly
detected in at least two different cell lines (Tables 2 and 3). The
remaining 338 conserved aa substitutions were independently
caused in each of the Li23-derived genome-length HCV RNA-
replicating cell lines (Tables 2 and 3). However, from these results,
we cannot conclude it whether genetic variations of HCV occur in
a cell-line-specific manner or in a random manner.

Evolutionary Dynamics and Variations of HCV

Genetic deletions were characterized in the first half of

genome-length HCV RNAs during long-term cell culture
Recently, Pacini et al. demonstrated that naturally occurring
HCV subgenomic RNAs, mostly lacking the El or E2 region,
were capable of autonomous replication and could be packaged
and secreted in viral particles [29]. In the present cell-based study
also, we detected several conserved deletions within genome-
length HCV RNAs, although a previous study using HuH-7-
derived cell lines did not reveal any conserved deletions [20]. As
shown in Figure 4, all deletions were located in the first half of
genome-length HCV RNA. In OL8(2Y) and OL8(4Y) cells, a
conserved 51 nucleotides (nts) deletion in frame was detected,
resulting in a 17 aa deletion (aa 686-702 in the E2). In OL14(2Y)
and OL14(4Y) cells also, two kinds of conserved 3 nts deletion in
frame were detected, resulting in a 1 aa deletion in cach (aa 414 in
the E2 and aa 847 in the NS2). Furthermore, a conserved 105 nts
deletion in frame was observed in OL14(4Y) cells, resulting in a 35
aa deletion (aa 725-746 in the E2 and aa 747-759 in the NS2). In
addition, 26 nts (nt 1248-1273) located between the Neg® gene and
IRES was conservatively deleted in OL11(2Y) and OL11(4Y) cells.
These results suggest that nonessential regions for RINA replication
are deleted during long-term culture of ILi23-derived cells.
However, such deletion was not caused in the OL cell series.

Genetic diversity of genome-length HCY RNA arising
during long-term cell culture

Based on the sequence data of all clones obtained after 0-year,
2-year, and 4-year culture, we examined the genetic diversities of
genome-length HCV RNAs by the construction of phylogenetic
trees. The results revealed that the genetic diversities of genome-
length HCV RNAs were clearly expanded at both the nucleotide
(Fig. 5) and aa (Fig. S2) sequence levels in the 5'-terminus-NS2
regions and the NS3-NS5B regions, and that the 10 clones derived
from OL cell series and 3 clones derived from each other cell series

~were clustered and located at similar genetic distances from the

origin (ON/C-2 or O/3-5B/QR,KE,SR for the nucleotide
sequence level and O/C-2 or O/3-5B/QR,KE,SR for the aa
sequence level [21]) (Fig. 5 and Fig. S2).

We next compared the nucleotide sequences among 10
independent OL(4Y) clones obtained after 4-year cell culture. In

Table 1. Base substitutions occurring in genome-length HCV RNAs during long-term cell culture.

OL14(2Y) 11.0%1.0 293*47

29.7%25 383%23

2.7%29
Sl et i 131i12
143x06

Full-length
HCV RNA
series Ts Tv dN/dS
CNS2  NS3-58 C-NS2  NS3-5B CNS2  NS3-5B C-NS2  NS3-5B CNS2  NS3-5B
OL2Y) 212214 115%14 9115  293%20 3.1%14 9015 - 69
OLB(2Y)  343x49 143¥12 12321 237225 57%12

OL8(4Y) 357%1.2 123+06
OLI@Y) 667249 | 300256 420836 163£29  67+15 43106
0OL14(4Y) 34.3%15 23.7%+1.2 273*35  473%29 103+12  5.0%0

Average numbers of base substitutions per cDNA clone are shown.
Ts: Transition; Tv: Transversion; dN: Nonsynonymous; dS: Synonymous.
doi:10.1371/journal.pone.0091156.t001
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Base substitutions were counted by comparison with the sequence of genome-length HCV RNA (ON/C-5B/QRKE,SE [20]).
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the 5'-terminus-NS2 regions and the NS3-NS5B regions derived
from OL{#Y) cells, 0.38-1.28% and 0.22-0.56% differences in
nucleotide sequences were observed, respectively. These results
suggest that the quasispecies nature of genome-length HCV RNA
was acquired steadily over long-term intracellular RNA replica-
tion.

Classification of mutations occurred in genome-length

HCV RNAs during long-term cell culture

We next examined the mutation patterns occurring in genome-
length HCV RNAs. The results revealed that U to C and A to G
transition mutations were the most and second-most frequent
mutations in total, although three cases (OL8(2Y), OL8(4Y), and
OL14(4Y)) showed the opposite result (Table 4). High frequencies
of U to C and A to G mutations were also observed in a previous
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Table 2. Conservative aa substitutions occurring during long-term replication of genome-length HCV RNAs (1).
oL oLs oL11 oL14
Region g :
Core V46A T52A K10R*® TS (1307) S53P K10R*® ~K12N°
(1~191) L133F° G146R  Q20R V31A T1255 L133S ‘K23M | E54G
N163D L1855 W76R E89VP M134T L139P° S56P 165V
' Lo1P NS A150T _N163T*® A180V
E159V N163T*»
‘ P170A ' e ;
E1 Y201H Y214C C207Y V230A D206G V240L V203! C226R°
(192~383) D218T = L246P - C281Y | V284A A241T $251G* £ 5251G2 Y276H
F271S 1287N L286P F293L 5283P V284G 13085 A343V*
Y298HS 3065 52041 V313A°  C304R M318V°  A380S
W320R L332P (M318V)? M323L V365A L377F
L359F T320A . L338F -
Q342R V344G
‘A351P s363P
W368R F378L
B2 R386C  M14T  R386H N395D  S408P  R42G 1wy 1414A
(384~746) S450P M456T K410E N417D L427P (G436E) S419R 14227
E464A°  N532G  N428D (462V) Faa7L  (S44%P)  R4S3G - D520G
N556S KS96E 1462A D481E Sa49L F465L K562E T563M
R614G ME31T  Y507H® G5235  (Q467H) V514G CS6AW  Tesos®
E650G L692P L537P" N5485°¢ E533G C569R D698G V699A
VIR 2P 1561 E591G N577T¢ (L603M) A725-746
S668P 167412 V609! D610G
- A686-702 V709A - Y611IC W616R
W736R N623S S663G
o - Fe79L V710l
V712A L721P?
L : , V731A [ ,
p7 E749K G764S S767P (L797) N750D L766F (L748P) A747-759
(747~809) L769P ' ; L799P ‘ FI71L 1778V
2Conservative aa substitutions detected in at least two of four cell line series.
bConservative aa substitutions detected in HuH-7-derived cell line series (O, OA, OB, OD, or OE) used in the previous study [20].
“Conservative aa substitutions that became the same aa as the JFH-1 strain.
Conservative aa substitutions detected after 2-year and 4-year cultures are shown by bold letters.
Conservative aa substitutions detected only after 2-year culture are shown within parentheses.
doi:10.1371/journal.pone.0091156.t002

study using HuH-7-derived HCV replicon- or genome-length
HCV RNA-replicating cell lines [19,20]. The rarest mutation was
C to G transversion in 2-year and 4-year cultures (Table 4). This
result was the same as in a previous report using HuH-7-derived
cell systems [20]. Since the frequency of U to C and A to G
mutations was two or three times higher than that of C to U and G
to A mutations, the GC content of HCV RNA increased
significantly in a time-dependent manner in both the 5'-
terminus-NS2 regions (Fig. 6A) and the NS3-NS5B regions
(Fig. 6B). The increase in GC content of HCV RNA was observed
in all Li23-derived cells after 2-year or 4-year culture. In the 5'-
terminus-NS2 regions of HCV RNA, a remarkable (more than
1%) increase in GC content was found after the 4-year culture of
all the cells except OL14(0Y) cells (Fig. 6A).

The time-dependent increase in the GC content of the HCV
RNA may gradually change to an energetically stable form during
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RNA replication. We assumed that the increase in GC content is
due to an increase in G- and C-ending codons, except for AGG
and UUG codons, for efficient expression in human cells, so-called
codon optimization [30], and we examined this possibility. The
results in the NS3-NS5B regions revealed the time-dependent
increase of G- and C-ending codons, except for AGG and UUG
codons, in all four cell series (Table 5). However, this phenomenon
was not remarkable in the Core-NS2 regions (Table 5). These
results suggest that codon usage in the NS3-NS5B regions adapts
to efficient translation in the human cells in a time-dependent
manner. Further long-term cell cultures will clarify this point.

Usefulness of long-term cultured genome-length HCV
RNA-replicating cells as a source of resistant HCV for anti-
HCV agents

As described above, we demonstrated that genetic mutations
and the diversity of HCV RNA expanded during long-term
culture of genome-length HCV RNA-replicating cells. From these
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Table 3. Conservative aa substitutions occurring during long-term replication of genome-length HCV RNAs (1i).
oL oLs oL11 oL14
Region . , : - , P ‘
NS2 Y835H F8g6LP ms14i 1824V W845R V853A F8235 W844R
(810~1026) L8925 L | LaoF R852G D871G T877A Q8a7H Y8484
A855T Q903R™* 1885T (Pg98L) Q903R>* 19837
K927R E1019G  Q9O3R* Vo13A
19245
NS3 V1081A E1202A P11228 V1415l S1173L . M1205V M1268V P1290H
(1027~1657) ' T1280A (na12v) D1581G R1596K
: F1501Y° QI606R  AT64TTS
F1644L
Ns4A - QI70R -
(1658~1711) '
Ns4B s1827T¢ V1880A° n7ewV QI1804R  AI743V  S1827A
(1712~1972) P1908L L1956M Q1955R V1906A
NSSA L2003F  H2057R  R1978K DI979E  K2050R F2099Y° L2125V D2220G6
(1973~2419) $2246P 122525 K1998R $2079Y 122171 12274V F2281L%¢ D2292E>°
L T2278A ‘F2281L°¢ K2212RC  D2220G°  K2277R  52283P° F2352L S2355T
$2283P* D2292E*° E2263G E2265V K2320R T23365° 52373P D2374N
© K2320R°  52338P V2270A K2280D  T2351A - F23525 A28 G239R
$2355P P2369H Y2293H D2305N W2405R%° - $2401N W2405R>®
- 's2384P ‘M2388T  S2342P° L2347R - ' C2418R"
G2403R $2409R F2352V T2364A
' ' D2377G". ~ s2380T
D2381G 52387P°
 W2405R**  S2406A
E2410K
NS5B - K2470R D2771N° $2975G¢ 13004V K2493R T2549A A2444T H2539R
(2420~3010) 12853l Q2933R K2689R Q2728R V2918l
“Conservative aa substitutions detected in at least two of four cell line series.
bConservative aa substitutions detected in HuH-7-derived cell line series (O, OA, OB, OD, or OF) used in the previous study [20].
“Conservative aa substitutions that became the same aa as JFH-1strain.
Conservative aa substitutions detected after 2-year and 4-year cultures are shown by bold letters.
Conservative aa substitutions detected only after 2-year culture are shown in parentheses.
doi:10.1371/journal.pone.0091156.t003

results, we assumed that these HCV populations that mimic the
state of long-term persistent infection become the source of
resistant HCV for anti-HCV agents. To clarify this point, we
examined the effect of telaprevir, an inhibitor of HCV NS3-4A
protease, which is the first directly acting antiviral reagent to be
used for the treatment of HCV genotype 1, using 4-year cultured
cell lines [31]. To know the effective concentration area, we first
evaluated the anti-HCV activity of telaprevir using our previously
developed HCV reporter assay systems (HuH-7-derived OR6 [27]
and Li23-derived ORLS8 [21]). The results revealed that 50%
effective concentration (ECsg) values were 0.17 pM and 0.14 pM
in the OR6 and ORLS assay systemas, respectively, indicating that
telaprevir exhibited strong anti-HCV activities in our HCV cell
culture systems (data not shown). In reference to these ECs,
values, we next examined the anti-HCV activity of telaprevir at
0.2 and 0.4 uM for 3 days on OL{4Y), OL8(4Y), OL11(4Y), and
OL14(4Y) cells. OL(0Y) cells were also used as a control.
Telaprevir at 0.2 and 0.4 pM inhibited approximately 60% and
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Original  CUA CCG GCU CUG UCC ACU +esessssssaseacs UAC CUG UAC GGU GUG GGG
3933 4045
oLg(2yady) CUACCGGCUCUG A(3994-4044, 51 nls) UAC GGU GUG GGG
L P A L A(686-702, 17 aa) Y G V G
685 703
. HEE gz 1280
Original Neo® UGA’ ....... GCCGCCU UCUA eeernerereens AAUC GUUUUCC »+ereersarasssses
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Figure 4. Genetic deletions occurred in the first half of genome-length HCV RNAs during the long-term cell culture. The conservative
deleted portions in the genome-length HCV RNAs derived from OL8(2Y), OL8(4Y), OL11(2Y), OL11(4Y), OL14(2Y), or OL14(4Y) cells were shown by

boxes. The original sequence was from ON/C-5B/QR,KE,SR RNA [21].
doi:10.1371/journal.pone.0091156.g004

80%, respectively, of HCV RNA replication on OL(0Y) cells, as
expected from the results of the reporter assay, and that the anti-
HCV activities of telaprevir on OL(4Y), OL11(4Y), and OL14(4Y)
cells were similar to that on OL(0Y) cells (Fig. 7A). Unexpectedly,
however, HCV RNA replication on OL8(4Y) cells was highly
sensitive to telaprevir. Approximately 97% of HCV RNA
replication was inhibited by 0.2 uM of telaprevir (Fig. 7A). These
results suggest that HCV mutations that occur during long-term
cell culture do not control the anti-HCV activity of telaprevir.
Next we examined the possibility that long-term cultured cells can
become the source of telaprevir-resistant HCV. First, OL(0Y) and
OL(4Y) cells were treated with or without 0.4 pM of telaprevir (3
times at 6-day intervals) and 0.8 pM of telaprevir (3 times at 6-day
intervals) in the presence of G418. The growth of the cells treated
with telaprevir first slowed but then recovered. In this stage, we
checked the anti-HCV activity of telaprevir at 0.2 uM for 3 days
on telaprevir-treated OL(0Y) and OL(4Y) cells (designated
OLOY)T and OL#4Y)T cells, respectively) with untreated
OL(0Y) and OL@4Y) cells. The results clearly indicated that
OLOY)T and OLMAY)T cells completely converted telaprevir-
sensitive phenotypes into telaprevir-resistant phenotypes (Fig. 7B).
It is noteworthy that telaprevir-resistant OL(4Y)T cells were
provided without a decrease in the level of HCV RNA replication.
These results suggest that long-term cultured OL(4Y) cells may
casily convert the phenotypes against anti-HCV drugs such as
telaprevir.

Discussion

In the present study, using Li23-derived cells unlike HuH-7, we
characterized the genetic evolution and dynamics of HCV in the
long-term culture of four kinds of genome-length HCV RNA-
replicating cells, and demonstrated that genetic mutations of HCV
accumulated and the genetic diversity of HCV expanded in a
time-dependent manner. The GC content of HCV RINA was also
significantly increased in a time-dependent manner. These
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phenomena, including the increased mutation rates, were consis-
tent with those observed in the previous study using HuH-7-
derived cell culture systems [19,20]. However, we detected several
in-frame deletions in the structural regions, suggesting that the
environment maintaining RNA genomic stability differs between
Li23 and HuH-7 cells. Furthermore, we observed for the first time
that GC content in nonstructural regions increased for codon
optimization in human cells. Moreover, we demonstrated that the
long-term cultured genome-length HCV RNA-replicating cells
were useful as a library source for the isolation or characterization
of resistant HCVs against anti-HCV agents.

Using Li23-derived cell culture systems, we observed that the
mutation rates of HCV RNAs were 4.0-9.0x107% and 2.7-
4.0x107? base substitutions/site/year in 5’-terminus-NS2 regions
and NS3-NS5B regions, respectively. These values were 2.1-6.4
times and 1.4-2.9 times higher than those (1.4~1.9x107% base
substitutions/site/year) previously obtained in chimpanzees
[15,16] and in a patient [14] with chronic hepatitis C. Since we
previously found that the mutation rates of genome-length HCV
RNAs were 4.4-7.4x1072 and 2.5-3.7x 10~ base/substitutions/
site/year in 5'-terminus-NS2 regions and NS3-NS5B regions,
respectively, using HuH-7-derived cell culture systems [21], most
of the mutation rates were proved not to change, regardless of the
cell type. Since the selective pressures of the humoral immune
responses [17] targeting the envelope proteins and cellular
immune responses [18] targeting all HCV proteins function
vive, the mutation rates obtained using the cell culture systems
without the immunological pressure would be reasonable values as
a potential mutation rate of HCV in RNA replication.

Thus far, many studies using the HCV replicon system,
including the whole-virus system of JFH-1 strain HCV, have
clarified the aa positions that are essential for the efficient HCV
reproduction [32-34]. On the basis of those reports, we made lists
of functional aas in HCV genotype 1 (partly genotype 2a) (Tables
S1 and S2) and then checked whether the position of each
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of ON/C-5B/QR,KE,SR RNA [21].
doi:10.1371/journal.pone.0091156.g005

functional aa was the same as the position of the aa substitution
detected in this study. This investigation revealed that most of the
functional aas were conserved during the 4-year culture of
genome-length HCV RNA-replicating cells, suggesting that the
basic HCV RNA replication mechanism does not change during
long-term cell culture. However, as we observed several aa
substitutions in the Core from OLI1 series, the function of the
Clore may be lost in long-term-cultured OLI11 cells, although the
Core is not essential for RNA replication.

Although our report is the only one to conduct genetic variation
and diversity analyses of HCV during the long-term HCV RNA
replication of genotype 1b in cell culture, several similar reports
use long-term HCV RNA (JFH-1 strain of genotype 2a)-
replicating HuH-7-derived cells [35—41]. In those studies, many
adaptive mutations were found as the result of long-term persistent
HCV reproduction. Although it is a bit complicated to decide the
corresponding aa positions exactly, as the O strain and JFH-1
strain belong to different genotypes, we examined whether the
substituted aas detected in this study were found in those adaptive
mutations obtained from reports using the JFH-1 strain. We
noticed that only I1414T substituted between 2- and 4-year cultures
of OL cells was the same aa substitution as the JFH-1 strain (Table
S3). It is unlikely that this substitution functions as an adaptive
mutation for RNA replication because the HCV RNA level
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decreased between 2- and 4-year cultures (Fig. 1 and [26]). It is
also unlikely that this substitution increases virus production
because virus particles were not produced from the cells cultured
for 2 or 4 years (Fig. S1). However, we can exclude the possibility
that other aa substitutions detected at the corresponding positions
to the JFH-1 strain are adaptive mutations.

In our previous study using HuH-7-derived cell culture systems,
we noticed that none of the aa substitutions were detected in the
N-terminal half (242 aa of aa 1976 to 2217) of the NS5A after 2-
year cultures, suggesting that this region would be the most critical
for maintaining RNA replication. However, we detected many aa
substitutions in this region in all Li23-derived cell lines after 2-year
or 4-year cultures (Table 3). These were the following aa
substitutions: L2003F and H2057R in OL series; R1978K,
DI1979E, KI1998R, 82079Y, and K2212R in OLS8 series;
K2050R, F2099Y, and T2217I in OLI1 series; L2125V in
OL14 series. These results suggest that the N-terminal half of
NS5A also possesses further variability to allow a better
environment for HCV RNA reproduction. Another interesting
feature we noticed is that several aa substitutions were spontane-
ously detected in the interferon (IFN) sensitivity determining
region (ISDR) [42] (aa 2209-2248) and in the IFN/Ribavirin
(RBV) resistance-determining region (IRRDR) [43] (aa 2334—
2379) of NS5A in the cells without IFN or RBV treatment. In
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Table 4. Base substitution patterns occurred in genome-length HCV RNAs during the long-term cell culture.
Average numbers of base substitutions per cDNA clone

: ~ HuH-7-
Base  Sum ' derived
substitution oL oL oL8 oL8 oL oL oL14 oL14 OL~O0L14 OoL~0L14 0, OA, OB,

OD&OE
pattern 2y (4Y) @9 @ay) (2Y) @) (2Y) @Y @y 4y @n*
Transition '
U=C 460 799 387 693 310 74.7 327 510 371468 687%126 321%35
A =G 250 394 393 77.0 26.0 713 293 57.7 29.9+6.5 61.4x16.7 3052622
CoU 133 227 147 270 153 327 163 297 149+13 280+42 113222
G —A 87 155 107 200 10.3 19.0 1.7 243 10413 19.7+36 105%4.0
Transversion e Ak o A
C—A 6.1 9.1 9.0 97 13 6.3 40 33 51%+33 7129 1.7£1.1
UG 22 65 10 60 27 70 10 67 17%09 6604 25213
AU 14 1.8 47 13.0 23 8.0 27 27 28414 6452 22+14
UsA 18 3500 a3 43 sy 00 7 b sy eibne o setagh o 0ga3
A—C 39 57 3.0 37 1.0 47 3.0 43 27+12 46+0.8 3.9+08
G-U 12 22 13 23 13 43 33 33 18210 3010 1906
G —C 33 4.1 1.0 1.7 13 23 1.0 1.0 1711 23*13 2416
€6 03 ma D43 Ho . 00 07 . 20 . 07%04 . dyma. o 15413
Base substitutions were counted by the comparison with the sequence of genome-length HCV RNA (ON/C-5B/QR,KE,SR [20]).
*Data from the previous study [20].
doi:10.1371/journal.pone.0091156.t004
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year or 4-year cell cultures.
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Table 5. Contribution degrees of the G- and C-ending codons except AGG and UUG codons in the GC content increase during 2-

C-Ns2
oL e oL o ous

2 culture 9.3%/24.0%* (39%) 730277 26%) 437206 @1%) 30074 7%

4Y culture 9.8/38.1 (26%) 6.7/49.8 (13%) 17.7/54.7 (32%) 50243 (21%)

NS3-58

- oL ,  ois oL oL14

2Y culture 2.1/9.0 (23%) 4.0/12.7 (31%) 0/7.9 (0%) 3.3/6.7 (49%)

4y culture 125/209 (42%) - 137/320 (43%) | 6.7/25.8 (24%) 16.0/18.0 (89%)

**The increased numbers of G and C per cDNA clone.
doi:10.1371/journal.pone.0091156.t005

ISDR, K2212R (OL8 secries), T22171 (OL11 series), D2220G
(OL8 and OL14 series), and S2246P (OL series) were detected.
Furthermore, in IRRDR, T2336S (OLI11 series), S2338P (OL
series), S2342P (OLS8 series), L2347R (OLS8 series), T2351A (OL11
series), F2352V (OL8 series), F2352S (OLI11 series), F2352L
(OL14 series), S2355P (OL series), S2355T (OL14 series), T2364A
(OLS8 series), P2369H (OL series), S2373P (OL14 series), D2374N
(OL14 series), and D2377G (OLS8 series) were detected (Table 3).
These aa substitutions except for D2220G also appeared in a

>

*The increased numbers of G- and C-ending codons except AGG and UUG codons per ¢cDNA clone.

seemingly random manner, although aa 2352 and 2355 were hot
spots for aa substitutions in the Li23-derived cell culture system
but not in the HuH-7-derived cell culture system [20]. These
results suggest that the sensitivity to IFIN or RBV might change
during long-term cell culture, although it has not yet been proved
that variations in ISDR or IRRDR may change the sensitivity to
IFN or RBV.

When we explored this possibility, we newly noticed that
L2003F (L31F in NS5A) was detected as a conservative aa in
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Figure 7. Sensitivity to telaprevir of the 4-year cultured genome-length HCV RNA-replicating cells. (A) Telaprevir sensitivities on
genome-length HCV RNA replication in OL(4Y), OL8(4Y), OL11(4Y), and OL14(4Y) cells. OL(0Y) cells were used as a control. The cells were treated with
telaprevir for 72 h, and then the levels of intracellular genome-length HCV RNA were quantified by LightCycler PCR. (B) Telaprevir-treated OL(0Y) and
OL(4Y) cells (designated as OL(0Y)T and OL(4Y)T, respectively) became telaprevir-resistant easily. Telaprevir treatment and quantitative RT-PCR were

preformed as shown in (A).
doi:10.1371/journal.pone.0091156.g007
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OL(2Y) and OL(4Y) cells. F in aa 2003 has been reported as an aa
showing low-level resistance to daclatasvir (BMS-790052), an
NS5A inhibitor that will soon serve as a clinical cure [44].
Furthermore, V1081A (V55A in NS3) was also detected as a
conservative aa in OL(4Y) cells. A in aa 1081 has been reported as
an aa showing low-level resistance to boceprevir, an NS3-4A
serine protease inhibitor that was approved as a new direct-acting
antiviral drug [45]. These facts indicate that clones resistant to
anti-HCV agents emerge naturally without treatment. Since
V1081A and L2003F were detected in all HCV clones derived
from OL{4Y) cells, these aa substitutions may possess some
advantage for cell proliferation. Furthermore, as a minor
population, a larger number of resistant HCV clones may emerge
from such a long-term cell culture. Although neither daclatasvir
nor boceprevir was available in this study, we demonstrated that
telaprevir-treated OL(4Y) cells completely and easily converted a
telaprevir-sensitive phenotype into a telaprevir-resistant phenotype
without a decrease in the level of HCV RNA replication,
suggesting that telaprevir-resistant HCV clones rapidly became
dominant populations in the telaprevir-treated OL(4Y) cells.

As well as VI081A and L2003F, we noticed for the first time
that D2292E (D320E in NS5A) appeared in OL(2Y), OL(4Y),
OL14(2Y), and OL14(4Y) cells as a conservative aa substitution,
although our previous study using HulH-7-derived cells detected
D2292E as a conservative aa substitution after 2-year cultures of
genome-length HCV RNA-replicating OB and OE cells [20]. It
has been reported that D2292E is an aa substitution that causes
resistance to cyclosporine (CsA) and other cyclophilin inhibitors,
including NIM811 and DEB025 [46,47]. These facts also indicate
that the HCV species possessing D2292E substitution can become
the main species naturally in cultured cells without CsA or other
treatments.

This study demonstrated that a single genome-length HCV
RNA could exhibit a remarkable diversity after 4 years in cell
culture with RINA replication. Our results, together with previous
results, suggest that such diversity of HCV obtained by long-term
cell culture may be useful not only for understanding the genetic
variations and diversity of HCV but also for the examination of
the resistant spectrum of anti-HCV agents.

Supporting Information

Figure S1 No infectious virus production from long-
term cultured genome-length HCV RNA-replicating
cells. HCV infection to RSc (1x10% and ORL8c (5x10%) cells
was performed using the supernatant (each 1 ml after filtering
through a 0.20-pm filter [Kurabo, Osaka, Japan]) of OL(0Y),
OL#4Y), OL8(4Y), OL11(4Y), or OL14(4Y) cells as an inoculum,
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Adenosine Kinase Is a Key Determinant for the
Anti-HCV Activity of Ribavirin

Kyoko Mori," Osamu Hiraoka,” Masanori Tkeda,' Yasuo Ariumi," Akiko Hiramoto,’
Yusuke Wataya,® and Nobuyuki Kato'

Ribavirin (RBV) is often used in conjunction with interferon-based therapy for patients
with chronic hepatitis C. There is a drastic difference in the anti-hepatitis C virus
(HCV) activity of RBV between the HuH-7-derived assay system, ORG, possessing the
RBV-resistant phenotype (50% effective concentration [ECsp]l: >100 pM) and the
recently discovered Li23-derived assay system, ORLS, possessing the RBV-sensitive phe-
notype (ECso: 8 pM; clinically achievable concentration). This is because the anti-HCV
activity of RBV was mediated by the inhibition of inosine monophosphate dehydrogen-
ase in RBV-sensitive ORLS cells harboring HCV RNA. By means of comparative analy-
ses using RBV-resistant ORG cells and RBV-sensitive ORL8 cells, we tried to identify
host factor(s) determining the anti-HCV activity of RBV. We found that the expression
of adenosine kinase (ADK) in ORLS cells was significantly higher than that in RBV-re-
sistant ORG cells harboring HCV RNA. Ectopic ADK expression in OR6 cells converted
them from an RBV-resistant to an RBV-sensitive phenotype, and inhibition of ADK
abolished the activity of RBV. We showed that the differential ADK expression between
ORLS8 and ORG cells was not the result of genetic polymorphisms in the ADK gene
promoter region and was not mediated by a microRNA control mechanism. We found
that the 5’ untranslated region (UTR) of ADK messenger RNA in ORL8 cells was lon-
ger than that in ORG cells, and that only a long 5° UTR possessed internal ribosome
entry site (IRES) activity. Finally, we demonstrated that the long 5° UTR functioned as
an IRES in primary human hepatocytes. Conclusion: These results indicate that ADK
acts as a determinant for the activity of RBV and provide new insight into the molecular
mechanism underlying differential drug sensitivity. (HeparoLOGY 2013558:1236-1244)

See Editorial on Page 1203

epatitis C virus (HCV) is an enveloped RNA
virus, the genome of which consists of a posi-
tive-stranded 9.6-kilobase (kb) RNA encoding
10 structural and nonstructural (NS) proteins.1 The
combination of pegylated-interferon (Peg-IFN) and
ribavirin  (RBV) was the standard treatment for
patients with chronic hepatitis C (CHC) until last
year, when a new triple-agent combination therapy

using an inhibitor of HCV NS§3-4A protease (i.e., ei-
ther telaprevir or boceprevir), in combination with
Peg-IFN and RBV, was started.” The sustained viro-
logic response (SVR) rate of genotype 1 using this new
therapy is expected to increase from 55% to more
than 70%.> However, there has also been an increase
in side effects by RBV in the triple therapy, including
several severe side effects, such as skin rash by telapre-
vir, ageusia by boceprevir, and advanced anemia by
telaprevir/boceprevir.>*

Abbreviations: Abs, antibodies; ADK, adenosine kinase; 5azaC, 5-azacytidine; CCsp 50% cytotoxic concentration; cDNA, complementary DNA; CHC, chronic
hepatitis C; ECsy, 50% effective concentration; GTE guanosine triphosphate; HCV, hepatitis C virus; HPLC, high-performance liquid chromatography;, IMPDH,
inosine monaphosphate dehydrogenase; IME inosine-5-monophosphate; IRES, internal ribosome entry site; kb, kilobase; mRNA, messenger RNA; NS, nonstructural
protein; nt, nucleotide; ORE open reading frame; 4-PBA, 4-phenylbutyric acid; Peg-IFN, pegylated-interferon; PHHs, primary human heparocytes; RACE, rapid
amplification of cDNA ends; RBY, ribavivin; RL, renilla luciferase; RME RBY 5-monophosphate; RT-PCR, reverse transcription-polymerase chain reaction; siRNA,
small interfering RNA; miRNAs, microRINAs; SNE single-nucleotide polymorphism; SVR, sustained virologic response; UTR, untranslated region.
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The main hurdle to resolving the side-effect profile is
that the anti-HCV mechanism of RBV is not well under-
stood, although several possible mechanisms have been
proposed.>® To date, there has been no cell-culture sys-
tem enabling analysis of the ant-HCV mechanism of
RBV at clinically achievable concentrations (5-14 uM),
because the human hepatoma cell line, HuH-7, which
has been the only cell line available for robust HCV repli-
cation, is not sensitive to RBV.>”® Indeed, we also
observed that the 50% effective concentration (ECs) of
RBV against HCV RNA replication in our developed
HuH-7-derived assay system (ORG), in which the ge-
nome-length HCV RNA (O strain of genotype 1b)
encoding renilla luciferase (RL) replicates efficiently, was
more than 100 pM, and 50% cytotoxic concentration
(CCsp) was also more than 100 pM.>!°

On the other hand, we recently found that a new
human hepatoma cell line, Li23, whose gene expression
profile was distinct from that of HuH-7, enabling effi-
cient HCV RNA replication and persistent HCV pro-
duction, was sensitive to RBV.'%"? Indeed, the ECs,
value of RBV against HCV RNA replication in our
developed Li23-derived assay system (ORLS), which is
comparable to the ORG assay system, was 8.7 pM, and
the CCs value was more than 100 pM."? It was note-
worthy that this ECs value was equivalent to the clini-
cally achievable concentrations of RBV. Therefore, this
finding led us to analyze the anti-HCV mechanism of
RBYV, and, consequently, we found that the anti-HCV
activity of RBV was mediated by the inhibition of ino-
- sine monophosphate dehydrogenase (IMPDH), and
that IMPDH was required for HCV RNA replication. '

From these findings, we anticipated that the compara-
tive analysis of RBV-sensitive ORLS cells and RBV-resist-
ant ORG cells would lead to the identification of host
factor(s) determining the anti-HCV activity of RBV. Here,
we report the finding that adenosine kinase (ADK) is an
essential determinant of the ant-HCV activity of RBV.

Materials and Methods

Cell Cultures. HuH-7- and Li23-derived cells and
PHSCHS cells were maintained as described previ-
ously."" HT17 cells were cultured in Dulbecco’s
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modified Eagle’s medium supplemented with 10% fe-
tal bovine serum. Primary human hepatocytes (PHHs;
PhoenixBio, Higashihiroshima, Japan) were also main-
tained in the medium for the Li23-derived cells.

Reagents. RBV was kindly provided by Yamasa
(Chiba, Japan).

Inosine-5"-monophosphate  (IMP) and nucleoside
triphosphates (cytidine triphosphate, uridine triphos-
phate, adenosine triphosphate, and guanosine triphos-
phate [GTP]) were also purchased from Yamasa. ABT-
702 was purchased from Calbiochem (San Diego,
CA). 5-azacytidine (5azaC) and 4-phenylbutyric acid
(4-PBA) were purchased from Sigma-Aldrich (St
Louis, MO).

Western Blotting Analysis. Preparation of cell
lysates, sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis, and immunoblotting analysis were per-
formed as previously described.'> Polyclonal-ADK
(ab54818; Abcam, Cambridge, MA), monoclonal-
ADK (F-5; Santa Cruz Biotechnology, Santa Cruz,
CA), and f-actin (AC-15; Sigma-Aldrich) antibodies
(Abs) were used.

Reverse-Transcription Polymerase Chain Reac-
tion. Reverse-transcription polymerase chain reaction
(RT-PCR) was performed to detect ADK messenger
RNA (mRNA), as described previously,'* using the
primer sets (ADKF and ADKR; ADK-5-untranslated

region [UTR]-187nts and ADK-5-UTR checkR)
listed in Supporting Table 1.
Quantitative  RT-PCR. Quantitative ~ RT-PCR

analysis for ADK mRNA was performed using a real-
time LightCycler PCR (Roche Diagnostics, Indianapo-
lis, IN), as described previously,'" with the primer sets
(ADKF and ADKR; ADK-5UTR-384nts and
ADK-5"UTR checkR; ADK-5UTR-318nts and ADK-
5’UTR checkR; ADK-5'UTR-187nts and
ADK-5UTR checkR; ADK-5"UTR-125nts and ADK-
5’UTR checkR) listed in Supporting Table 1.

RL Assay. RL assay was performed as described
previously.” Experiments were performed at least in
triplicate.

High-Performance  Liquid  Chromatography
Analysis. Quantitative high-performance liquid chro-
matography (HPLC) analysis was performed using the
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