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and ALT levels at death were not
different among CCl,-treated groups.
(e) Hematoxylin-eosin staining of liver
sections from each group (original
magnification x100). No obvious dif-
ferences in hepatocyte damage existed
among CCly-treated groups. (f) Mor-
phology of hepatocytes supplemented
with cilostazol for 1 day was observed
under a phase contrast microscope
(original magnification x200). The
morphology was unaffected by cilosta-
zol supplementation. On line plots,
each plot represents the mean of
measurements (n = 10). The box plots
present the median and 25th-75th per-
centiles. Upper and lower lines repre-
sent the minimum and maximum
values (n =10). CCl,, carbon tetrachlo-
ride; CLZ, cilostazol; CPG, clopidogrel.
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the 0.3% cilostazol-administrated group (0.44%; 95%
Cl=0.29-0.60) compared with that in the control
group (1.14%; 95% CI=0.55-1.72; P <0.05; Fig. 4c).
These results indicate that cilostazol has potent activity
to attenuate HSC activation in the liver through
unknown mechanisms.
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Cilostazol directly and effectively
inhibits the activation of HSC but not of
Kupffer cells

To reveal the possible mechanisms underlying these in
vivo observations, we performed in vitro studies in
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Figure 4 Cilostazol attenuated the expression of o-SMA protein in the liver. (a) o-SMA immunostaining of liver sections in each
group. Treatment with CCL for six weeks remarkably increased o-SMA expression. Among CCls-treated groups, the liver in
cilostazol-administrated groups has a reduced o-SMA-positive area compared with that in the control diet or clopidogrel-
administrated group (original magnification x100). (b) Quantification of the o-SMA positive area in each group. Cilostazol-
administrated groups had significantly decreased a-SMA positive areas compared with control diet and clopidogrel-administrated
groups. (¢) Measurement of a-SMA protein in the liver by immunoblotting. Administration of 0.3% cilostazol reduced o-SMA
levels in CCly-treated mice. The box plots present the median and 25th-75th percentiles. Upper and lower lines represent the
minimum and maximum values (n = 10). *P < 0.05; P < 0.001 vs CCl,-treated control diet group. -SMA, a-smooth muscle actin;
CCly, carbon tetrachloride; CLZ, cilostazol; CPG, clopidogrel; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

primary cultures of HSC. Generally, isolated HSC
undergo autonomous activation in culture, and the acti-
vation is associated with a depletion of retinoid drop-
lets, morphological change, cell proliferation, and
expression of several activation markers such as a-SMA
and collagen a1 (I). During 6 days of culture, control
HSC gradually lost retinoid droplets and showed
myofibroblast-like activated morphology, whereas
cilostazol-supplemented HSC maintained retinoid
droplets and retained quiescent morphology (Fig. 5a).
In addition, cilostazol suppressed HSC proliferation in a
dose-dependent manner, without showing cell toxicity
(Fig. 5b). The expression of o-SMA protein was dose-
dependently suppressed in the presence of cilostazol
(Fig. 5¢). Because Kupffer cells have been shown to be
implicated in liver fibrosis as well as HSC,'?%4° we
examined the effect of cilostazol on Kupffer-cell activa-
tion in wvivo and in vitro. Pathological examination
revealed a weak tendency for decrease in the F4/80 posi-
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tive (Kupffer cell) area in the liver of cilostazol-
administrated mice, however, we could not detect
significant changes in our experimental setting
(Fig. 5d,e), and no significant change was observed in
mRNA levels of tissue TNF-o. and TGF-B1 in the liver by
cilostazol treatment (Fig. 5f). In fact, cilostazol did not
affect the mRNA expression of F4/80 in isolated Kupffer
cells (Fig. 5g), suggesting the minimal effect of cilosta-
zol in vivo may be simply explained by the secondary
effect of the resolution of fibrosis. Likewise, cilostazol
exhibited an insignificant effect on the Kupffer cell pro-
duction of TNF-¢, IL-18, MCP1 and TGF-B1 (Fig. 5g).
These data together propose the notion that the in vivo
therapeutic efficacy of cilostazol is mediated, at least in
part, by its direct effects on HSC. If so, why did HSC
respond well to cilostazol? One possible explanation is
that HSC are more sensitive to cilostazol than other cell
types (e.g., Kupffer cells). Actually, cilostazol-induced
cAMP accumulation, which is an indicator for cilostazol
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Figure 5 Cilostazol suppressed the proliferation and activation of HSC, but did not affect Kupffer-cell activation. (a) Morphologi-
cal changes in HSC from 0-6 days were viewed on a phase contrast microscope (original magnification x200). HSC supplemented
with 15 pM cilostazol resulted in visible short cytoplasmic dendritic processes and perinuclear vacuoles containing retinoids. (b)
HSC proliferation was determined by direct count of the cell numbers. Cilostazol supplementation slowed the increase in cell
numbers compared with control. (¢) Immunofluorescent staining of o-SMA (red) in HSC on the second day of culture (original
magnification x200). The protein expression of o-SMA was decreased in cilostazol-supplemented HSC in a dose-dependent
manner. (d) F4/80 immunostaining of liver sections in each group. (original magnification x100). (e) Quantification of the
F4/80-positive area in each group. Cilostazol-administrated groups tended to show fewer F4/80-positive areas than the control, but
no significant differences were observed among CCl,-treated groups. (f) mRNA expression levels of TNF-a: and TGF-B1 in the liver
were not affected by cilostazol. (g) Expression of Kupffer cell marker (F4/80) and inflammation-related genes (TNF-o, IL-1B, MCP1
and TGF-B1) in primary Kupffer cells on the second day of culture was not altered by cilostazol. (h) Accumulation of cAMP in
primary cultured HSC and Kupffer cells. Cilostazol supplementation significantly elevated the cAMP level only in HSC. The box
plots present the median and 25th-75th percentiles. Upper and lower lines represent the minimum and maximum values (n = 4).
*P < 0.05; 1P <0.001; $P < 0.01 vs control group. 0.-SMA, a-smooth muscle actin; cAMP, cyclic adenosine monophosphate; CCly,
carbon tetrachloride; CLZ, cilostazol; DAPI, 4’,6’-diamidino-2-phenylindole dihydrochloride; HSC, hepatic stellate cell; 1L-1§,
interleukin-1B; MCP1, monocyte chemotactic protein-1; TNF-¢, tumor necrosis factor-o; TGF-B1, transforming growth factor-B1.
-e-, control; -=-, 5 UM CLZ; -4, 15 uM CLZ.
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inhibition of the PDE3 enzyme, was significantly higher
only in HSC supplemented with cilostazol (2.283; 95%
Cl=1.45-3.12; P<0.01) but not in Kupffer cells
(1.363; 95% CI = 0.4374-2.289; Fig. 5 h).

Cilostazol suppressed PDGFR expression
in HSC

To further delineate the effect of cilostazol on the acti-
vation of HSC, we characterized the cilostazol-affected
gene expression profiles during the activation phase of
HSC. First, to confirm the direct effects of cilostazol on
the gene activation mechanism of HSC, we examined
the a-SMA and collagen ou (I) gene induction. As sug-
gested by the previous data (Figs 2,4,5), mRNA induc-
tion of a-SMA was lower in cells supplemented with
5uM cilostazol (0.555; 95% CI=0.085-1.024) and
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15 UM cilostazol (0.221; 95% CI = 0.086-0.356) when
compared with the control (2.53; 95% CI =1.01-4.05;
P<0.01; Fig. 6a). Similarly, collagen ou (I) mRNA
expression was lower in cells supplemented with 5 uM
cilostazol (0.411; 95% CI=0.010-0.833) and 15uM
cilostazol (0.059; 95% CI =0.042-0.159) as compared
with the control cells (2.20; 95% CI=0.31-4.08;
P<0.01; Fig. 6b). Then, to gain further mechanistic
insight into the action of cilostazol on HSC, the mRNA
expression of PDGF-B, PDGFR-B and TGF-BRI, an
important cytokine and cytokine receptors for HSC acti-
vation, was determined. The expression of PDGF-B, one
of the most important mitogens for HSC, was un-
affected by cilostazol treatment (Fig. 6¢c), however,
PDGFR-B mRNA expression in the 5uM cilostazol-
supplemented cells (0.282; 95% CI = 0.104-0.460) and



Hepatology Research 2014; 44: 460-473 Cilostazol attenuates liver fibrosis 469
(9) n.s. n.s.
2.5 - n.s. 2.04 n.s.
! = i) i 1l
g 29 : 518 i
- - FEE
g 2 10- -
g8 ' m .. = =
< Q 05+
w 051 = =]
0.0 . 5 - 0.0 T T y
Control 5uM CLZ 15 uM CLZ Control 5uM CLZ 15 uM CLZ
n.s. n.s.
1.5 4 n.s. 1.5+ n.s.
° T o ==
© = ey
= 1.0+ &
2 g 01 & =
3‘ 0.5 ;35-
w U.oA - 0.54
z — .
'—
0.0 T T T 0.0
Control 5 uM CLZ 15 uM CLZ Control 5 uM CLZ 15 uM CLZ
n.s.
90 n.s.
o g
R
g 157
2
X 1.0
= =
T, 054
0.0 T - —-r—
Control 5uMCLZ 15 uM CLZ
(h) Hepatic stellate cells Kupffer cells
5+ T 4 n:s;
2
3 4 31
o 31
33 21
S 24
o
S 11 1
<
(&}
0 0
+ +
= - (15 um) = - (15 um)

Figure 5 Continued.

15 uM cilostazol-supplemented cells (0.336; 95%
Cl=0.036-0.636) was significantly decreased com-
pared with that in control cells (0.749; 95% CI = 0.290-
1.210; P < 0.001; Fig. 6d). In contrast, TGF-BR1 mRNA
expression was not affected by cilostazol treatment
(Fig. 6e). These results indicate the possibility that cil-
ostazol attenuates the activation-induced proliferation
of HSC through the abrogation of PDGF-autocrine

signaling by limiting the receptor (PDGFR-B) signaling
regardless of the ligand (PDGF) availability.

DISCUSSION

HE P.O. ADMINISTRATION of cilostazol effectively
prevents the development of CCls-induced liver
fibrosis in mice. In agreement with the previous study,
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cilostazol was not toxic to HSC as indicated by the
morphology and proliferation of the cells (Fig. 5a,b).”
It is noteworthy that unlike many other candidate medi-
cations, cilostazol is already widely used as an antiplate-
let agent in clinical practice with proven long-term
safety. For this reason, cilostazol holds potential to
become an antifibrotic agent for chronic liver diseases in
humans.

In the present study, we employed clopidogrel as
an alternative antiplatelet agent for the comparison.
Although both cilostazol and clopidogrel showed
minimal side-effects (Fig. 3), only cilostazol attenuated
liver fibrosis (Figs 2,4), suggesting that cilostazol may
have distinct antifibrotic mechanisms apart from its
antiplatelet action. This notion is consistent with the
results of the present in vitro study in which the treat-
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ment of primary HSC with cilostazol attenuated the
HSC proliferation (Fig. 5b) and the expression of a-SMA
and collagen al (I) (Figs 5¢,6), indicating the direct
effect of cilostazol on HSC. On the other hand, our in
vitro and in vivo studies showed only a minimal effect of
cilostazol on Kupffer cells (Fig. 5d,e,g h), and no signifi-
cant change was detected in inflammatory and fibro-
genic genes (such as TNF-o. and TGF-f1) by cilostazol
administration (Fig. 5f). These results lend support to
the concept that cilostazol exerts its antifibrotic effect(s)
via the suppression of HSC activation in vivo.

As reported,®***! PDGFR- was absent in quiescent
HSC, but was upregulated in an early stage of liver
injury. Activating factors from autocrine or paracrine
sources such as TGF-B1 stimulate the transcriptional
induction of PDGFR-f in quiescent HSC, thereby
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rendering them responsive to PDGF-B chain molecules.
Among several activating pathways, the autocrine
loop exerted by PDGF-PDGFR signaling is regarded
as one of the most potent mitogenic pathways for
HSC.** Although PDGEF itself seemed unaffected in our
study, our quantitative analyses showed that cilostazol
significantly suppressed PDGFR-B in HSC (Fig. 6¢,d).
Because the PDGF-PDGFR signaling not only pro-
motes myofibroblast proliferation but also participates
in other fibrogenic actions, including stimulation of
collagen production and promotion of cell adhesion, it
has been speculated that the activated PDGF-PDGFR
signaling pathway is a candidate target for antifibrotic
therapy in liver diseases.* Indeed, focusing on PDGEFR,
recent studies have shown attenuation of hepatic fibro-
sis by a PDGFR tyrosine kinase inhibitor.***¢ In the
same sense, a blockade of the autocrine loop of PDGF-
PDGER signaling by cilostazol may also have multiple
benefits for preventing the development of hepatic
fibrosis.

Cilostazol is a selective inhibitor of PDE3, and PDE3
inhibition in platelets exhibits antithrombotic effects by
preventing platelet aggregation. Recently, increased
intracellular cAMP levels and activation of protein
kinase A (PKA) were reported to reduce PDGF-
stimulated cellular proliferation.”’#® Interestingly, cil-
ostazol has been shown to be effective against the
development of non-alcoholic fatty liver disease
through the activation of the cAMP/PKA signaling
pathway in wvivo.”® Although the exact mechanism
remains to be determined, there may be a link between
PDGFR downregulation and cAMP/PKA signaling in
HSC.

In conclusion, orally bioavailable cilostazol attenu-
ates HSC activation, possibly through the suppression
of PDGFR expression in HSC, and thereby alleviates
hepatic fibrogenesis. Further studies may yield a future
intervention strategy against liver diseases.
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Objective: Liver fibrosis and subsequent cirrhosis is a major cause of death worldwide, but few
effective antifibrotic therapies are reported. Whey-hydrolyzed peptide (WHP), a major peptide
component of bovine milk, exerts anti-inflammatory effects in experimental models. A WHP-
enriched diet is widely used for immunomodulating diets (IMD) in clinical fields. However, the
effects of WHP on liver fibrosis remain unknown. The aim of this study was to investigate the
antifibrotic effects of WHP in a rat cirrhosis model.

Methods: Progressive liver fibrosis was induced by repeated intraperitoneal administration of
dimethylnitrosamine (DMN) for 3 wk. Rats were fed either a WHP-enriched IMD (WHP group) or a
control enteral diet (control group). The degree of liver fibrosis was compared between groups.
Hepatocyte-protective effects were examined using hepatocytes isolated from rats fed a WHP diet.
Reactive oxygen species and glutathione in liver tissue were investigated in the DMN cirrhosis
model.

Results: Macroscopic and microscopic progression of liver fibrosis was remarkably suppressed in
the WHP group. Elevated serum levels of liver enzymes and hyaluronic acid, and liver tissue hy-
droxyproline content were significantly attenuated in the WHP group. Necrotic hepatocyte rates
with DMN challenge, isolated from rats fed a WHP-enriched IMD, were significantly lower. In the
DMN cirrhosis model, reactive oxygen species were significantly lower, and glutathione was
significantly higher in the WHP group’s whole liver tissue.

Conclusion: A WHP-enriched IMD effectively prevented progression of DMN-induced liver fibrosis
in rats via a direct hepatocyte-protective effect and an antioxidant effect through glutathione
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Liver fibrosis

Cirrhosis
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synthesis.

© 2014 Elsevier Inc. All rights reserved.

Introduction

Liver cirrhosis is the end stage of chronic liver injury resulting
from various causes, such as viral or alcoholic hepatitis, and non-
alcoholic steatohepatitis [1]. It is histopathologically characterized
as the loss of hepatocytes with interstitial fibrosis [2]. Progression
of fibrosis and subsequent cirrhosis lead to life-threatening liver
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failure and carcinogenesis [ 1,3]. Despite extensive research on liver
cirrhosis, there are few medications (without adverse side effects)
proven to be clinically useful for prevention or slowing the pro-
gression of liver fibrosis [4,5]. Therefore, new antifibrotic agents
with less toxicity are needed for the management and prevention
of liver fibrosis [6].

Continuous hepatocellular damage caused by virus and
alcohol introduces an inflammatory response with release of
inflammatory cytokines, such as interleukin (IL)-6, tumor
necrosis factor (TNF)-a, and IL-10. These inflammatory cytokines
promote remodeling and macrophage phagocytosis of necrotic
hepatocytes. Subsequent activation of hepatic stellate cells
(HSCs) by transforming growth factor (TGF)-f promotes





