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Figure 4 Cilostazol attenuated the expression of 0-SMA protein in the liver. (a) 0-SMA immunostaining of liver sections in each
group. Treatment with CCl; for six weeks remarkably increased o-SMA expression. Among CCl,-treated groups, the liver in
cilostazol-administrated groups has a teduced ¢-SMA-positive area compared with that in the control diet or clopidogrel-
administrated group (original magnification x100). (b) Quantification of the o-SMA positive area in each group. Cilostazol-
administrated groups had significantly decreased a-SMA positive areas compared with control diet and clopidogrel-administrated
groups. (c) Measurement of ¢-SMA protein in the liver by immunoblotting. Administration of 0.3% cilostazol reduced o.-SMA
levels in CCls-treated mice. The box plots present the median and 25th-75th percentlles Upper and lower lines represent the
minimum and maximum values (n = 10). *P < 0.05; 1P < 0.001 vs CCl;-treated control diet group. 0-SMA, a-smooth muscle actin;
CCly, carbon tetrachloride; CLZ, cilostazol; CPG, clopidogrel; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

primary cultures of HSC. Generally, isolated HSC
undergo autonomous activation in culture, and the acti-
vation is associated with a depletion of retinoid drop-
lets, morphological change, cell proliferation, and
expression of several activation markers such as o-SMA
and collagen a1 (I). During 6 days of culture, control
HSC gradually lost retinoid droplets and showed
myofibroblast-like activated morphology, whereas
cilostazol-supplemented HSC maintained retinoid
droplets and retained quiescent morphology (Fig. 5a).
In addition, cilostazol suppressed HSC proliferation in a
dose-dependent manner, without showing cell toxicity
(Fig. 5b). The expression of 0-SMA protein was dose-
dependently suppressed in the presence of cilostazol
(Fig. 5¢). Because Kupffer cells have been shown to be
implicated in liver fibrosis as well as HSC,"?** we
examined the effect of cilostazol on Kupffer-cell activa-
tion in vivo and in vitro. Pathological examination
revealed a weak tendency for decrease in the F4/80 posi-
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tive (Kupffer cell) area in the liver of cilostazol-
administrated mice, however, we could not detect
significant changes in our experimental setting
(Fig. 5d,e), and no significant change was observed in
mRNA levels of tissue TNF-o. and TGF-B1 in the liver by
cilostazol treatment (Fig. 5f}. In fact, cilostazol did not
affect the mRNA expression of F4/80 in isolated Kupffer
cells (Fig. 5g), suggesting the minimal effect of cilosta-
zol in vivo may be simply explained by the secondary
effect of the resolution of fibrosis. Likewise, cilostazol
exhibited an insignificant effect on the Kupffer cell pro-
duction of TNF-¢, IL-1B, MCP1 and TGF-B1 (Fig. 5g).
These data together propose the notion that the in vivo
therapeutic efficacy of cilostazol is mediated, at least in
part, by its direct effects on HSC. If so, why did HSC
respond well to cilostazol? One possible explanation is
that HSC are more sensitive to cilostazol than other cell
types (e.g., Kupffer cells). Actually, cilostazol-induced
cAMP accumulation, which is an indicator for cilostazol
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Figure 5 Cilostazol suppressed the proliferation and activation of HSC, but did not affect Kupffer-cell activation. (a) Morphologi-
cal changes in HSC from 0-6 days were viewed on a phase contrast microscope (original magnification x200). HSC supplemented
with 15 uM cilostazol resulted in visible short cytoplasmic dendritic processes and perinuclear vacuoles containing retinoids. (b)
HSC proliferation was determined by direct count of the cell numbers. Cilostazol supplementation slowed the increase in cell
numbers compared with control. (¢} Immunofluorescent staining of a-SMA (red) in HSC on the second day of culture (original
magnification x200). The protein expression of a-SMA was decreased in cilostazol-supplemented HSC in a dose-dependent
manner. (d) F4/80 immunostaining of liver sections in each group. (original magnification x100). (¢} Quantification of the
F4/80-positive area in each group. Cilostazol-administrated groups tended to show fewer F4/80-positive areas than the control, but
no significant differences were observed among CCli-treated groups. (f) mRNA expression levels of TNF-o. and TGF-B1 in the liver
were not affected by cilostazol. (g) Expression of Kupffer cell marker (F4/80) and inflammation-related genes (TNF-o, IL-18, MCP1
and TGF-B1) in primary Kupffer cells on the second day of culture was not altered by cilostazol. (h) Accumulation of cAMP in
primary cultured HSC and Kupffer cells. Cilostazol supplementation significantly elevated the cAMP level only in HSC. The box
plots present the median and 25th-75th percentiles. Upper and lower lines represent the minimum and maximum values (11 = 4).
*P < 0.05; 1P < 0.001; P < 0.01 vs control group. -SMA, o.-smooth muscle actin; cAMP, cyclic adenosine monophosphate; CCl,,
carbon tetrachloride; CLZ, cilostazol; DAPI, 4,6’-diamidino-2-phenylindole dihydrochloride; HSC, hepatic stellate cell; 1L-1B,
interleukin-1p; MCP1, monocyte chemotactic protein-1; TNF-¢, tumor necrosis factor-o; TGF-p1, transforming growth factor-B1.
~o—, control; -&-, 5 pM CLZ; —, 15 uM CLZ.
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Figure 5 Continued.

inhibition of the PDE3 enzyme, was significantly higher
only in HSC supplemented with cilostazol (2.283; 95%
Cl=1.45-3.12; P<0.01) but not in Kupffer cells
(1.363; 95% CI = 0.4374-2.289; Fig, 5 h).

Cilostazol suppressed PDGFR expression
in HSC

To further delineate the effect of cilostazol on the acti-
vation of HSC, we characterized the cilostazol-affected
gene expression profiles during the activation phase of
HSC. First, to confirm the direct effects of cilostazol on
the gene activation mechanism of HSC, we examined
the 0-SMA and collagen ou (I) gene induction. As sug-
gested by the previous data (Figs 2,4,5), mRNA induc-
tion of a-SMA was lower in cells supplemented with
SpuM dilostazol (0.555; 95% CI=0.085-1.024) and

© 2013 The Japan Society of Hepatology

15 uM cilostazol (0.221; 95% Cl = 0.086-0.356) when
compared with the control (2.53; 95% CI=1.01-4.05;
P<0.01; Fig. 6a). Similarly, collagen ou (I) mRNA
expression was lower in cells supplemented with 5 uM
cilostazol (0.411; 95% CI=0.010-0.833) and 15 uM
cdlostazol {0.059; 95% CI =0.042-0.159) as compared
with the control cells {2.20; 95% CI=0.31-4.08;
P<0.01; Fig. 6b). Then, to gain further mechanistic
insight into the action of cilostazol on HSC, the mRNA
expression of PDGF-B, PDGFR-fB and TGF-BR1, an
important cytokine and cytokine receptors for HSC acti-
vation, was determined. The expression of PDGF-B, one
of the most important mitogens for HSC, was un-
affected by cilostazol treatment (Fig. 6¢), however,
PDGFR-B mRNA expression in the 5uM cilostazol-
supplemented cells (0.282; 95% CI = 0.104-0.460) and
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Figure 5 Continued.

15 uM dilostazol-supplemented cells. (0.336; 95%
CI=0.036-0.636) was significantly decreased - com-
pared with that in control cells (0.749; 95% CI = 0.290-
1.210; P < 0.001; Fig. 6d). In contrast, TGF-BR1 mRNA
expression was not . affected by cilostazol treatment
(Fig. 6e). These results indicate the possibility that cil-
ostazol attenuates the activation-induced proliferation
of HSC through the abrogation of PDGF-autocrine

signaling by limiting the receptor (PDGFR-§) signaling
regardless of the ligand (PDGF) availability.

DISCUSSION

HE P.O. ADMINISTRATION of cilostazol effectively
prevents the development of CCls-induced liver
fibrosis in mice. In agreement with the previous study,

© 2013 The Japan Sodiety of Hepatology
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cilostazol was not toxic to HSC as indicated by the
morphology and proliferation of the cells (Fig. 5a,b).”
It is noteworthy that unlike many other candidate medi-
cations, cilostazol is already widely used as an antiplate-
let agent in clinical practice with proven long-term
safety. For this reason, cilostazol holds potential to
become an antifibrotic agent for chronic liver diseases in
humans.

In the present study, we employed clopidogrel as
an alternative antiplatelet agent for the comparison.
Although both dlostazol and dopidogrel showed
minimal side-effects (Fig. 3), only cilostazol attenuated
liver fibrosis (Figs 2,4), suggesting that cilostazol may
have distinct antifibrotic mechanisms apart from its
antiplatelet action. This notion is consistent with the
results of the present in vitro study in which the treat-
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tively). The expression of (¢} PDGF-B
and (e) TGF-BR1 had no difference
between control and cilostazol-
supplemented HSC. The box plots
present the median and 25th-75th
percentiles. Upper and lower lines
represent the minimum and maxi-
mum values (n = 7). o-SMA, o-smooth
muscle actin; CLZ, cilostazol; HSC,
hepatic stellate cell; PDGF-B, platelet
growth factor-B; PDGFR-B, platelet
growth factor receptor-; TGF-BR1,
transforming growth factor-f receptor 1.
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ment of primary HSC with cilostazol attenuated the
HSC proliferation (Fig. 5b) and the expression of o-SMA
and collagen a1 (I) (Figs 5¢,6), indicating the direct
effect of cilostazol on HSC. On the other hand, our in
vitro and in vivo studies showed only a minimal effect of
cilostazol on Kupffer cells (Fig. 5d,e,gh), and no signifi-
cant change was detected in inflammatory and fibro-
genic genes (such as TNF-o. and TGF-B1) by cdilostazol
administration (Fig. 5f). These results lend support to
the concept that cilostazol exerts its antifibrotic effect(s)
via the suppression of HSC activation in vivo.

As reported,***#! PDGFR-B was absent in quiescent
HSC, but was upregulated in an early stage of liver
injury. Activating factors from autocrine or paracrine
sources such as TGF-B1 stimulate the transcriptional
induction of PDGFR-B in quiescent HSC, thereby



Hepatology Research 2014; 44: 460-473

rendering them responsive to PDGF-B chain molecules.
Among several activating pathways, the autocrine
loop exerted by PDGF-PDGFR signaling is regarded
as one of the most potent mitogenic pathways for
HSC.#* Although PDGEF itself seemed unaffected in our
study, our quantitative analyses showed that cilostazol
significantly suppressed PDGFR-f in HSC (Fig. 6¢,d).
Because the PDGF-PDGFR signaling not only pro-
motes myofibroblast proliferation but also participates
in other fibrogenic actions, including stimulation of
collagen production and promotion of cell adhesion, it
has been speculated that the activated PDGF-PDGFR
signaling pathway is a candidate target for antifibrotic
therapy in liver diseases.*® Indeed, focusing on PDGFR,
recent studies have shown attenuation of hepatic fibro-
sis by a PDGFR tyrosine kinase inhibitor.** In the
same sense, a blockade of the autocrine loop of PDGF-
PDGER signaling by cilostazol may also have multiple
benefits for preventing the development of hepatic
fibrosis.

Cilostazol is a selective inhibitor of PDE3, and PDE3
inhibition in platelets exhibits antithrombotic effects by
preventing platelet aggregation. Recently, increased
intracellular cAMP levels and activation of protein
kinase A (PKA) were reported to reduce PDGF-
stimulated cellular proliferation.”® Interestingly, cil-
ostazol has been shown to be effective against the
development of non-alcoholic fatty liver disease
through the activation of the cAMP/PKA signaling
pathway in vivo.® Although the exact mechanism
remains to be determined, there may be a link between
PDGFR downregulation and cAMP/PKA signaling in
HSC.

In conclusion, orally bioavailable cilostazol attenu-
ates HSC activation, possibly through the suppression
of PDGFR expression in HSC, and thereby alleviates
hepatic fibrogenesis. Further studies may yield a future
intervention strategy against liver diseases.
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SUPPORTING INFORMATION

DDITIONAL SUPPORTING INFORMATION may
be found in the online version of this article at the
publisher’s web-site:

Video Clip 81-83 Time-lapse motion pictures of cul-
tured hepatic stellate cells (HSC) with or without dil-
ostazol treatment.
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Introduction

Specific and sensitive noninvasive biomarkers for the detection
of human diseases, including malignancies, are urgently required
to reduce worldwide morbidity and mortality caused by cancer [1—
3]. Although some successful use of transcriptome components as
biomarkers was reported [4,5], circulating microRNAs have also
recently been identified as new clinical biomarker candidates [6—
12]. MicroRNAs are post-transcriptional regulators that are
involved in many physiological and pathophysiological conditions.
A recent study by Keller ¢ al. [13] compared the expression
profiles of hundreds of blood-borne microRNAs across a variety of
nonmalignant and malignant diseases to identify disease-specific
expression patterns. The resulting microRNA expression data
could be used to discriminate disease samples with a high level of
accuracy, demonstrating the potential use of microRNA signatures
for blood-based diagnosis of disease. Using extensive bioinfor-
matics research, Keller ¢ al. demonstrated that a wide range of
cancers and other diseases could be discriminated from healthy
controls by only miRINA expression. The data set Keller ef al. used
was the most extensive data set ever reported, i.e., it included
various types of diseases (14 diseases plus normal controls) and a
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large number of patient (n=384) and control (n=70) data sets
from a large number of blood-based miRNA biomarker studies.

In spite of this, sclecting a biomarker based on feature-
extraction techniques remains challenging. Although Keller ef al.
[13] successfully discriminated cancers and other diseases from
healthy controls by using the expression of only 10 miRNAs (see
Supplementary Table 6 on page 14 of their Supplementary
Materials), they did not state which 10 miRNAs were selected
because of the problem of stability, raised by Abeel et ol [14].
Stability is the measure of how stable feature selections are. For
example, suppose we have 2 set of samples, each of which consists
of 2 categories. When features are independently extracted so as to
discriminate 2 categories for each sample, if' the majority of
selected features are common between the 2 samples, it can be
considered a stable feature extraction, If not, it is unstable. That is,
if selected features fluctnate depending on the sample, the stability
of feature selection is poor. Conversely, if most features are
selected independent of the sample, the stability of feature
selection is high.

Although Keller et al. [13] employed 10-fold cross-validation,
the selection of 10 miRNAs fluctuated between trials (see
demonstration in the “Stability” subsection below). This prevented
them from presenting 10 specific miRNAs as biomarkers to
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discriminate patients with cancers and other discases from healthy
controls. This is a significant disadvantage of their research if it is
to be applied for clinical use, since it is impossible to decide in
advance which miRNAs should be employed as biomarkers.

In order to overcome this problem, we propose a new feature
selection technique to select miRINAs as biomarkers. This method
is based on principal component analysis (PCA), more specifically,
sparse PCA [15-19].

PCA [20] is a type of dimensional reduction or ordination
analysis. Ordination analysis attempts to embed objects distributed
in high dimensional space into lower dimensional space. In PCA,
dimensional reduction is achieved by projection to lower
dimensional space using linear transformation. Although PCA is
a simple and classical method, it can often effectively reduce
redundant information.

Sparse PCA is defined as follows. In contrast to ordinary PGA,
which employs all features to express lower dimensional space,
sparse PCA tries to express lower dimensional space by a smaller
number of features, even if the accuracy decreases. That is, sparse
PCA is a feature extraction method that eliminates unnecessary
features through a method that is not uniquely defined, but varies
depending on the implementation.

Some similar trials of this kind using clustering-based feature
extraction have been reported [21,22]. For example, Liu et al
[23,24] proposed gene selection using spectral biclustering, Dy ¢f al
[25] used hierarchical clustering for feature selection of lung
cancer image classification, and Modha et al [26] made use of k-
means for feature extraction. However, these are feature selection
methods that require prior knowledge of class partitions or
labeling. At minimum, prior to feature selection, the previous
methods require knowledge or inference of the number of clusters,
which our current approach does not require. Moreover, there has
been no discussion of the stability of feature sclection when using
these cluster-based feature selection criteria. Such stability
problems have started to be discussed only very recently [14].

In contrast to both of these above-mentioned general feature
extraction approaches and several previously proposed feature
extraction methods especially designed for gene expression
analysis, ¢.g., significance avalysis of microarrays (SAM) [27],
gene selection based on a mixture of marginal distributions
(gsMMD) [28], and ensemble recursive feature elimination (RFE)
[14], our approach is free from stability problems. These types of
classification-independent and stability-problem-free approaches
were invented only very recently (e.g., unsupervised feature
filtering (UFF) [29]) and are still very rare.

For each pair of diseases and normal controls, our approach
enabled the selection of a set of 10 strict (confident) miRNA
biomarker candidates. Fach set of miRNAs could not only
accurately discriminate patients with each disease from normal
controls, but could also accurately discriminate one disease from
another. Moreover, most of the sets shared the majority of
miRNAs, which would allow for simplification of the measurement
of a biomarker since a limited number of sets of miRNA
measurements would permit the discrimination of several diseases.

The reason why we tried to employ blood-based biomarkers in
spite of the drawbacks that miRNAs in blood inevitably reflect the
whole body status and thus have less of a relationship with targeted
diseases is because previous studies have demonstrated that the use
of several circulating miRNAs can work well in a practical sense.
Thus unification and consideration of our analysis results will
improve the ability of miRNAs as biomackers.
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Materials and Methods

Feature Extraction Methods ,

PCA-based feature extraction. Suppose we have the
miRNA profiles x,(i=1,...,Nj=1,...,M), each correspond-
ing to the ith miRINA in the jth sample. N and M are the total
number of miRNAs and samples, respectively. Samples were
classified into L clinical sets, G,(I=1,...,L). We applied PCA to
the {x;} set in 2 ways:

1. Method 1 (miRNA-based): Substitute K (< M) principal com-
ponent (PC) score {xu,k=1,....K} to {x5j=1,...,M}. In
this case, PCA was applied to a matrix {x;}.

2. Method 2 (sample-based): Substitute Kn(<N) PC score
{xgk=1,...,Kn} to {xpi=1,...,N}. In this case, PCA
was applied to a transverse matrix {x;;}.

PCA-based feature extraction was performed as follows.

1. Choose a pair of clinical sets, / and /.
2. Compute Xy with Method 1 PCA from {xzlje G;UGr}.
3. Compute distance 7,

&
= foki
b=1

where K%(< X} is the number of components to be used for
feature selection.
4, Select miRNAs i’ with top Ni(<HN) rs.

Ni miRNAs are a set of selected features to distinguish clinical
sets / and . Throughout this paper, K¥ was assumed to be 2
unless stated otherwise. PCA was computed by the prcomp
function in the R base package [30].
Tt should be noted that our method did not use any classification
information. This enabled us to obtain stable feature extractions.
t-test based feature extraction. The P-value for the ith
miRNA between {x;[/€ Gi} and {xj|f € G2} was computed using
a ¢ test. The top Ny miRINAs with smaller P-values were selected.
SAM.based feature extraction. The P-value for the ith
miRNA between {x;lj€ Gi} and {x;|i € G,} was computed using
SAM. The top N; miRNAs with smaller P-values were selected.
gsMMD-based feature extraction. Significantly up- or
downregulated miRNAs were selected by gsMMD, which was
implemented in Bioconductor software. The P-values for up- or
downregulation were considered separately, and the top N
miRNAs were selected for both up- and downregulated miRNAs,
RFE- and ensemble RFE-based feature extractiom. As
described by Abeel et al. [14], the support vector machine with a
linear kernel was applied to 40 independent resampled sets (with
replacements) for ensemble RFE. After 100 independent cross-
validations with 10% test samples and 90% training samples, the
top Ny miRNAs with better accuracy were extracted. TFor
simplicity, we employed only complete linear aggregation for
weighting among each resampled set. No resamplings were
conducted for simple RFE, and only cross-validations were
performed. The top Ni miRNAs with better accuracy were
selected.
UFF. As described by Varshavsky et al [29], differential
singular value decomposition (SVD)-entropy AH;,
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where s; is a singular value and # is the total nurnber of miRINAs,
was attributed to each miRNA. After 100 independent cross-
validations with 10% test samples and 90% training samples, the
top Ny miRNAs with larger AH; were selected.

PCA-based Linear Discriminant Analysis (LDA)
PCA-based LDA was conducted as follows:

Choose a pair of clinical sets, / and /',

N

If necessary, apply feature extraction and reduce the
number of miRNAs used for LDA.

Compute xgj,(k=1,...,Ky) using Method 2 PCA.
Divide samples into training and test sets.

Apply LDA to training set.

Validate performance of LDA using test set.

N oo

Repeat steps 46 the specified number of times
depending on the employed cross-validation method.

o

Compute performance with averaged values.

9.  Estimate the optimal value of K,, by repeating steps 3—
8 as K, changes.

It should be noted that the division between training and test
sets was carried out AFTER the computation of PCA (and feature
extraction if necessary). Thus, xj; includes the test set information
as well. Feature extraction, if applied, was also conducted before
division was performed; thus, it was sampling free. One may
suggest that this was erroncous since we do not know the
classification of the test set. However, we can compute the PCA
even if we do not have prior knowledge of the classification
because we do not need classification information to compute x;;.
This is explained in the “Why did PCA-based feature selection
work so well?” subsection in Results and Discussion section as well.
The LDA was computed by the lda function in the R base package
[30].

miRNA Expression and Normalization

The miRNA expression used in this study was obtained from
the Gene Expression Omnibus (GEO) accession number
GSE31568, which was used by Keller et al. [13]. We downloaded
GSE31568_raw and normalized miRINA expression within each
sample to obtain the mean and standard deviation (SD).

Stability Test

As in Abeel ¢t al. [14] and Varshavsky e al [29], we evaluated
whether the selection of miRNAs for the discrimination between
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patients with discases and healthy controls was stable [13]. The
procedure was as follows:

1. Choose a pair of clinical seis, each including one
cancer or other disease sample and one healthy control

sample.

2. Pick 90% samples randomly, independent of classifi-
cation.

3.  Apply feature selection to select 10 miRNAs as
biomarkers.

4.  Repeat steps 2 and 3 a total of 100 times and count the
frequency of each miRINA selection.

5. Repeat steps 2-4 for all pairs of diseases and healthy
controls.

The above procedures were applied to all feature extraction
methods, i.e., those based on r-tests, PCA, SAM, gsMMD, RFE,
RFE ensemble, and UFF.

Amount of Contribution from each miRNA to
Discrimination

Suppose we obtained xg; by PCA analysis after PCA-based
feature extraction was applied. Then

Km
Kigg = E Qike Xiy
i=1

If we applied LDA to discriminate one cancer or disease from
one healthy control using xij, we obtained the discriminant
function LD; as

PC

PC rC K K
LDj= bexg= Y bi > awxy=y brai |xy,
k=1 =1 i i

i=1 \k=

for the jth sample, where PC is the number of PCs used for
discrimination. Typically, a positive (negative) LD; indicates that
the sample j represents a patient with cancer or another disease
(healthy control) sample. Then, the amount of contribution, Cj, of
miRNA 7 to the discriminant function is

PC
C; = Z bkafk.
k=1

KEGG Pathway Analysis of miRNA Target Genes

DIANA-mirPath. DIANA-mirPath [31] is a2 web tool. We
used this sofiware version for the implementation of multiple
miRNAs (http://diana.cslab.ece.ntua.gr/pathways/
index_multiple.php). DIANA-mirPath accepts a set of miRNAs,
estimates union of miRNA target genes, and finally computes P-
values that describe KEGG pathway enrichment of the target
genes. For the data set of our selection, we extracted up- or
downregulated sets of miRNAs and uploaded them onto DIANA-
mirPath. Using default settings, DIANA-mirPath employed a list
of target genes estimated by DIANA-microT v4.0. When we
needed to infer P-values attributed to KEGG pathways for other
studies, we uploaded a set of miRNAs identified as biomarkers in
the relevant research.
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Starbase. Starbase [32] is another web tool. Among several
tools provided by Starbase, we used miRPathway(http://starbase.
sysu.edu.cn/miRPathway.php) to infer P-values attributed to
KEGG pathways. Instead of target gene tables inferred compu-
tationally, Starbase employed cross-linking immunoprecipitation
(CLIP)-Seq data. This has both advantages and disadvantages.
One advantage was the certainty of the miRINA target, while one
disadvantage was the range of targets. If some genes are listed as
targets of some miRINAs, it is very likely true. On the other hand,
if no CLIP-Seq data exists for targeted diseases, there are likely no
disease-specific miRINA target genes listed. Thus, we employed
Starbase to support mirPath software. The lack of detection of
KEGG pathways listed by mirPath is not discussed here. All
parameters were kept as default values.

Results and Discussion

Simulation

Before performing biomarker selection of miRNAs for real data
sets, we performed numerical simulations that compared our
proposed method with 2 other methods, i.e., SAM-based and f-test
based feature extraction (for details, see §1 Simulation in Text 82).
In this simulation, we prepared 100 miRNAs with 200 samples.
The first 100 samples belonged to category 1, while the second 100
samples belonged to category 2. Among 100 miRNAs, only the
first 10 miRNAs exhibited distinct expression between the 2
categories. The task is to select 10 correct miRINAs among the 100
miRNAs and achieve better performance for the discrimination
between the 2 categories. We tested 3 scenarios. In the scenario 1,
expression differences of the 10 miRNAs were kept constant, while
noise added to these 10 miRNAs was varied. In scenario II, the
expression differences of the 10 miRNAs varied, while the noise
added to these 10 miRINAs was kept constant. In scenario I1I, both
expression differences of the 10 miRNAs and noise added to the
10 miRNAs were varied simultancously (Table 1, for more
detailed discussion, see Text 52). Then, we found that our method
outperformed the other 2 methods over a wide range of
parameters. Thus, we concluded that our method can achieve
both better performance of discrimination and more ability to
select features that differ between the 2 categories. R core that
generates simulation data set used in this study can be found in
Text 83.

Biomarker Identification for the Discrimination of
Patients with Cancers and other Diseases from Healthy

Controls

Based on the findings in the previous section, we employed and
applied PGA-based feature extraction to biomarker identification
for cancers and other diseases [13]. As we will explain in the “Why
did PCA-based feature selection work so well?” subsection in this
section, since our PCA-based feature extraction was free from
sampling, we could strictly define the top 10 miRNAs that were
distinct between pairs of clinical samples and healthy control
samples (Table 2). The rcasons we employed 10 miRNAs as
biomarkers were as follows. First, a previous study [13] extensively
studied a situation in which 10 miRNAs were employed as
biomarkers, making it easy for us to compare our findings with
their discrimination performances, e.g., accuracy, sensitivity, and
specificity. Second, as can be seen below, using 10 miRNAs as
biomarkers allowed us to achieve sufficiently good performance.
Third, measurement of 10 miRNAs is practical for clinical use.
Finally, as stated in the previous section, 10 miRNAs were
sufficient to achieve a performance comparable to that of all (100}
miRINAs.
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Table 1. Performance of several feature extraction methods
for scenario 1l

Accuracy # of miRNAs

Accuracy and the number of correctly selected miRNAs among 10 miRNAs with
distinct expression between the 2 classes {averaged over 100 trials) for ttest-,
PCA-, and SAM-based feature extractions. Scenario it was employed. Upper
rows indicate easier classification problems. D, and D, represent the
arnplitudes of mean and standard deviation of the first 10 miRNAs that exhibit
distinct expression between the 2 categories.
doi:10.1371/journal.pone.0066714.t001

We can also make use of these 10 selected miRNAs for
discrimination between patients with diseases and healthy controls.
The performance of PCA-based LDA between patients with
discases and healthy controls using only these 10 miRNAs is
summarized in Table 3. In contrast to Keller e al. [13], we
successfully identified 10 miRNAs as biomarkers. Keller e/ a/ could
not do this because f-test-based feature extraction is highly
dependent on divisions between training and test sets. Since they
carried out 100 division trials, it would have been impossible for
them to create a definite set of 10 miRNAs (see the “Stability”
subsection in this section). i

Instead of a list of 10 miRNAs used for discrimination, they
listed miRINAs that were deregulated in at least 6 diseases (Keller
et al. [13] Supplementary Table 2). Surprisingly, there was very
little overlap between the miRINAs reported by Keller ¢t a/ and the
miRNAs reported in our Table 2 in the present study. In fact, the
only overlapping miRNA was hsa-miR-16. Even if we took
Figure 1 in the study by Keller ¢ a/. {13] into account, where
upregulated miRNAs were considered together, no other miRINAs
were selected both in their paper and in the present study.

Recently, Keller et al. [33] attempted similar research with next-
generation sequencing. They renewed a list of significant miRINAs
in the supplementary information of their original study, but
again, there were only 2 overlaps with the current study, i.e., miR-
425 (for gastric cancer and Wilm’s turnor) and miR-140-3p (for
melanoma, ovarian cancer, and periodontitis).

Coemparison with previous studies. In order to validate
our selections independent of the research by Keller et al, we have
reviewed the literature for previous reports to support our findings
that these miRNAs are closely related to cancers and other
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Table 2. miRNAs selected to distinguish patients with cancers or other diseases from healthy controls by PCA-based feature extraction.

other COPD {chronic
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+ (- indicates that the miRNA was expressed in patients with cancers or other diseases (healthy controls).

“indicates that the miRNA was not selected within the top 10 most significant miRNAs contributing to discrimination, A-C: miRNAs belongling to common clusters, which were defined by an inter-miRNA distance of 1 kbp.
Coincidence within clusters A and C are underlined. See Fig. 5 for actual amount of expression/suppression.

doi:10.1371/journal.pone.0066714.t002
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discases. We discovered a large number of previously published
reports supporting the relationship between diseases and the
miRNAs observed in this study (Table 2 and Text S1). Although
the reports were not always consistent, miR-15b, miR-185, miR-
140-3p, miR-320a, miR-486-5p, miR-16, and miR-30d were
found to function generally as tumor suppressors, and miR-425,
miR 92a, miR 191, miR 106b, and miR-19b were primarily
oncogenic. In order to confirm the validity of our evaluation, we
listed the reported up- and downregulated miRNAs in several
cancers in Table 4. However, since not all miRNAs have been
reported to be up- or downregulated, the fact that most of the
miRNAs in Table 2 were also included in Table 4 (with the
exception of miR-320, miR-486, and miR-191) supports the
notion that our findings agree with those of previous studies. Their
up- and downregulation patterns are essentially consistent with
what we have described above, since a tumor suppressor
(oncogene) should be suppressed (expressed) in cancers. Among
these, some miRINAs exhibited slightly more complicated func-
tionalities. For example, miR-185 was frequently upregulated in
cancers (see Table 4) while its expression sometimes suppressed
cell proliferation (see Text SI). Another example of an miRINA
with complicated features is miR-15b, which was not always
suppressed in tumors. As shown in Table 4 this miRNA was
upregulated in colon cancer, but sometimes inhibited tumor
function (see Text Sl). This somewhat difficult-to-understand
situation can be observed in expression profiles as well. Even when
reviewing a heat map (Fig. 51), one can discern that no specific
expression of miRNAs was associated with cancers and other
diseases. Thus, we need to develop approaches that are more
sophisticated than observing individual miRINA expression one at
a time.

Probability of different disease sharing same miRNA
subsets. If we also consider the fact that our list was common
for most of the comparisons between healthy control samples and
disease samples, we believe that our list of miRNAs as biomarkers
to distinguish between patients with cancers or other diseases and
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Table 3. Performance of PCA-based LDA for discrimination between patients with cancers or other diseases and healthy controls.
cancer or

other disease PC Accuracy Specificity Sensitivity Precision
lungcancer = . 5 0784 0800(H - 0.750.(+) o 0632
Other pancreatic tumors 7 0.814 (H 0.771 0.875 (J;) 0.724

and diseases

Pancreatitis 8 0833 S o0
Guarian cancer 6 0800 0867 (1) 0.464
copp 2 0713 (=) 083 oy
Ductal pancreatic cancer 2 0.765 (—) 0.800 (+) ‘ 0.667
Gastric cancer 9 0,855,({-) R AGE . 0846 : 0524
Sarcoidosis 10 0.835 (—) ' 0.800 (+) ' 0.889 (~) ' 0.741
Prostate cancer 5 ! 0.806 (+) 0800 ¢+ 086 (n 0.576
Acute myocardial 7 0.789 {—) 0.900 0.?57 {-) ' 0.964
infarction

Periodontitis 10 0.807.(+) 0814 (+) 0778(=) 0519
Multiple sclerosis 10 0.892 (+) 0.871 (1) 0.957 (+) 0710
Melanoma 10 0857(=) 0857() 08 0.756
Wilm's wimor 7 0.867 0.388 0.600 0.273

+ (—) indicates that the performance was better (worse) than that of Keller et a/ [13]. PC is the number of PCs used for PCA-based LDA. LOOCY was applied. See the
Table in the study by Keller et af [13] on page 14 of the Supplementary Materials.

doi:10.1371/journal.pone.0066714.t003

healthy controls was accurate. Such a trend would rarely occur
only because of simple accidental/coincidental agreement; there
are too many miRNAs for this to occur by chance. Suppose that
there are N miRINAs and we select N among them. Assuming the
selection of 10 miRNAs as biomarkers from a total 862 miRINAs
are independent of each other, the expected number of miRNAs
being always sclected for 14 sclections is 8 % 1077, when N =862
and Ny =10. This is much less than the number of common
miRNAs in Table 2, ie., 8 (miR-425, miR-15b, miR-185, miR-
92a, miR-140-3p, miR-320a, miR-486-5p, and miR-16). Thus,
our list is plausible even if it does differ dramatically from
Supplementary Table 2 reported by Keller ef al. [13]. Neverthe-
less, there are no theoretical/biological reasons that a set of 10
representative miRNAs used to discriminate between patients with
cancers or other diseases and healthy controls must be unique.
Disease-specific co-expression of miRNAs. In order to
understand more deeply how each miRNA cooperatively
discriminates between cancers or other diseases and healthy
controls, we visualized the contribution of each miRNA to
discrimination (Fig. 1 and Table 2). Since LDA is a linear
method, it allowed us to do this easily (see Materials and Methods).
Interestingly, miRINAs that belong to the same cluster, defined
by a inter-miRNA distance of 1 kbp, often share combinations of
positive/negative contributions. For example, in Table 2, there are
remarkable coincidences between miR-92a and miR-19b in the
rows labeled “C” in the left column and those in the same row that
are underlined. Three (lung cancer, ductal pancreatic cancer, and
melanoma) out of 4 cancers or other diseases for which
contributions of miR-19b are bLsted shared the same outcomes,
although they were not significant {(P=0.3125). Similarly, miR-
425 and miR-191 (rows “A” and underlined in the same row in
Table 2) had the same positive/negative contributions for 10
(P =0.046) out of 13 cancers or other diseases, whereas miR-191
made non-zero contributions (3 exceptions: gastric cancer,
sarcoidosis, and melanoma). However, since this does not hold
true for miR-15b and miR-16 (rows “B” but not underlined in the
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Figure 1. Individual contributions of miRNAs to discrimination
between patients with cancers or other discases and normal
controls. The height of the bars indicates the amount of contribution
from each miRNA in discriminating patients with cancers or other
diseases from healthy controls. A positive (negative) value indicates that
the miRNA was expressed in patients with cancer and other diseases
(healthy controls). The order of cancers or other diseases is the same as
that in Table 2 (top to bottom): lung cancer {black), other pancreatic
tumors and diseases (red), pancreatitis (green), ovarian cancer (blue),
COPD (cyan), ductal pancreatic cancer (pink), gastric cancer (yellow),
sarcoidosis (grey), prostate cancer (black), acute myocardial infarction
(red), periodontitis (green), multiple sclerosis (blue), melanoma (cyan),
and Wilm’s tumor {pink).

doi:10.137 1/journal.pone.0066714.g001

same row in Table 2 because of the small number of coincidences),
this is again not as straightforward as expected:

Some miRNAs appeared to be consistent with their known
functions. For example, miR-486-5p is known to be a tumor-
suppressive miRINA (see above and Text S1). As can be seen in
Fig. 1, miR-486-5p was more highly expressed in normal controls.
On the other hand, miR-92a was more highly expressed in cancers
and other diseases, which was consistent with the previous belief
that the miR-~17-92 cluster is oncogenic.

Moreover, some miRNAs exhibit features contrary to previous
findings. For example, miR-106b and miR-425 are believed to be
oncogenic miRNAs but are expressed mainly in normal controls
(Fig. 1). These apparent discrepancies may result from the
measurement of miRNAs from blood samples. If we examine

PLOS ONE | www.plosone.org

PCA Based Feature Extraction of miRNA Biomarkers

the PhenomiR database [34], we would find many cases in which
expression in blood differs from that in tssues. For example, miR-
140 is reported to be downregulated in lung cancer tissues
(database IDs 132 and 134), but is overexpressed in serum from
patients with lung cancer {database ID 503). miR-92a-1 is reported
to be downregulated in lung cancer tissues (database IDs 530 and
543), but is overexpressed in serum from patients with lung cancer
(database ID 503). These findings in blood are in agreement with
those of the present study, demonstrating that miR-140 and miR-
92a are expressed in the blood of lung cancer patients (Table 2 and
Fig. 1). Similarly, mir-92a is highly expressed in hepatocellular
carcinoma (FICC), but is decreased in plasma from HCC patients
compared with that from healthy donors [35].

One may still wonder whether miRNAs in the blood can
function as useful biomarkers in spite of these disagreements with
tissue miRNAs. However, there are many studies that have
reported inconsistencies between miRINAs in the blood and tissue
miRNAs; these studies have still concluded that miRNAs in the
blood can function as useful biomarkers [36-40]. For more
detailed discussions of these studies, see §3 Frequent disagreement
between blood and tissue miRNAs in Text 52.

KEGG Pathway Analysis for miRNA Target Genes

Although a substantial number of studies have supported that
the miRNAs selected in this paper are associated with several
cancers and diseases, relating these miRINAs with specific diseases
directly and biologically would be a more effective approach. One
such mcthod is to check whether any KEGG pathways were
curiched with sets of miRNA turgel genes. As cau be seen u the
following results, our findings were validated as biologically
meaninglul. Up- or downregulated sets of miRNAs are selected
from Table 2 and uploaded them onto DIANA-mirPath.

Cancer-related pathways. Some pathways directly related
to specific cancers were included in the KEGG pathways. For
these cancers and cancer-related diseases, it was not difficult to
validate whether the up- or downregulated miRINA target genes
are related to cancer. In Table 5, we list target-gene enrichment of
KEGG pathways annotated as cancers investigated in our study
{Table 2). For lung cancer, ductal pancreatic cancer, pancreatitis,
other pancreatic tumors and diseases, prostate cancer, and
melanoma, corresponding cancer-specific pathways were enriched
with miRNA target genes that were up- or downregulated between
patients with cancer or cancer-related diseases and healthy
controls. Thus, our selection of miRNAs as biomarkers in this
study was biologically validated.

Other pathways. Although there were no other KEGG
pathways directly related to diseases, many previously known
disease-related pathways are enriched with miRNA target genes.
For more details about KEGG pathway enrichments related to
other diseases, ie., ovarian cancer, gastric cancer, chronic
obstructive pubmonary disease (COPD), acute myocardial infrac-
tion, Wilm’s tumor, and periodontitis, see §2 KEGG pathway
analysis in Text S2.

Stability
In order to confirm the findings above, i.e., commonness of
miRNAs that can discriminate patients with cancers or other
diseases from healthy controls, we evaluated the stability of the
selection (for methodological details, see Materials and Methods).
The concept of stability was defined as follows:
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Table 4. miRNAs in Table 2 whose up- and/or downregulation in any cancer was reported in the study by Bandyopadhyay et al.

miRNA Cancer iype

Expression

Mean fold change

hsa-miR-185

hsa-miR-92-2

hsa-miR-140
hsa-miR-140

hsa-miR-16-1

Uterus/endometrial _cancer

B cell CLL
Central nervous system

hsa-miR-191

hsa-miR-30d Central nervous system

Upregulated

Upregulated

Downregulated

1.5-fold increase

1.42-fold increase

11.4-fold reduction

3.2-fold reduction

doi10.1371/journal. pone 0066714.t004

Suppose we have a set of samples, generate subsamplings many times,
and apply feature extraction to each subsampling. Stabnlity is defined as
the amount of overlapping features over all subsamplings.

If there are no features selected for all subsamplings, we can
define stability alternatively by the average frequency that each
feature is selected. The importance of this concept was not
recognized until very recently. Abeel ef ol [14], pointed out this
issue and proposed a new method that grants better performance
regarding stability, RFE, and ensemble RFE. However, their
method still requires classification information as prior knowledge.
Earlier, Varshavsky e al [29] described UFF, to our knowledge,
the first classification-free feature extraction method.

Thus, the concept of stability was not newly introduced by the
present authors, but has already been discussed by others [14,29].
According to our results, our implementation is the suitable that
resolves the difficulty of stability of feature extractions.

Although UFTF and our method are sampling-independent, as
mentioned above, we checked the stability of our method for
discrimination between diseased individuals and healthy controls,
following the methods of Abeel et al. [14] or Varshavsky et al [29].
In our case, there were 14 discases represented in the samples.
Thus, we attempted to discriminate the normal control from each
of the 14 diseases. Since 10 miRINAs were selected for each
discrimination event, a total of 140 miRNAs were selected as
biomarkers, although each miRNA could be selected more than
once if it was selected in a different discrimination event. These
140 miRNAs could change at every subsampling. Next, we
checked whether each miRINA could always be selected for all of
subsamplings. If the number of miRNAs that was always selected

PLOS ONE | www.plosone.org

Any miRNAs listed in the Additional File in the study by Bandyopadhyay et al. {411,

as biomarkers was large, this means that the method was stable.
We found that 8 miRNAs, i.e., hsa-miR-425, hsa-miR-15b, hsa-
miR-185, hsa-miR-92a, hsa-miR-140-3p, hsa-miR-320a, hsa-
miR-486-5p, and hsa-miR-16, were always selected by our
method with 100% probability as biomarkers, independent of
cancers and other diseases. Hsa-miR-191 and hsa-miR-106b were
selected with 100% probability as biomarkers for 9 and 5 out of 14
cancers or other diseases, respectively. In addition to this, hsa-
miR-19b was selected as a biomarker with 100% probability 3
times. Thus, in total, 8x1449+45+3=129 miRNAs were
selected as biomarkers with 100% probability. Furthermore, all
miRNAs selected as biomarkers for any cancer and diseases (Table
51) have also appeared in Table 2. Thus, it is clear that our
miRINA selection was highly independent of sampling.

We also examined the stability by f-test-based feature extrac-
tion, as proposed by Keller et al. [13]. As expected, their results
were too scattered to allow for the proposal of well-defined
biomarkers consisting of 10 specific miRINAs. By our evaluation, it
is very rare for an miRINA to be selected as a biomarker for cancer
or other diseases with 100% probability in {-test-based feature
extraction. In fact, there were only a total of 40 miRNAs selected
as biomarkers with 100% probability (Table S1) in t-test-based
feature extraction; our method identified 129 miRNAs. Based on
this, it is almost a certainty that the reason Keller ¢ al. [13] could
not present 10 specific miRNAs as biomarkers was this heavy
fluctuation. We also examined SAM, up- and downregulation by
gsMMD, RFE, ensemble RFE, and UFF. We identified 30, 5, 1, 1,
0, and 111 miRNAs, respectively, that were selected as biomarkers
with 100% probability (Table S1). Although UFF was as good as
our novel method, UFF requires execution of SVD as many times
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Table 5. Cancer-specific KEGG pathways enriched in miRNA target genes.

DIANA-mirpath

Starbase

up

up Down

hsa05223 Non-small cell lung cancer

hsa05200
KEGG ID.
hsa05212

Pancreatic cancer 9.71

Pathways in cancer

hsa05212
i

Pancreatic cancer 1193

Prostate cancer

hsa05218 Melanoma

. Ductal pancreatic cancer

description Panc;eétitié
15205212 ancreatic ns gl 214005 a0e0z
hsadSZOd Patﬁways in cancer - iHé-OS 1.27e-03
KEGG ID. ' destription -~ . " Other pancreatic tumors and diseases - o - L
' at ' 2‘20 e-04 1.01e-03

7.31 4.26e-02 -

5.69e-02

- 4.04e-04

DIANA-mirpath gave —log,P-values while Starbase gave adjusted P-values.
doi:10,1371/journal.pone.0066714.1t005

as the number of features (in this case, the number of human
miRNAs, i.e., 862), while our method requires execution of PCA
only once; thus, there was no need for us to employ UFF instead of
our proposed method. Therefore, it is clear that our method
outperformed others from the perspective of stability of feature
selection.

However, it is also true that UFF, which is the only other
classification-free feature extraction method, is the second best
method and is comparable to our method. This definitely
demonstrates the usefulness of classification-free extraction meth-
ods for the identification of blood-borne miRINAs as biomarkers to
discriminate between diseased individuals and normal controls.

Discrimination between Diseases

One may wonder whether miRINAs can be used to discriminate
not only between normal controls and diseased individuals, but
also between diseases. In order to answer this question, we applied
our methods to discriminate between diseases. As can be seen in
Fig. 82, discrimination between diseases was also quite good.
Thus, we may conclude that our methods can discriminate
between diseases.

Table 6 lists the miRNAs that were used for discrimination
between diseases. The miRNAs in Table 6 are almost identical to
those listed in Table 2. Additionally, most of the miRNAs in
Table 6 were also included in the miRNA list in Table 2. The
miRNAs that were included in Table 6 but were not included with
the miRINAs in Table 2, ie.,, miR-103, miR-22, and miR-720,
were selected only twice each among the total of 140 x 14 =1960
selections (see Table $2). Thus, the miRNAs selected for the
discrimination between patients with cancers or other diseases and
healthy controls can also discriminate between diseases well,

PLOS ONE | www.plosone.org

A list of cancer-specific KEGG pathways enriched in up- and/or downregulated miRNA target genes between normal controls and corresponding cancer patients.

except for discrimination between closely related diseases, e.g.,
pancreatitis, ductal pancreatic cancer, and other pancreatic
tumors and diseases, or lung cancer and melanoma, etc (for
details, see Fig. S3 and Table S3).

Why did PCA-based Feature Selection Work So Well?
Finally, we would like explain why PCA-based feature
extraction could select biomarkers that could be used to
discriminate patients with cancers or other diseases from healthy
controls, or to discriminate between patients with distinct diseases,
without the knowledge of classification. As can be seen in the
Materials and Methods, our PCA-based feature extraction did not
consider classification information, even in the training set. One
may find this odd because biomarkers should represent the
maximum difference between more than 2 distinctive groups. The
selection of useful biomarkers should not be possible without the
knowledge of classification. However, from our point of view,
sample selection itself contains important information about the
maximum difference between distinctive groups. If we attempt to
gather as many samples as possible belonging to each considered
and distinctive group, any features not directly related to
classification should be averaged out. For example, if one does
not consider gender at all, the male to female ratio should
converge to 1 to 1 when a large enough number of samples is
collected for each group. This should hold true for any other
feature not apparently considered. When PCA was applied to the
data set in this situation, the maximum distinctive feature detected
should be generated by considering any classification, as the others
should have been phased out. We believe that this is the reason our
PCA-based feature extraction could detect biomarkers well
enough to discriminate between patients with cancers or other
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Table 6. miRNAs used for discrimination between diseases.

Multiple selerosis 106b 140-3p 15b 16 185 191 19b 30d 320a 425 486-5p 92a

Pancreatitis
' pancreatic

Gastric cancer 486-5p 92a

Sarcoidoss  1403p b 16 185 3 ; 922

Melanoma 140~3p 15b 16 185 191 19b

Wilmstwmor 103 108b 1403p 15b 16 185 4865p 720
Prosfate cancer 106b 140-3p 15b 16 185 191 92a

Acute myocardial -~ 1066~ 1403p  15b 16 185 191 2

infarction - e e
Periodontitis 15b 185 486-5p 16 103 3o0d
Ovarian cancer106b  140-3p 6 18 191 T od. 0 w6:35p 22
corp  10sb 140-3p 156 16 185 191 19b 320a 425 48650 oz

Each row lists the miRNAs used for discrimination between the diseases, A set of 10 miRNAs among the miRNAs listed in each row was used for discrimination between
the disease shown in the left most column and any of other 13 diseases or normal control. Since 10 miRNAs were selected for each of 14 discrimination analyses, a total
of 140 miRNAs were selected as biomarkers. However, there are at most 14 miRNAs listed in each row. In addition to this, miRNAs shown in each row overlapped
significantly with each other. This means that miRNAs to be used as biomarkers to discriminate between diseases are highly disease-independent. More detailed
information about which 10 miRNAs discriminated between each pair of di or control/disease can be found in Table S2. All miRNAs excluding the mRNAs
underlined are also in Table 2.

doi:10.1371/journal.pone.0066714.t006

diseases and healthy controls in spite the lack of classification common miRNAs independent of the cancer or other disease
information being considered explicitly. considered. PCA-based LDA using these 10 miRNAs could

One may wonder whether other unsupervised clustering discriminate patients with cancers or other diseases from healthy
methods, e.g., hierarchical clustering and k-means, could have controls as well as or slightly better than discrimination using 10
worked as well. However, for these methods, well-defined clusters miRNAs selected by #-test-based feature selection. We have shown

must exist. This requirement is not always fulfilled. For example, ~ for the first time that the most distinctive feature of cancers and
although we tried to apply the feature extraction methods other diseases was not the expression of specific miRINAs, but that
proposed by Chaussabel ¢f al [4,5] and based on k-means of common miRNAs in a cancer- or disease-specific manner.

clustering of transcriptome, which was successfully applied for However, this conclusion may change if more samples are
their purposes, we could not get enough clusters within each considered and with cost of any technology coming down and the

highthroughputs methods getting smaller to fit benchtops,
detecting 100s of miRINA biomarkers identified through miR-
NAome studies might be much efficient and cost effective clinical

disease (at most 10 clusters, often only a few). That is, k-means
failed to converge when a large number of clusters of miRINAs was
assumed. This prevents us from effectively applying the method of me
Chaussabel ¢ al to our data sct of miRNAs. From this point of ~ @Pplication soon.
view, PCA, which does not require any clustering, is better than

other unsupervised clustering methods. Supporting Information
L . Figure §1 Heat map of miRNA expression for miRNAs
Validation Analysis shown in Table 2. Heat map of miRINA expression for miRINAs

In order to demonstrate that our proposed method is not selected to discriminate between patients with diseases or cancers and
specific to present data set treated here, we added two small scale normal controls. No miRINAs were shown to be specific to any disease.
validation analyses for independent data sets (See Tables S10 and Thus, it is clear that we need a combination of miRINAs to discriminate
511 in Text S4). The good performance in the validation analysis between controls and patients with cancers or other diseases.
suggests the robustness of our methodology. (EPS)

C lusi Figure 82 Percentages of performances shown in Fig.
onc U'Slon . 83. Percentages of discriminant performances (i.c., either of
In this paper, we.pmposed‘ a new feature extraction m.ethod precision, sensitivity, specificity or accuracy shown in Fig. S3) for
based on .PGA for biomarker identification from miRNAs in the 4y pairs of diseases and pairs of normal controls and diseases. The
kflOOd- With smutlauon daFa, our meth?d outperformed conven- total number of pairs was 15 x 14/2=1085. Percentages are based
tional methods in detecting informative components from 2  on the dlassifications, greater than 0.9 (magenta), between 0.9 and
mixture of informative components and noise. When our method 0.8 (blue), 0.8 and 0.7 (cyan), 0.7 and 0.6 (green), 0.6 and 0.5
was applied to miRNA expression in the blood of patients with {yellow) and less than 0.5 (red).
cancers or other diseases and normal controls, we identified 10 (EPS)
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Figure 83 Performances of discrimination between
diseases using the optimal mumber of PCUs. Accuracy,
sensitivity, specificity, and precision of each discrimination
between diseases using the optimal number of PCs. The 15
columns correspond to, from left to right, lung cancer, control,
multiple sclerosis, other pancreatic tumors and diseases, pancre-
atitis, ductal pancreatic cancer, gastric cancer, sarcoidosis,
melanoma, Wilm’s tumor, prostate cancer, acute myocardial
infarction, periodontitis, ovarian cancer, and GOPD. Actual
values can also be found in Table S3.

(EPS)

Table 81 Frequency of miRNAs selected by several
feature selections. Frequency of miRNA selection within 90%
sampling by feature selection based on PCA (100), i-test (100},
SAM (100), gsMMD_up (100), gsMMD_down (100), RFE (100),
RFE ensemble (100), and UFF (100). Numbers in parentheses are
the numbers of subsamplings. Cells filled with “100” indicate that
the miRINA was always selected by feature extraction for
discrimination between patients with the disease denoted at the
top of column and healthy controls.

(XLSX)

Table §2 Frequency of miRNAs selected for discrimi-
nation between diseases. The pair discriminated is the
intersection of the table and column names, e.g., if an miRNA
was selected by feature extraction for discrimination between lung
cancer and control, 1 was substituted in the cell located in the row
named for the miRNA and in the column named as the control in
the table named as “lung cancer”.

(XLSX)

Table 83 Performance of discrimination between dis-
eases using the optimal number of PUs. Accuracy,
specificity, sensitivity, and precision of discrimination between
diseases using the optimal number of PCs. The pair discriminated
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