From 2005 to 2010, a multicenter cohort study was conducted throughout Japan on 212 patients with AHB. The aim of this cohort study was to assess the influence of clinical and virological factors, including HBV genotypes and treatment with nucleotide analogues (NAs), on AHB patients who became persistently infected. ## **Experimental Procedures** #### Patients with AHB The multiple-source cohort included 212 randomly selected AHB patients without co-infection of HIV. From 2005 through 2010, the study participants were recruited from 38 liver centers throughout Japan. The cohort included patients who were admitted to the hospitals because of AHB and who visited the hospitals every month after being discharged. The diagnosis of AHB was contingent on the rapid onset of clinical symptoms accompanied by elevated serum alanine aminotransferase levels, the detection of serum hepatitis B surface antigen (HBsAg), and a high-titer antibody to hepatitis B core antigen (anti-HBc) of the immunoglobulin M (IgM) class. Patients with initial high-titer anti-HBc (>10.0 S/CO) were diagnosed as having an exacerbation of chronic hepatitis B and were excluded. If the patient had been tested previously, the absence of serum hepatitis B surface antigen (HBsAg) and anti-HBc before admission was verified from the medical record to discriminate a new infection from an acute exacerbation of a persistent infection. Patients with acute hepatitis A, hepatitis C, and drug- or alcohol-induced acute hepatitis were also excluded; hepatitis D virus infection was not determined because of its extreme rarity in Japan. The study protocol conformed to the 1975 Declaration of Helsinki, and was approved by the Ethics Committees of the institutions involved. Every patient gave informed consent for this study. ## Serological Markers of HBV Infection HBsAg; HBeAg; antibodies to HBsAg (anti-HBs), HBeAg (anti-HBe), and HBcAg; and anti-HBc of the IgM class were tested by a chemiluminescent enzyme immunoassay (CLIA) by ARCHITECT (Abbott Japan, Tokyo, Japan). HBV DNA measurements were performed using a real-time PCR assay (Cobas TaqMan HBV Auto; Roche Diagnostics, Tokyo, Japan). ## Genotyping of HBV The 6 major HBV genotypes (A through F) were determined serologically by enzyme immunoassay (EIA) using commercial kits (HBV GENOTYPE EIA; Institute of Immunology Co., Ltd., Tokyo, Japan). This method is based on the pattern of detection by monoclonal antibodies of a combination of epitopes on preS2-region products, which is specific for each genotype (17, 18). Samples for which EIA could not determine the genotype were examined by direct sequencing of the pre-S2/S gene, followed by phylogenetic analysis. ## Treatment with NAs Treatments with NAs were performed using lamivudine or entecavir for more than 3 months. The individual clinicians determined if NAs were administered to patients, and when the treatment was to be started. The time to onset of treatment with NAs was measured in days from onset of AHB. ## Statistical Analysis Categorical variables were compared between groups by the chi-squared test and noncategorical variables by the Mann-Whitney U-test. A P value less than 0.05 was considered significant. Multivariate analysis was performed using a backward stepwise logistic regression model to determine independent factors for viral persistence following AHB. Variables in the multivariate analysis were selected based on variables which were marginally significant with P < 0.1 in univariate analysis. Maintenance of HBsAg positivity was analyzed using the Kaplan-Meier method, and significance was tested with the log-rank test. STATA Software (StataCorp LP, College Station, TX) version 11.0 was used for #### Results Comparison of Characteristics Between Genotype A and Non-A Genotype AHB Patients A total of 107 AHB patients (50.5%) were infected with genotype A while 105 AHB patients (49.5%) were infected with non-A genotypes, including genotypes B (25 [11.8%]), C (76 [35.8%]), D (1 [0.5%]), F (1 [0.5%]) and H (1 [0.5%]). Compared to those infected with non-A genotypes, genotype A patients were significantly younger (36.3 \pm 12.0 vs. 40.7 \pm 14.3 years, P = 0.032), predominantly men (95.3% vs. 71.4%, P < 0.001), and more frequently positive for HBeAg (97.2% vs. 75.2%, P < 0.001). Moreover, genotype A patients had a lower peak alanine aminotransferase (ALT) level (1210 \pm 646 vs. 2225 \pm 2851 IU/L, P = 0.045) and a higher peak level of HBV DNA (6.7 \pm 8.5 vs. 3.4 \pm 6.5 log copies/mL, P < 0.0001). A significantly higher percentage of genotype A patients were treated with NAs (57% vs. 40%, P = 0.013). These data are summarized in Table 1. # Cumulative Maintenance of HBsAg Positivity during Follow-up in Patients with Genotype A and Non-A Genotypes In the patients infected with genotype A and non-A genotypes, the mean durations of HBsAg positivity maintenance were 6.7 ± 8.5 and 3.4 ± 6.5 months, respectively (P < 0.0001; Table 1, Figure 2A). For 6 months after AHB onset, the number of patients with genotype A and non-A genotypes maintaining HBsAg positivity were 39/107 (36.4%) and 10/105 (9.5%), respectively (P < 0.001). However, in many patients, HBsAg disappeared between 7 and 12 months after AHB onset; that is, HBsAg disappeared in 31/107 (29.0%) of patients with genotype A and in 9/105 (8.6%) of patients with non-A genotypes during this time period. However, in some patients, HBsAg never disappeared after persisting for more than 12 months following AHB onset. When chronicity after AHB was defined as the persistence of HBsAg for more than 12 months, chronicity developed in 7.5% (8/107) of patients with genotype A and in 0.9% (1/105) of patients with non-A genotypes (P = 0.018). # Comparison of Characteristics between Patients in Whom HBsAg Persisted More Than 6 or 12 Months and Those with Self-limited AHB Infection Table 2 compares the demographic and clinical characteristics between patients in whom HBsAg disappeared within 6 months and those in whom HBsAg persisted for more than 6 months from AHB. The peak ALT levels (1882 ± 2331 vs. 1018 ± 696 IU/L, P = 0.0024) and peak HBV DNA levels (6.3 ± 1.6 vs. 7.4 ± 1.6 mg/dL, P = 0.0004) were significantly higher and lower in the former group than in the latter group, respectively. Moreover, marked differences were present in the distribution of genotypes between the 2 groups. The percentage of the HBV genotype A (46.1% vs. 73.5%, P = 0.003) was significantly higher among patients in whom HBsAg was persistent for more than 6 months. In addition, we compared the demographic and clinical characteristics between patients in whom HBsAg was disappeared within 12 months and those in whom HBsAg persisted for more than 12 months from AHB. Peak ALT (1787 ± 2118 vs. 775 ± 513 IU/L, P = 0.0089) and peak total bilirubin (8.7 ± 8.2 vs. 3.8 ± 6.6 mg/dL, P = 0.0039) levels were significantly higher in the former group than in the latter group. In contrast, the peak HBV DNA levels (6.4 ± 1.6 vs. 7.9 ± 1.4 mg/dL, P = 0.0046) were significantly lower in the former ## Factors Independently Associated with Viral Persistence Following AHB Stepwise logistic regression model was used to perform multivariate analysis which explains relationships between some factors and persistence of HBsAg positivity more than 6 months following AHB. Peak ALT level, peak HBV DNA level, genotype A, and treatment with NAs were retained in the final multivariate logistic model in a backward stepwise manner (P < 0.1). For predicting the persistence of HBsAg for more than 6 months, only genotype A was independently associated with progression of AHB to the persistence of HBsAg (Odds Ratio [OR]: 4.224, P = 0.001, Table 3). # Characteristics of Patients Who Progressed to Chronicity That Was Defined as the Persistence of HBsAg for More Than 12 Months Following Acute Hepatitis B Table 4 shows the clinical and virological characteristics of 9 patients who progressed to chronicity defined as the persistence of HBsAg for more than 12 months following AHB. Among the 9 patients who progressed to chronicity from AHB, 8 (88.9%) were men, and 8 (88.9%) were HBeAg positive. In general, among the patients who progressed to chronicity following AHB, the peak HBV DNA levels were high, and the peak total bilirubin and ALT levels were low. In 8 (88.9%) patients, entecavir was administered; however, the duration until the onset of NA treatment from AHB onset was long (75-570 days). The cumulative proportion maintaining HBsAg positivity during follow-up, expressed in terms of time after AHB onset, were significantly longer in patients with NAs treatment than in those without NAs treatment (P = 0.046, Figure 2A). Table 5 shows the percentages of patients in whom HBsAg persisted for more than 6 or 12 months among patients categorized based on the period of time (i.e., duration) until the onset of NAs treatment. For patients in whom the onset of NAs treatment was less than 4 weeks from the onset of AHB, 12.7% of the patients showed persistent HBsAg for more than 6 months, while none showed HBsAg positivity for more than 12 months. For patients in whom the onset of NAs treatment was at 5-8 weeks, 37.5% of the patients showed persistent HBsAg for more than 6 months, whereas none showed persistent HBsAg for more than 12 months. For all groups, the period of HBsAg positivity in patients starting NAs treatment within 8 weeks from AHB onset was significantly shorter than that in patients beginning NAs treatment after more than 8 weeks from AHB onset (P < 0.0001, Figure 2B). Patients starting NAs treatment within 8 weeks from AHB onset never progressed to chronicity after AHB caused by genotype A. #### Discussion A multicenter nationwide study was conducted throughout Japan to evaluate the influence of clinical and virological factors on chronic outcomes in Japanese patients who contracted AHB in adulthood. The study was feasible in Japan, where a universal vaccination program for HBV has not been implemented because of the extremely high efficacy of the immunoprophylaxis that is given to babies born to carrier mothers. The implementation of this program has resulted in a decrease in the persistent HBV carrier rate from 1.4% to 0.3% (19). Selective vaccination means that Japanese are more likely to be infected with HBV via horizontal transmission since the percentage of the population possessing anti-HBs is much lower than that in countries in which universal vaccination programs have been established (20). In addition, Japan is faced with the ever-increasing impacts of globalization: as many as 17 million Japanese travel abroad and over 7 million people visit Japan from overseas each year. This "population mixing" may help to explain the increased prevalence in Japan of AHB due to genotype A, which is transmitted through indiscriminate sexual contact. Consequently, Japan may be the only country in the world where the influences of HBV genotypes, including genotype A (as is predominant in Western countries) and genotypes B and C (as are predominant in Asian countries), on chronic outcomes after AHB can be compared. Currently, the persistence of HBsAg in serum for more than 6 months is considered to represent a progression to chronic infection (21). However, our data showed that HBsAg frequently disappeared between 7 to 12 months after the onset of AHB in patients with genotype A (31/107 [29.0%]) and non-A genotypes (9/105 [8.6%]) (Figure 1). These patients were considered to exhibit prolonged cases of AHB, rather than persistent infection. This finding reflects the higher sensitivity of the most up-to-date assays for HBsAg as compared with previous methods. In the present study, HBsAg was measured by CLIA, which has been reported to be about 150 times more sensitive in the detection of HBsAg than reverse passive hemagglutination (RPHA)- It has been reported that approximately 10% of patients who contract HBV as adults do not clear HBsAg from their serum and become carriers (23). Meanwhile, a wide variation has been seen in the rate of persistence after AHB infection in adults. For example, viral persistence following AHB was seen in 0.2% (1/507) of adults in Greece (24), 7.7% (5/65) of adult Alaskan Eskimos, and 12.1% (7/58) of adults in Germany (25). The difference in the proportion of patients progressing from AHB to chronicity in different regions may be attributable to virological and host factors. In this study, 4.2% (9/212) of patients progressed to chronicity after AHB—7.5% (8/107) of those infected with genotype A and 0.9% (1/105) of those infected with non-A genotypes. The non-A genotypes included genotypes B, C, D, F and H (n = 25, 77, 1, 1 and 1, respectively). Genotypes B and C are predominant in eastern Asian countries, where the majority of those infected with HBV acquired the virus during the perinatal period via vertical transmission (26). On the other hand, genotype A is predominant in Western countries where the main route is horizontal transmission later in life (26, 27). Because HBeAg persists long after the infection in the genotype C as compared to other genotypes, this genotype has been shown to be In this study, the characteristics of AHB associated with genotype A were a higher peak level of HBV DNA and a lower peak level of ALT. These findings were similar to those for patients with HBV-HIV co-infection (29). Such characteristics of genotype A or co-infection with HIV are assumed to be attributable to milder hepatitis associated with weaker cellular immune responses. More slowly replicating viruses have been reported to evoke weaker cellular responses, enhancing the likelihood of persistence (30). Indeed, our prior study showed that the replication of genotype A was significantly slower than that of genotype C in immunodeficient, human hepatocyte chimeric mice (31). Moreover, variation among genotypes in the expression pattern of HBeAg may affect the progression of AHB to chronicity. Another previous study of ours revealed that a single form of HBeAg was detected by western blot analysis in serum samples from patients infected with genotypes B through D, but that 2 additional larger forms of HBeAg were detected in patients with genotype A (32). Milich et al. reported that HBeAg may modulate the host immune response as a tolerogen to promote chronicity (33). Therefore, the different expression pattern of HBeAg by genotype A HBV may contribute to chronicity following AHB. Early NAs initiation appeared to enhance the viral clearance across genotypes, although treatment with NAs did not show any overall benefit in duration of HBsAg. Previous studies examining the efficacies of NAs for preventing progression to chronic infection after AHB have reported conflicting results. Some small-scale studies have suggested the efficacy of lamivudine and entecavir in preventing the progression of AHB to chronic hepatitis (34, 35). Another study showed a lower seroconversion rate of HBsAg in lamivudine users (36). Further, a randomized placebo-controlled trial showed no significant difference in clinical outcomes (37). However, these previous studies did not mention the prevalence of HBV genotypes in the respective study populations. Although, this was a retrospective study, our paper included data on the prevalence of HBV genotypes. Additionally, our findings suggested that larger prospective randomized studies for every HBV genotype should be performed to determine whether early treatment with NAs prevented the progression of AHB to a chronic state. In conclusion, in Japan, genotype A was an independent risk factor for progression to chronic infection following AHB in adults. Confirmation of this association in patients with AHB in other countries is desirable and may provide insight into the pathogenetic mechanisms underlying this association. Early NA treatment appeared to reduce the likelihood of chronicity but this potentially important intervention needs to be prospectively studied before recommendations can be made. ## Acknowledgments Members of the Japanese AHB Study Group Include Yasuharu Imai (Ikeda Municipal Hospital), Norie Yamada, Hideaki Takahashi (St Marianna University School of Medicine), Koji Ishii (Toho University School of Medicine), Hideyuki Nomura (Shin-Kokura Hospital), Jiro Nishida (Tokyo Dental Collage Ichikawa General Hospital), Shigeru Mikami (Kikkoman Hospital), Tsuneo Kitamura (Juntendo University Urayasu Hospital), Akihito Tsubota (Kashiwa Hospital Aikei University School of Medicine), Noritomo Shimada (Shinmatsudo Central General Hospital), Tetsuya Ishikawa (Nagoya University Graduate School of Medicine), Yoshiyuki Ueno (Tohoku University Graduate School of Medicine), Tomoyoshi Ohno (Social Insurance Chukyo Hospital), Etsuro Orito (Nagova Daini Red Cross Hospital), Michihiro Suzuki (Kawasaki Municipal Tama Hospital), Hitoshi Takagi (Gunma University Graduate School of Medicine), Eiichi Tomita (Gifu Municipal Hospital), Kumada Takashi (Ogaki Municipal Hospital), Toshihiko Mizuta (Saga University Faculty of Medicine), Tetsuya Mine (Tokai University School of Medicine), Jong-Hon Kang (Teine-Keijinkai Hospital), Katsuji Hirano (Juntendo University Shizuoka Hospital), Hirohito Tsubouchi (Kagoshima University Graduate School of Medical and Dental Sciences), Akito Nozaki (Yokohama City University Medical Center), Akito Sakai (Kanazawa University Graduate School of Medical Science), Shuhei Nishiguchi (Hyogo College of Medicine), Akihiro Tamori (Osaka City University Graduate School of Medicine), Satoru Hagiwara (Kinki University School of Medicine), Takahide Nakazawa (University of Kitasato East Hospital), Michio Sata (Kurume University School of Medicine), Toshiro Kamoshida (Hitachi General Hospital) Atsushi Takahashi (Fukushima Medical University School of Medicine), Satoshi Kakizaki (Gunma University Graduate School of Medicine), Yoshimasa Kobayashi (Hamamatsu University School of Medicine), Shigeru Sasaki (Sapporo Medical University), Tadashi Ikegami (Tokyo Medical University Ibaraki Medical Center), Yoichi Hiasa (Ehime University Graduate School of Medicine), Kenji Nagata (University of Miyazaki), Tomoyuki Kubota (Saiseikai Niigata Daini Hospital), Hiroshi Mitsui (Tokyo Teishin Hospital), Norihiko Yamamoto (Mie University School of Medicine), Masataka Tsuge (Hiroshima University), Shuichi Sato (Shimane University Hospital), Yoshito Ito (Kyoto Prefectural University of Medicine), Wataru Sato (Akita University School of Medicine), Shigeharu Uchida (Japanese Red Cross Society), Yuki Tada (National Institute of Infectious Diseases), Toshiaki Mizuochi (National Institute of Infectious Diseases), Norihiro Furusho (Kyushu University), and Shuhei Hige (Hokkaido University Graduate School of Medicine), ## References - 1. Mast EE, Alter MJ, Margolis HS. Strategies to prevent and control hepatitis B and C virus infections: a global perspective. Vaccine 1999;17:1730-1733. - 2. Lavanchy D. Worldwide epidemiology of HBV infection, disease burden, and vaccine prevention. J Clin Virol 2005;34 Suppl 1:S1-3. - 3. Okamoto H, Tsuda F, Sakugawa H, Sastrosoewignjo RI, Imai M, Miyakawa Y, Mayumi M. Typing hepatitis B virus by homology in nucleotide sequence: comparison of surface antigen subtypes. J Gen Virol 1988;69 (Pt 10):2575-2583. - 4. Norder H, Hammas B, Lofdahl S, Courouce AM, Magnius LO. Comparison of the amino acid sequences of nine different serotypes of hepatitis B surface antigen and genomic classification of the corresponding hepatitis B virus strains. J Gen Virol 1992;73 (Pt 5):1201-1208. - 5. Miyakawa Y, Mizokami M. Classifying hepatitis B virus genotypes. Intervirology 2003;46:329-338. - 6. Fung SK, Lok AS. Hepatitis B virus genotypes: do they play a role in the outcome of HBV infection? Hepatology 2004;40:790-792. - 7. Norder H, Courouce AM, Coursaget P, Echevarria JM, Lee SD, Mushahwar IK, Robertson BH, et al. Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology 2004;47:289-309. - 8. Kurbanov F, Tanaka Y, Mizokami M. Geographical and genetic diversity of the human hepatitis B virus. Hepatol Res;40:14-30. - 9. Kao JH. Hepatitis B viral genotypes: clinical relevance and molecular characteristics. J Gastroenterol Hepatol 2002;17:643-650. - 10. Orito E, Ichida T, Sakugawa H, Sata M, Horiike N, Hino K, Okita K, et al. Geographic distribution of hepatitis B virus (HBV) genotype in patients with chronic HBV infection in Japan. Hepatology 2001;34:590-594. - 11. Matsuura K, Tanaka Y, Hige S, Yamada G, Murawaki Y, Komatsu M, Kuramitsu T, et al. Distribution of hepatitis B virus genotypes among patients with chronic infection in Japan shifting toward an increase of genotype A. J Clin Microbiol 2009;47:1476-1483. - 12. Ozasa A, Tanaka Y, Orito E, Sugiyama M, Kang JH, Hige S, Kuramitsu T, et al. Influence of genotypes and precore mutations on fulminant or chronic outcome of acute hepatitis B virus infection. Hepatology 2006;44:326-334. - 13. Kobayashi M, Ikeda K, Arase Y, Suzuki F, Akuta N, Hosaka T, Sezaki H, et al. Change of hepatitis B virus genotypes in acute and chronic infections in Japan. J Med Virol 2008;80:1880-1884. - 14. Mayerat C, Mantegani A, Frei PC. Does hepatitis B virus (HBV) genotype influence the clinical outcome of HBV infection? J Viral Hepat 1999;6:299-304. - 15. Ogawa M, Hasegawa K, Naritomi T, Torii N, Hayashi N. Clinical features and viral sequences of various genotypes of hepatitis B virus compared among patients with acute hepatitis B. Hepatol Res 2002;23:167-177. - 16. Gilson RJ, Hawkins AE, Beecham MR, Ross E, Waite J, Briggs M, McNally T, et al. Interactions between HIV and hepatitis B virus in homosexual men: effects on the natural history of infection. AIDS 1997;11:597-606. - 17. Usuda S, Okamoto H, Iwanari H, Baba K, Tsuda F, Miyakawa Y, Mayumi M. Serological detection of hepatitis B virus genotypes by ELISA with monoclonal antibodies to type-specific epitopes in the preS2-region product. J Virol Methods 1999;80:97-112. - 18. Usuda S, Okamoto H, Tanaka T, Kidd-Ljunggren K, Holland PV, Miyakawa Y, Mayumi M. Differentiation of hepatitis B virus genotypes D and E by ELISA using monoclonal antibodies to epitopes on the preS2-region product. J Virol Methods 2000;87:81-89. - 19. Noto H, Terao T, Ryou S, Hirose Y, Yoshida T, Ookubo H, Mito H, et al. Combined passive and active immunoprophylaxis for preventing perinatal transmission of the hepatitis B virus carrier state in Shizuoka, Japan during 1980-1994. J Gastroenterol Hepatol 2003;18:943-949. - 20. Yoshikawa A, Suzuki K, Abe A, Tanaka T, Yamaguchi K, Ishikawa Y, Minegishi K, et al. Effect of selective vaccination on a decrease in the rate of hepatitis B virus-positive Japanese first-time blood donors. Transfus Med 2009;19:172-179. - 21. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology 2007;45:507-539. - 22. Sato S, Ohhashi W, Ihara H, Sakaya S, Kato T, Ikeda H. Comparison of the sensitivity of NAT using pooled donor samples for HBV and that of a serologic HBsAg assay. Transfusion 2001;41:1107-1113. - 23. Sherlock SDJ, editor. Virus Hepatitis: Blackwell Scientific Publications, London, United Kingdom; 1997. - 24. Tassopoulos NC, Papaevangelou GJ, Sjogren MH, Roumeliotou-Karayannis A, Gerin JL, Purcell RH. Natural history of acute hepatitis B surface antigen-positive hepatitis - 25. McMahon BJ, Alward WL, Hall DB, Heyward WL, Bender TR, Francis DP, Maynard JE. Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. J Infect Dis 1985;151:599-603. - 26. Kao JH, Chen DS. Global control of hepatitis B virus infection. Lancet Infect Dis 2002;2:395-403. - 27. Chu CJ, Keeffe EB, Han SH, Perrillo RP, Min AD, Soldevila-Pico C, Carey W, et al. Hepatitis B virus genotypes in the United States: results of a nationwide study. Gastroenterology 2003;125:444-451. - 28. Livingston SE, Simonetti JP, Bulkow LR, Homan CE, Snoweball MM, Cagle HH, Negus SE, et al. Clearance of hepatitis B e antigen in patients with chronic hepatitis B and genotypes A, B, C, D, and F.Gastroenterology. 2007;133:1452-7. - 29. Colin JF, Cazals-Hatem D, Loriot MA, Martinot-Peignoux M, Pham BN, Auperin A, Degott C, et al. Influence of human immunodeficiency virus infection on chronic hepatitis B in homosexual men. Hepatology 1999;29:1306-1310. - 30. Bocharov G, Ludewig B, Bertoletti A, Klenerman P, Junt T, Krebs P, Luzyanina T, et al. Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocyte responses. J Virol 2004;78:2247-2254. - 31. Sugiyama M, Tanaka Y, Kato T, Orito E, Ito K, Acharya SK, Gish RG, et al. Influence of hepatitis B virus genotypes on the intra- and extracellular expression of viral DNA and antigens. Hepatology 2006;44:915-924. - 32. Ito K, Kim KH, Lok AS, Tong S. Characterization of genotype-specific carboxyl- terminal cleavage sites of hepatitis B virus e antigen precursor and identification of furin as the candidate enzyme. J Virol 2009;83:3507-3517. - 33. Milich D, Liang TJ. Exploring the biological basis of hepatitis B e antigen in hepatitis B virus infection. Hepatology 2003;38:1075-1086. - 34. Lisotti A, Azzaroli F, Buonfiglioli F, Montagnani M, Alessandrelli F, Mazzella G. Lamivudine treatment for severe acute HBV hepatitis. Int J Med Sci 2008;5:309-312. - 35. Jochum C, Gieseler RK, Gawlista I, Fiedler A, Manka P, Saner FH, Roggendorf M, et al. Hepatitis B-associated acute liver failure: immediate treatment with entecavir inhibits hepatitis B virus replication and potentially its sequelae. Digestion 2009;80:235-240. - 36. Yu JW, Sun LJ, Zhao YH, Kang P, Li SC. The study of efficacy of lamivudine in patients with severe acute hepatitis B. Dig Dis Sci 2010;55:775-783. - 37. Kumar M, Satapathy S, Monga R, Das K, Hissar S, Pande C, Sharma BC, et al. A randomized controlled trial of lamivudine to treat acute hepatitis B. Hepatology 2007;45:97-101. ## Figure Legends Figure 1. Comparison of the cumulative proportion of acute hepatitis B (AHB) patients maintaining hepatitis B surface antigen (HBsAg) positivity between genotype A and non-A genotypes, analyzed using the Kaplan-Meier test. P < 0.0001, genotype A: red line, non-A genotypes: blue line. ## Figure 2. - (A) Comparison of the cumulative proportion of AHB patients maintaining HBsAg positivity between treatment with nucleotide analogues (NAs) (+) and treatment with NAs (-), as analyzed using the Kaplan-Meier test. P = 0.046, treatment with NAs (+): red line, treatment with NAs (-): blue line. - (B) Comparison of the cumulative proportion of AHB patients in genotype A maintaining HBsAg positivity between treatment onset with nucleotide analogues (NAs) within 8 weeks and treatment onset with NAs over 8 weeks after onset of AHB, as analyzed using the Kaplan-Meier test. P < 0.0001, treatment onset with NAs over 8 weeks: red line, treatment onset with NAs within 8 weeks: blue line. Table 1. Characteristics of patients with genotype A or a non-A genotype acutely infected with hepatitis B virus | Features | Genotype A $(n = 107)$ | Non-A genotypes $(n = 105)^a$ | P Value | |-----------------------------------------------------|---------------------------|-------------------------------|---------| | Age (years) | 36.3 ± 12.0 | 40.7 ± 14.3 | 0.032 | | Male sex | 102 (95.3) | 75 (71.4) | < 0.001 | | HBeAg positive | 104 (97.2) | 79 (75.2) | < 0.001 | | ALT (IU/L) | 1210 ± 646 | 2225 ± 2851 | 0.045 | | Total bilirubin (mg/dL) | 9.9 ± 9.4 | 7.5 ± 6.7 | 0.115 | | HBV DNA (log copies/mL) | 7.0 ± 1.5 | 5.8 ± 1.5 | <0.0001 | | Duration until disappearance of HBsAg (month) | 6.7 ± 8.5 | 3.4 ± 6.5 | <0.0001 | | Persistence of HBsAg positivity more than 6 months | 25 (23.4) | 9 (8.6) | 0.003 | | Persistence of HBsAg positivity more than 12 months | 8 (7.5) | 1 ^b (0.9) | 0.018 | | Sexual transmission | 81/84 (96.4) ^c | 71/79 (89.9) ^d | 0.095 | | Treatment with NAs | 61 (57.0) | 42 (40.0) | 0.013 | Data are presented as n (%), mean ± standard deviation. HBV, hepatitis B virus; HBeAg, hepatitis B 1 e-antigen; ALT, alanine aminotransferase; NAs, nucleotide analogues. ^aNon-A genotypes include genotypes B, C, D, F and H (n = 25, 77, 1, 1, and 1, respectively). ^bOne patient had genotype C. ^cTransmission routes were unknown for 23 patients. ^dTransmission routes were unknown for 26 patients.