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apoptotic molecule involved in the TGF-betal-induced
apoptosis (Li et al., 2010a,b).

A number of studies have reported the dramatic role
of aberrantly expressed miRNAs in HCC drug-resistance
mechanisms. Importantly, Tonimaru and colleagues
demonstrated that miR-21 over-expression increases the
interferon (IFN)-alpha/5-fluorouracil (5-FU) drug
resistance of HCC cells, whereas the use of miR-21
inhibitors renders the cells sensitive to the treatment
(Tomimaru et al., 2010). Consequently, a moderated
expression of miR-21 in HCC tissues was associated
with a favorable response to the IFN-alpha/5-FU
combination therapy and a better survival prognosis.
Garofalo and colleagues further demonstrated that miR-
221 and miR-222 are commonly over-expressed in HCC
cells and, by targeting PTEN and TIMP3 tumor
suppressors, induce TNF-related apoptosis-inducing
ligand (TRAIL) resistance and enhance cellular
migration through the activation the AKT pathway and
metalloproteases (Garofalo et al., 2009). In the same
study, the authors showed that the MET oncogene is
implicated in miR-221/222 expression through its action
on the c-Jun transcription factor.

HCC recurrence

Highly active drug-metabolizing pathways and
multi-drug resistance transporter proteins are known to
diminish the efficiency of current chemotherapeutic
treatments. In addition, HCC recurrence after surgical
resection of the primary tumor represents one of the
characteristics leading to the low survival rate associated
with liver cancer. Specific miRNA signatures have been
linked to the increased risk of tumor recurrence and poor
prognosis. The expression profiling of apoptosis-
associated and metastasis-related miRNAs may provide
clues for each patient to predict drug resistance and
invasiveness of HCC that condition the recurrence of
their disease. Fornari and colleagues demonstrated that
miR-199a-3p repression observed in HCC leads to the
over-expression of mTOR and MET, whereas the
experimental restoration of miR-199a-3p reduces the
growth and invasive properties of HCC cells and
increases the apoptosis induced by doxorubicin (Fornari
et al., 2010). Thus, an inverse correlation was revealed
between miR-199a-3p and mTOR, as well as a shorter
time to recurrence after tumor resection, in the patients
with lower miR-199a-3p. Another study showed that low
expression levels of miR-26 are well correlated with a
better response to IFN-based treatment in patients with
HCC but are associated with short survival (Ji et al.,
2009).

The accurate assessment of cancer-related miRNA
expression may predict the risk of relapse and represent
an attractive prognostic tool. In particular, the high
expression of miR-15b is associated with a low risk of
tumor recurrence following surgical resection, as shown
by Chung and colleagues who reported a negative
correlation between miR-15b expression and the
reappearance of HCC (Chung et al., 2010).

Experimentally, targeting miR-15b with antagonists
increased HCC cell proliferation and inhibited TRAIL-
induced apoptosis in vitro, while the miR-15b precursor
transfection decreased proliferation and enhanced
apoptosis by repressing the anti-apoptotic Bcl-w. In
addition to their prognostic significance, modulating the
expression of specific drug resistance-related miRNAs
may clearly represent a valuable method to improve
apoptosis-sensitizing strategies for HCC treatment and
avoid the recurrence of the tumor.

The “miRNA perspective” in liver cancer

The discovery of miRNAs has considerably
modified and complexified conventional concepts
regarding gene regulation. Concerning cancer biology,
understanding the molecular mechanisms by which
miRNAs promote carcinogenesis may lead to novel
concepts in the diagnosis and treatment of a large
number of malignancies. In addition to the deregulation
of cancer-related miRNAs observed in HCC, an
association has also been found between miRNA
expression and the clinicopathological outcome of liver
cancer (tumor growth, response to treatment, metastatic
potential, and recurrence). Therefore, the use of a
miRNA-based classification correlated with the etiology
and the aggressiveness of the tumor could significantly
enhance the molecular diagnosis accuracy of HCC and
its classification, leading to the consideration of more
appropriate therapeutic strategies. In this regard, several
teams have reported particular miRNA expression
profiles that could be considered as valuable HCC
prognostic indicators (Villanueva et al., 2010). Budhu
and collaborators defined a combination of 20 miRNAs
as an HCC metastasis signature and showed that this 20
miRNA-based profile was capable of predicting the
survival and recurrence of HCC in patients with multi-
nodular or single tumors, including those at an early
stage of the disease (Budhu et al., 2008). Remarkably,
the highlighted expression profile showed a similar
accuracy regarding patient prognosis when compared to
the conventional clinical parameters, suggesting the
clinical relevance of this miRNA signature.
Consequently, the profiling of aberrantly expressed
cancer-related miRNAs might establish the basis for the
development of a rational system of classification in
order to refine the diagnosis and the prediction of HCC
evolution.

The potential implication of miRNAs as oncogenes
or tumor suppressors supports the interest paid to cancer-
related miRNAS in the past decade for the development
of new curative approaches. MiRNAs represent relevant
candidates as therapeutic targets, and several strategies
have been reported to amend the altered expression of
cancer-related miRNAs in the liver (Wang et al., 2012).
First, miRNA replacement therapies use short RNA
duplexes that mimic down-regulated miRNAs. On the
other hand, miRNA inhibitors are chemically modified
single-stranded oligonucleotides that antagonize the
miRNAs over-expressed in cancer. In combination with
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the latest developments, which render miRNA delivery
safer and more efficient, the use of RNA interference
(RNALI) therapeutic strategies will pave the way to
innovative perspectives in the clinical management of
HCC. Pertinent studies have already argued that
miRNA-based therapy may represent an attractive
approach to target hepatic primary tumors. For example,
Kota and collaborators showed that a systemic
administration of miR-26a in rodents led to a dramatic
slow-down of HCC progression without notification of
toxicity (Kota et al., 2009). Thus, the delivery of tumor
suppressor miRNAs, which are typically highly
expressed in the liver, but altered in HCC, may provide a
valuable curative approach. However, miRNAs-based
therapeutics are still in an early stage of development
and more work will be required to identify relevant
cancer-related miRNAs and understand the complex
implication of these small non-coding RNAs in early or
late HCC. In addition, as one miRNA can substantially
affect the expression of several down-stream targets,
precautions are necessary to avoid undesirable off-target
effects. Finally, the safety of the reagents used to deliver
miRNA mimics and antagomirs needs to be validated for
future clinical applications.

Conclusion

Increasing evidence has highlighted the frequent
alteration of miRNA expression in liver cancer, as well
as the critical role of these small RNAs in tumorigenesis.
Collectively, the investigative studies performed to date
have resulted in a better understanding of cancer-related
miRNA functions and their role as tumor suppressors
and oncogenes. Given the implication of a large number
of miRNAs in the control of key tumor suppressors and
oncogenes, the deregulation of specific miRNAs has
been shown to greatly influence HCC growth,
invasiveness, treatment response, and liver tumor
curability. From a diagnostic point of view, miRNA
profiling (from hepatic tissues and sera) may be
beneficial, as it offers additional information that could
be used in combination with the conventional methods
available for the clinical assessment of liver cancer. In
addition, a better understanding of the processes leading
to the deregulation of miRNA expression in HCC will
yield further insight into the molecular mechanisms of
tumorigenesis and provide a promising perspective
regarding the development of new curative approaches.
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miR-148a Plays a Pivotal Role in the Liver by
Promoting the Hepatospecific Phenotype and

Suppressing the Invasiveness of
Transformed Cells

Luc Gailhouste," Laura Gomez-Santos,"* Keitaro Hagiwara,' Izuho Hatada,® Noriyuki Kitagawa,*

Kazushi Kawaharada,” Muriel Thirion," Nobuyoshi Kosaka," Ryou-u Takahashi,' Tatsuhiro Shibata,*

Atsushi Miyajima,® and Takahiro Ochiya’

MicroRNAs (miRNAs) are evolutionary conserved small RNAs that post-transcription-
ally regulate the expression of target genes. To date, the role of miRNAs in liver devel-
opment is not fully understood. By using an experimental model that allows the
induced and controlled differentiation of mouse fetal hepatoblasts (MFHs) into mature
hepatocytes, we identified miR-148a as a hepatospecific miRNA highly expressed in
adult liver. The main finding of this study revealed that miR-148a was critical for he-
patic differentiation through the direct targeting of DNA methyltransferase (DNMT) 1,
a major enzyme responsible for epigenetic silencing, thereby allowing the promotion of
the “adult liver” phenotype. It was also confirmed that the reduction of DNMT1 by
RNA interference significantly promoted the expression of the major hepatic bio-
markers. In addition to the essential role of miR-148a in hepatocyte maturation, we
identified its beneficial effect through the repression of hepatocellular carcinoma (HCC)
cell malignancy. miR-148a expression was frequently down-regulated in biopsies of
HCC patients as well as in mouse and human HCC cell lines. Overexpressing miR-148a
led to an enhancement of albumin production and a drastic inhibition of the invasive
properties of HCC cells, whereas miR-148a silencing had the opposite consequences.
Finally, we showed that miR-148a exerted its tumor-suppressive effect by regulating the
c-Met oncogene, regardless of the DNMT1 expression level. Conclusion: miR-148a is
essential for the physiology of the liver because it promotes the hepatospecific pheno-
type and acts as a tumor suppressor. Most important, this report is the first to demon-
strate a functional role for a specific miRNA in liver development through regulation of
the DNMT1 enzyme. (HepaToLoGy 2013558:1153-1165)

icroRNAs (miRNAs) constitute a group of
evolutionary conserved small noncoding
RNA molecules that finely regulate gene
expression by complementary base pairing with the 3’-
untranslated regions (3’-UTRs) of target messenger
RNAs (mRNAs). The past decades have seen an

increasing recognition of the overall significance of
miRNAs in regulating a wide variety of fundamental
biological phenomena and diseases,” including can-
cer.>” The functional significance of miRNAs in cell
specification and vertebrate development has been
recently tackled.® For instance, miR-124 and miR-9,”8
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herin; FBS, fetal bovine serum; G6pc, glucose-G-phosphatase; HBY, hepatitis B virus; HCC, hepatocellular carcinoma; HCV, hepatitis C virus; HGE hepatic
growth factor; MFH, mouse fetal hepatoblas; mRNAs, messenger RNAs; miRNA, microRNA; PAS, periodic acid-Schiffi RT-gPCR, reverse-transcription quantita-
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From the 'Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan; “Metabolomics Unit, CIC bioGUNE, Biz-
kaia, Spain; *Laboratory of Genome Science, Institute for Molecular and Cellular Regulation, Gunma University, Macbashi, Japan; “Division of Cancer Genomics,
National Cancer Center Research Institute, Tokyo, Japan; *DS Pharma Biomedical Co. Lid., Research and Development Division, Osaka, Japan; and CInstitute of

Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan.
Received November 2, 2012; accepted March 18, 2013.

1153

— 163 —




1154  GAILHOUSTE ET AL.

two brain-enriched miRNAs, appear to be essential in
neurogenesis, whereas miR-27b is relevant for myogen-
esis.” To date, little is known regarding the role and
function of miRNAs in liver development. Hand et al.
provided the first link between miRNAs and -hepato-
biliary development by emphasizing the functional role
of miR-30a during biliary morphogenesis in zebra-
fish.'® In humans, miR-122 might be of prime interest
because it represents more than 70% of the total
amount of miRNAs expressed in the adult liver, where
it acts in metabolism regulation and hepatic
homeostasis. "’

During development, epigenetic modifications are
essential for the modulations of tissue-specific gene
expression that promote cell differentiation.'” Epige-
netic silencing includes reversible DNA methylation,
which is primarily orchestrated by DNA methyltrans-
ferases (DNMTs). DNMTI1 represents the major
enzyme responsible for the maintenance of DNA
methylation patterns during replication.13 In contrast,
DNMT3a and DNMT3b have been identified as de
novo methyltransferases, which methylate DNA during
carly development and gametogenesis,"* although
DNMTT1 also possesses de novo methylation activity.
Inactivation of the DNMTT1 enzyme in mice results in
loss of genomic imprinting and leads to early embry-
onic lethality.15 In addition, studies using methylation-
deficient mouse embryos (Dnmtl = Dumt3a”'",
and Dnmt36™'7) have demonstrated that restoring
DNA methylation is essential for development.'®'®
More recently, Sen et al. observed the enrichment of
DNMTT1 protein in epidermal progenitors, where it is
required to maintain proliferative strength and sup-
press differendation.!” Their study also showed that
DNMT1 depletion was associated with the altered
proliferation and transition from progenitors to prema-
ture epidermal cells. In the liver, DNMTT1 expression
is frequently increased in tissues affected by chronic
hepatitis and cirthosis and, more dramatically, in
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hepatocellular carcinoma (HCC), in which DNMT1
augmentation correlates with poor prognosis.'®'”

This study aimed to investigate the potential role of
miRNAs in hepatic development. By taking advantage
of an experimental primary cell-culture model that can
trigger hepatic differentiation, we performed mouse
miRNA microarray analyses and identified 10 miR-
NAs, which were selected for their predicted aptitude
to target DNMT1. Among those miRNAs, miR-148a
showed a strong induction in differentiating liver pro-
genitors. Conversely, DNMT1 expression presented a
rapid decline after stem cell entry into the differentia-
tion process. We reported a correlation between the
elevation of miR-148a and the promotion of the hepa-
tospecific  phenotype through the silencing of
DNMTI1. Because a significant down-regulation of
miR-148a was observed in HCC, the role of miR-
148a in liver cancer was also considered. We demon-
strated the ability of miR-148a to suppress the invasive
properties of transformed hepatic cells by inhibiting c-
Met expression. In line with these findings, miR-148a
was shown to play an essential role in the fate of the
liver by inducing hepatospecific gene expression and
suppressing tumor cell invasion.

Materials and Methods

Mouse Fetal Hepatoblast Model. Mouse fetal hep-
atoblasts (MFHs) were isolated and triggered to differ-
entiate into mature hepatocytes as  previously
described.?® Briefly, the method was based on the
selective harvesting of hepatic parenchymal stem cells
from mouse fetuses (E14.5). After their isolation, fetal
liver tissues were dissociated physically and enzymadi-
cally in the presence of liberase (Liberase TM Research
Grade; Roche Diagnostics, Mannheim, Germany). The
sorting of epithelial cadherin (E-cadherin)-positive pro-
genitors was performed using the biotin anti-CD324
(E-cadherin) antibody (Ab) (eBioscience, Inc., San
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Diego, CA) and the EasySep Mouse Biotin Positive
Selection Kit (STEMCELL Technologies Inc., Vancou-
ver, Bridsh Columbia, Canada). From seeding, MFHs
were maintained in a medium composed of the follow-
ing mixwure: William’s E  Medium, L-glutamine
(2 mM), penicillin (50 IU/mL), and streptomycin (50
pg/mL), all from Gibco (Grand Island, NY), insulin
(5 pg/mL; Sigma-Aldrich, St. Louis, MO), epidermal
growth factor (25 ng/mL; Sigma-Aldrich), and 10%
fetal bovine serum (FBS; HyClone; Thermo Fisher
Scientific, Waltham, MA) supplemented with essential
hepatocyte phenotype-promoting factors, including he-
patic growth factor (HGF; 25 ng/mL; PeproTech Inc.,
Rocky Hill, NJ), oncostatin M (12.5 ng/mL; Sigma-
Aldrich), hydrocortisone 21-hemisuccinate (5 X 1077
M; Sigma-Aldrich), and dexamethasone (1077 M;
Sigma-Aldrich). The medium was replaced daily.

HCC Cell Lines and Human Samples. Mouse
Hepa 1-6 and human HepG2 and Hep3B cells were
purchased from the American Type Culture Collection
(Manassas, VA). Huh-7 cells were from Riken BioRe-
source Center (RIKEN BRC, Ibaraki, Japan). Cells
were maintained in Dulbecco’s modified Eagle’s me-
dium (Gibco) supplemented with penicillin (100 IU/
mL), streptomycin (100 pg/ml), and 10% FBS.
Human samples included 39 pairs of primary HCCs
and their corresponding nontumor tissues. All patients
exhibited chronic liver disease (CLD) related to hepati-
tis B (HBV) or C virus (HCV) infection (n = 18 and
21, respectively). Normal liver samples were collected
from patients who had surgical resection of metastasis
in the liver. Human fetal livers were obrtained from
spontaneously aborted fetuses (see Supporting Table 2
for clinical data).

Additional Methods. miRNA and small interfering
RNA (siRNA) transfection procedures for primary cul-
tures and cell lines, DNA extraction, methylation
assay, immunoblotting, total RNA extraction, miRNA
microarray, miRNA, and mRNA expression analysis by
reverse-transcription  quantitative polymerase chain
reaction (RT-qPCR), miRNA assessment in the serum
of HCC patients, periodic acid-Schiff (PAS) staining,
luciferase reporter assays, apoptotic activity, cell
growth, wound healing, transwell invasion assays, and
statistical tools are described in the Supporting
Materials.

Results

MFH Is an Adequate Model for the Study of
Hepatic Differentiation. To clarify the function of
miRNAs in liver development, we used an in wvitro
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model previously developed by our group based on the
sorting of E-cadherin-positive fetal liver cells, called
MFHs, and their induced differentiation into hepato-
cytes (Fig. 1A). MFHs underwent remarkable changes
in morphology during the maturation-induced process
that resulted in the formation. of pronounced cell
aggregates with cuboidal shape, polarity, and frequent
binucleation (Fig. 1B). Importantly, mature-induced
hepatocytes exhibited prominent glycogen storage abil-
ity. The molecular data were consistent with those
observations and revealed a hepatospecific phenotype
and progressive maturation of MFHs, as evidenced by
the expression of the early (alpha-fetoprotein; Afp),
mid- (albumin; Alb), and late (glucose-6-phosphatase
[G6pc] and tyrosine aminotransferase [Tat]) hepatic
markers (Fig. 1C). In addition, the major cytochrome
P450s (CYPs) were similarly induced (Supporting Fig.
1). Conversely, the mRNA level of cytokeratin 19
(Ck19), which is commonly associated with liver stem
cells and epithelial cells of the biliary tract, decreased
rapidly after the initiation of the maturation process.
Our data also indicate the rapid decline of Dnmtl
expression in association with MFH differentation,
whereas Dnmt3a and Dnmt3b increased progressively
(Fig. 1D).

miR-148a Induction Is Observed in Hepatic Cells
During Mouse Liver Development. To analyze the
expression profile of miRNAs during hepatic differ-
entiation, we performed an miRNA microarray by
using the MFH model at different stages of matura-
tion (Fig. 2A; all the miRNA microarray data are dis-
played in Supporting Table 1). Then, taking
advantage of the combination of the publicly avail-
able search engines, miRNA (miRanda), TargetScan,
and PicTar, we obtained a list of 12 miRNAs that
could putatively target Dnmtl (Table 1). Among
those miRNAs, 10 were significantly expressed in dif-
ferentiating MFHs. A family of three conserved miR-
NAs (miR-148a, miR-148b, and miR-152) was
highlighted as a result of its remarkable expression
pattern during the maturation process of MFHs (Fig.
2B). More explicitly, both microarray and RT-qPCR
analyses revealed that miR-148a and miR-152 were
gradually up-regulated from the MFH to the mature-
induced hepatocyte stage (Fig. 2C). In contrast, miR-
148b stayed unchanged. Obviously, miR-148a exhib-
ited the most significant induction and highest
expression level in mature hepatocytes. Similar pro-
files of expression for these miRNAs were obtained
from fetal liver tissues during mouse development
(Supporting Fig. 2). In addition, Dnmtl expression
was inversely correlated with the level of miR-148a
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Fig. 1. Characterization of the MFH model. (A) Schematic representation of MFH purification and induced differentiation into mature hepato-
cytes after hepatotrophic factor stimulation. (B) Primary cultures of MFHs showing the radical changes undergone by undifferentiated hepatic pro-
genitors to adopt the characteristic morphology of mature hepatocytes with polarity and frequent binucleation (white square). PAS staining
revealed extensive glycogen storage in mature-induced hepatocytes, whereas MFHs were devoid of glycogen. Scale bar, 50 um. Time course
showing mRNA relative expression determined by RT-gPCR of (C) major hepatic markers and (D) Dnmt family members in the MFH model. The
housekeeping gene, Gapdh, was used as an internal control to normalize the amount of complementary DNA.

in both iz vitro and in vive models, whereas Dnmt3a
and Dnmt3b did not correlate. Consequently, it was
hypothesized that miR-148a could play a critical
role in liver development by regulating Dnmtl
expression.

miR-148a Is Down-Regulated in Human and
Rodent HCC Cells. To explore the significance of
miR-148a in the liver, we first compared expression
profiles of miR-148a among mature-induced hepato-
cytes (MFH D8), undifferentiated hepatic stem cells
(MFH D2), and the mouse HCC cell line, Hepa 1-6.
Human Huh-7, HepG2, and Hep3B cells were also
characterized in regard to normal adult and fetal he-
patic tissues. As a result, a dramatic diminution of

miR-148a was observed in both rodent (Fig. 3A) and
human cell lines as well as in fetal livers (Fig. 3B).
Moreover, the reduced expression of miR-148a was
consistent with Dnmt1 augmentation in both species,
arguing for a probable connection between miR-148a
and Dnmtl. Thus, Spearman’s rank correlation analy-
sis showed that expression levels of DNMT1 and
miR-148a in human samples were inversely correlated
(rho: —0.609; P = 0.0034; Fig. 3C). To test the func-
tional relevance of miR-148a down-regulation caused
by DNA methylation, HCC cells were exposed to 5-
Aza-2’-deoxycytidine (5-Aza). We found that demethy-
lation treatment dramatically restored miR-148a
expression in a dose-response manner in both Hepa 1-
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Fig. 2. Identification of miR-148a as a preponderant miRNA during hepatic differentiation. (A) miRNA global expression pattern during the pro-
cess of MFH differentiation into mature hepatocytes. The scale bar encodes the logarithm of relative miRNA expression level. The 2-fold threshold
was set to identify the miRNAs with significant differential expression. Microarray data are shown in Supporting Table 1. (B) Representative
expression of miR-148a, miR-148b, and miR-152 selected for their significant induction during MFH differentiation and their predicted ability to
target Dnmtl. (C) Differential expression of the miR-148a/148b/152 family evaluated by microarray and RT-qPCR. Relative expression levels
determined by RT-qPCR were normalized against the endogenous control, RNUGB.

6 and HepG2 cell lines (Fig. 3D), indicating that a
hypermethylation phenomenon is most likely responsi-
ble for the silencing of miR-148a in liver cancer cells.
To verify this hypothesis, we first analyzed the genomic
DNA sequence spanning of miR-148a and found that
this gene had many CpG-rich regions (CpG islands)
in its promoter. Subsequently, combined bisulfite
restriction analysis (COBRA) was performed to exam-
ine the methylation status of the miR-148a promoter,
which revealed hypermethylation of CpG islands in
the miR-148a promoter in HepG2 cells, compared to
human hepatocytes (Fig. 3E). We
observed that demethylation treatment by 5-Aza dra-
matically decreased the methylation status of the miR-
148a promoter in both human and rodent HCC cell
lines. Although the COBRA method did not reveal
demethylation of the analyzed miR-148a CpG sites
during the maturation process of MFHs (Supporting

normal also

Fig. 3), bisulfite sequencing showed that the average
methylation level of miR-148a was higher in undiffer-
entiated MFHs (17.6% in MFH_D2), compared
to differentiating cells (5.7% in MFH_D4), suggesting
that a hypermethylation mechanism may participate
in the regulation of miR-148a expression during
development.

miR-148a Directly Modulates Dnmtl Expres-
sion. We postulated that Dnmtl inhibiton during
MFH maturation could be the result of its direct target-
ing by miR-148a. To explore this possibility, we first
analyzed the consequences of miR-148a silencing or
overexpression in HCC cell lines. The use of miR-148a
mimics clearly affected Dnmtl expression (Fig. 4A).
Conversely, we observed a significant enhancement of
Dnmtl level after transfection with miR-148a antago-
nists up to 72 hours post-transfection. Dnmtl contains
a 3-UTR element that is partially complementary to
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miR-148a in both rodent and human species (Fig. 4B).
The miRNA prediction databases that we interrogated
identified Dnmtl as a high-scoring predicted target of

miR-148a
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Fig. 3. miR-148a and Dnmil assessment in the liver. (A) The
mouse hepatoma cell line, Hepa 1-6, was used to assess miR-148a
and Dnmtl mRNA levels, compared to undifferentiated hepatic stem
cells (MFH D2) and mature-induced hepatocytes (MFH D8). (B) miR-
148a and human DNMT1 expression were analyzed in the human HCC
cell lines, Huh-7, HepG2, and Hep3B, and compared to a cohort of
13 normal livers as well as five lots of fetal livers. (C) Scatter plots of
Spearman’s correlation coefficient analysis between relative DNMT1
expression level and miR-148a. (D) Relative expression of miR-148a
in Hepa 1-6 and HepG2 cells after 5 days of exposure to the hypome-
thylation agent, 5-Aza at 1, 2.5, and 5 pM. (E) COBRA of miR-148a
promoter in Hepa 1-6 and HepG2 cells treated with or without 5-Aza
for 5 days. Methylation status of the miR-148a promoter was also
assessed in normal human hepatocytes. U, unmethylated; M, methyl-
ated. Statistical significance, compared to controls, was: *P < 0.05
and **P < 0.01 (t test) for RT-gPCR analysis.
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Fig. 4. Characterization of the relationship between miR-148a and DNMT1 in rodent and human models. (A) Relative expression of Dnmtl and liver
markers Afp and Alb, respectively, after experimental modulation of miR-148a in mouse Hepa 1-6 and human HepG2 cell lines. Cells were transfected
using 100 ng of miR-148a mimics (pre-miR-148a) or antagonists (anti-miR-148a). Scramble miRNA mimics or antagonists were used as negative con-
trols. Total RNAs were collected 72 hours post-transfection, and mRNA relative expression levels were determined by RT-qPCR. (B) Dual luciferase assay
on Hepa 1-6 and HepG2 cells cotransfected with miR-148a mimics and the firefly/Renilla luciferase construct containing the mouse Dnmtl or human
DNMT1 3'-UTR. Mutated 3-UTR sequences were used as negative controls, and ratios of firefly/Renilla luciferase activities were determined. Sequences
indicate interaction sites between miR-148a and 3'-UTRs of mouse Dnmtl and human DNMT1. (C) Transfection of Hepa 1-6 and HepG2 cells with siR-
NAs against mouse Dnmtl and human DNMT1. Scramble siRNAs were used as negative controls (SiRNA-ctrl). Total RNAs were used to analyze miR-
148a expression by RT-gPCR 48 hours after transfection. Statistical significance: *P < 0.05; **P < 0.01; ***P < 0.001 (t test).

miR-148a. Simultaneous transfection with miRNA  sequence was performed in Hepa 1-6 cells. In this assay,
mimics and a construct containing the mouse Dnmtl  miR-148a-forced expression decreased luciferase activity
3’-UTR inserted downstream of the luciferase coding by 43.2% * 1.1% (£ < 0.001) from the control value,
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whereas it failed to inhibit reporter activity in cells
transfected with the vector containing a mutated
sequence of the Dnmtl 3’-UTR (Fig. 4B). Comparable
data were obtained using the 3-UTR of human
DNMT1 transfected into the human HCC cell line,
HepG2. Then, to explore the role of DNMT1 in regu-
lating expression of miR-148a, we silenced DNMT1 by
using a siRNA approach in Hepa 1-6 and HepG2 cells.
Both mouse Dnmtl knockdown and human DNMT1
knockdown significantly induced miR-148a expression
(Fig. 4C), reinforcing the idea of a regulatory circuit
between DNMT1 and miR-148a as well as the exis-
tence of epigenetic regulation exerted by DNMT1 on
miR-148a.

miR-148a Enhancement Promotes Hepatospecific
Gene Expression Through Dnmtl Inhibition During
the Induced Differentiation of MFHs Into Mature
Hepatocytes. The influence of miR-148a in hepatic
differentiation was investigated by forcing its expres-
sion in the MFH primary culture model and evaluat-
ing the expression of major liver markers. Cells
transfected with miR-148a mimics exhibited substan-
tial overexpression of miR-148a, in contrast to its nor-
mal expression profile during MFH differentiation
(Fig. 5A). Immunoblotting revealed that miR-148a
overexpression dramatically increased the protein level
of Alb in MFHs (Fig. 5B). The methylation status of
the Alb promoter was also explored, which showed a
progressive demethylation of CpG islands during he-
patic differentiation (Supporting Fig. 3). Both 5-Aza
treatment and miR-148a mimics contributed to the
demethylation of Alb promoter, indicating the possible
regulation of Alb expression by miR-148a through an
epigenetic mechanism involving Dnmtl. RT-qPCR
analysis demonstrated that miR-148a mimics enhanced
the mRNA levels of Alb as well as the other major he-
patic biomarkers, G6pc and Tat, whereas cells trans-
fected by the control showed the standard
differentiation process induced by the hepatotrophic
factors (Fig. 5C). Moreover, miR-148a augmentation
had no effect on Ck19 expression in MFHs, but it
was associated with the increased expression of various
CYPs (Supporting Fig. 4). Remarkably, we found evi-
dence that miR-148a restoration in both mouse Hepa
1-6 and human HepG2 HCC cell lines was signifi-
cantly related with the inhibition of the immature liver
marker, Afp, whereas Alb expression was strongly
enhanced, and wvice versa (Fig. 4A). Last, the forced
expression of miR-148a was correlated with a drastic
repression of Dnmtl in both the HCC (Fig. 4A) and
MFH models (Fig. 5C). Western blotting analysis con-
firmed the negative correlation between miR-148a and

HEPATOLOGY, September 2013

DNMTT1 expression levels (Fig. 5B). Indeed, the trans-
fection of MFHs using miR-148a mimics promoted
the decline of Dnmt1 that is normally observed during
the differentiation process of these cells. To address the
involvement of Dnmtl in the establishment of the he-
patic phenotype through its modulation by miR-148a,
we finally analyzed the effect of Dnmtl knockdown in
the induced differentiation of MFHs. Consistent with
miR-148a overexpression data, Dnmtl inhibition led
to the significant promotion of the major hepatic bio-
markers that we assessed (Fig. 5D). Compared with
MFHs transfected with negative control siRNAs,
mRNA levels of Alb and advanced maturation bio-
markers (GG6pc, Tat, and Cypl7al) appeared to be
globally up-regulated 72 hours after Dnmtl siRNA
transfection.

In summary, these findings implicate Dnmtl in the
mechanisms controlling liver precursor maturation and
indicate that miR-148a promotes the expression of
adult hepatic genes by repressing Dnmtl (Fig. 5E). In
contrast, the occurrence of HCC malignancy may be
associated with the deregulation of miR-148a, whereas
maintenance of this miRNA seems to be essential for
preserving the hepatospecific status of liver cells.

miR-148a Expression Is Frequently Decreased in
the Liver of HCC Patients. We analyzed miR-148a
expression in a cohort of 39 pairs of primary HCCs
related to HBV or HCV infection and their adjacent
nontumor regions. Tissues from normal liver (n = 13)
were used as controls. miR-148a expression was
reduced by more than 5-fold in HCC biopsies, relative
to the normal liver group (median, 0.293 and 1.674,
respectively; P < 0.0001, Mann-Whitney’s U test; Fig.
6A). Interestingly, miR-148a was also inhibited in
peritumoral non-neoplastic tissues, but to a lesser
extent (median, 0.403; P2 < 0.001). We confirmed the
possible correlation between miR-148a inhibition and
advancement of the underlying liver disease by analyz-
ing the expression level of miR-148a between early
(chronic hepatitis) and advanced (precirrhotic/cir-
rhotic) fibrosis in nontumor tissues (Fig. 6B). Expres-
sion of miR-148a was significantly decreased in the
cirthotic samples, compared to the chronic hepatitis
liver group (median, 0.247 and 0.473, respectively;
P <0.0001, Mann-Whitney’s U test). Then, DNMT1
levels between tumors and their adjacent tissues were
evaluated (Fig. 6C). Although DNMT1 expression was
significantly down-regulated in tumors (2= 0.0002,
Wilcoxon’s signed-rank test), statistical analysis did not
reveal significant correlation between DNMT1 and
miR-148a expression in those clinical samples. Next,
we compared the expression of miR-148a between
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expression is repressed, leading to overexpression of Dnmtl and silencing of hepatospecific genes.

tumors and their pair-matched normal tissues (Sup- (2= 0.0268, Wilcoxon’s signed-rank test). In the 21
porting Fig. 5). Of the 18 HBV-related HCC samples, HCV-related HCCs, inhibition of miR-148a was
miR-148a expression was decreased in 15 tumors, rela- observed in 12 HCC samples (2= 0.9308). The value
tive to their adjacent noncancerous hepatic regions of circulating miR-148a as a noninvasive HCC
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recurrence diagnostic marker in blood serum was also
evaluated. Samples were collected in two steps from 11
HCC patients with HCV infection: (1) after surgical
resection of the primary tumor and (2) subsequent to
the diagnosis of HCC recurrence. We observed a dimi-
nution of circulating miR-148a in 8 patients after
HCC recurrence (2= 0.2783, Wilcoxon’s signed-rank
test; Supporting Fig. 6).

The Rescue of miR-148a Suppresses HCC Cell
Migration and Invasion by Indirectly Inhibiting the
Hepatocyte Growth Factor Receptor Omncogene. As
we highlighted the crucial role played by miR-148a in
normal hepatic differentiation, it was of significant in-
terest to consider the possible relationship between
miR-148a deregulation and the promotion of hepato-
cyte transformation. First, the phenotype of Hepa 1-6
cells was characterized after the forced expression of
miR-148a to investigate the effect of this miRNA on
HCC cells. Notably, cell proliferation was not signifi-
cantly altered by miR-148a mimics or antagonists (Fig.
7A), and induction of miR-148a had no effect on cas-
pase activity (Supporting Fig. 7). However, the enforced
expression of miR-148a substantially suppressed the
motility of HCC «cells in a wound-healing assay,
whereas miR-148a agonists enhanced the recolonization
of the wounds (Fig. 7B). In addition, overexpression of
miR-148a remarkably altered the invasive abilities of
Hepa 1-6 cells (51.6% %£10.15% inhibidon;
P <0.001), as revealed by the transwell migration assay
(Fig. 7C). A similar observation was conducted using
the human HCC cell line, Hep3B (data not shown).
To evaluate whether the effect of miR-148a in the

invasion of HCC cells is mediated by DNMTI1 or
another specific gene, functional analyses were per-
formed using siRNA. We decided to focus on DNMT1
and hepatocyte growth factor receptor (c-Met), a fre-
quently overexpressed oncogene in liver cancer and pre-
dicted target of miR-148a that was up-regulated in
undifferentiated MFHs and Hepa 1-6 HCC cells (Sup-
porting Fig. 8). In the presence of miR-148a mimics, c-
Met mRNA levels appeared markedly decreased in
Hepa 1-6, whereas miR-148a agonists promoted c-Met
expression (Fig. 7D). However, c-Met 3’-UTR assays
did not show a reduction of luciferase activity (Support-
ing Fig. 8), supporting an indirect effect of miR-148a
on c-Met expression. Knockdown of c-Met using two
distinct siRNAs attenuated cell proliferation (Fig. 7E)
and dramatcally abolished HCC cell invasion
(78.8% = 7.7% and 76.5% % 7.5% inhibition, respec-
tively; < 0.001; Fig. 7F). Remarkably, the use of siR-
NAs targeting Dnmtl did not modify cell proliferation
or invasion. These last results strongly suggest that
miR-148a plays two distinct roles in the liver: (1) in
the control of hepatic development by regulating
DNMT1 and (2) in the modulation of HCC cell inva-

siveness by repressing the c-Met oncogene.

Discussion

DNA methylation plays an essential role in regulat-
ing stem cell differentiation and embryo development.
Recently, Tsai et al. demonstrated that the pluripo-
tency genes, Oct4 and Nanog, which constitute a fun-
damental ~ regulatory = mechanism  suppressing
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Fig. 7. Consequence of miR-148a rescue on HCC cell phenotype. (A) Hepa 1-6 cell growth determined at indicated times after miR-148a
amplification or repression. No significant difference was found (t test). (B) Hepa 1-6 migratory abilities after miR-148a overexpression or inhibi-
tion in the presence of HGF (50 ng/mL). Cell monolayers were wounded 24 hours after transfection, and the sizes of the wounds were measured
at indicated times. Bar: 500 pum. (C) Effect of miR-148a overexpression on cellular invasion ability. FBS (10%) and HGF (100 ng/mL) were
used as chemoattractants for transwell invasion assays. Bar: 250 um. (D) Expression of ¢-Met oncogene 48 hours after Hepa 1-6 transfection
with miR-148a mimics or antagonists. (E) Assessment of Hepa 1-6 proliferation and (F) invasion ability after Dnmtl and c-Met knockdown by
using two distinct siRNAs for each. Statistical significance, compared to controls: *P < 0.05; **P < 0.01; ***P < 0.001 (t test).

differentiation-associated genes, directly bind to the
promoter of DNMT1 and enhance its expression.*!
their report, mesenchymal stem cells exhibited a
decreased proliferation rate when treated with an in-
hibitor of DNA methylation or transfected with
DNMT1 short hairpin RNA, whereas the expression

In

of genes associated with development regulators was
increased. In agreement with this current work, our
data clearly show the contribution of the DNMT1
enzyme in liver cell stemness as well as the existence of
a micromanagement of DNMT1-related hepatic matu-
ration controlled by miR-148a.
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The deleterious consequences of DICER-silencing
experiments in mouse embryonic stem cells demon-
strated that miRNA processing plays a major role in
development.”® In the liver, Sekine et al. tested the
consequence of DICERT1 silencing by performing con-
ditional knockout in hepatocytes.”> Remarkably, hepa-
tocytes exhibiting DICER1-specific depletion displayed
a gene expression profile indicative of cell growth and
dedifferentiation into liver progenitors. Although the
role of miRNAs in cell specification has been
addressed in a number of tissues,®** little is known
regarding the involvement of specific miRNAs in the
control of hepatic development. miR-122 is probably
an essential actor in liver ontogenesis, as suggested by
its remarkable expression in the adult liver and its abil-
ity to induce CYPs in HCC cell lines.”> The case of
miR-148a also appears of prime interest in cell lineage
determination, as previously described in hematopoi-
etic stem cell specification®® and myogenic differentia-
tion.”” In the last case, Zhang et al. showed the
positive role of miR-148a in skeletal muscle develop-
ment by the translational repression of ROCKI, an in-
hibitor of myogenesis.

Consistent with our results, other studies have dem-
onstrated that miRNAs can control expression of
DNMTs. In the liver, miR-140 can target the 3°-UTR
of DNMT1 and control nuclear factor kappa B activ-
ity.?® In addition, some splicing isoforms of DNMT3b
have been found to be directly repressed by miR-
148a.%° Conversely, epigenetic mechanisms are consid-
ered essential for miRNA regulation.®® The genomic
sequence of miR-148a has been analyzed in a number
of cancer cell lines with distinct tissue origins, as well
as a large amount of CpG islands found in its pro-
moter region. Thus, inactivation of miR-148a by
DNA hypermethylation and DNMT1 overexpression
has recently been demonstrated in pancreatic,’’ gas-
tric,”2 and breast cancer.> Consequently, the network
of feedback between miRNAs and epigenetic pathways
appears to form a complex regulatory system that is
essential to organize gene expression profile and main-
tain cell integrity. miR-148a and DNMT1 certainly
constitute a regulatory circuit that is disrupted in
HCC tissues. On the one hand, overexpression of
DNMTT1 leads to hypermethylation of the promoter
region of miR-148a, causing its silencing. On the
other hand, miR-148a alteration reduces its silencing
action on DNMT]I, resulting in augmentation of
DNMT1 expression and maintaining hypermethyl-
ation of the miR-148a promoter.

Our data finally suggest that miR-148a restoration
may provide a valuable strategy for therapeutic
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applications by inhibiting c-Met expression and repres-
sing HCC cell invasion. Pertinent studies previously
indicated that the use of miRNA precursors could con-
tribute to the development of promising miRNA-based
therapeutic methods. For instance, Kota et al. showed
that systemic administration of miR-26a in rodents led
to a remarkable slowdown of HCC progression with-
out toxicity.>* These observations suggest that the
delivery of tumor-suppressor—type miRNAs, such as
miR-148a and miR-122, which are highly expressed
and therefore well tolerated in normal adult tissues,
but lost in transformed cells, may provide a general
strategy for miRINA replacement therapies. miR-148a
also represents a valuable marker for the diagnosis and
prognosis of HCC because its expression is frequently
inhibited in liver cancer. Our observation that miR-
148a alteration is not limited to the tumor site, but
also affects the peritumoral nonneoplastic tissue, is
noteworthy. This down-regulation is probably the con-
sequence of the chronic inflammatory context inherent
to hepatitis virus infection and liver fibrosis, which
could represent an early event in CLDs, leading to
augmentation of DNMTT activity and aberrant DNA
methylation. In this regard, Braconi et al. reported
that the inflammation-associated cytokine, interleukin-
6, regulates DNMT1 activity and methylation-depend-
ent tumor-suppressor genes by modulating miR-148a/
152 family expression in malignant cholangiocytes.””
Furthermore, another study showed that miR-152 is
frequently down-regulated in HBV-related HCC,
inducing DNMTT1 augmentation and aberrant DNA
methylation.>®

To conclude, our study demonstrates the existence of
a dual role played by miR-148a in the liver. Importantly,
we highlight a novel miRNA-mediated regulation mech-
anism in which miR-148a positively regulates hepatic
differentiation by repressing DNMT1 expression. To
our knowledge, this report is the first to demonstrate an
effective promotion of the hepatospecific phenotype by
modulating the expression of a single specific miRNA in
a primary culture model using liver stem cells.
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Abstract: The hepatitis B virus (HBV) is a small enveloped DNA virus that belongs to the
Hepadnaviridae family. HBV can cause acute and persistent infection which can lead to
hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) play a crucial role in the main
cellular events. The dysregulation of their expression has been linked to the development
of the cancer as well as to viral interference. This chapter will describe the involvement of
miRNAs in the case of HBV infection and their implication in the development of the
HBV-related diseases.

Keywords: hepatitis B virus; microRNA; hepatocellular carcinoma

1. Introduction

The microRNAs (miRNAs or miRs) are small non-coding RNAs of 19-23 nucleotides that play key
roles in the regulation of almost every cellular process in all multicellular eukaryotes [1]. As
intracellular pathogens, viruses are affected by these post-transcriptional modulators and have evolved
to subvert them. Several viruses, especially the herpesviruses, encode for their own miRNAs that
increase their replication potential and/or allow the evasion from the innate immune system [2]. Other
viruses, such as the hepatitis B virus (HBV), modulate the cellular miRNAs in order to achieve the
same effects.

HBYV is a small enveloped DNA virus that belongs to the Hepadnaviridae family. It primarily
infects hepatocytes and causes acute and chronic liver disease. Among the 2,000 million people
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