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but IPS-1 and type I IEN are minimally involved in poly(I:C)-mediated
CTL proliferation. In addition to TICAM-1-dependent CTL activation,
DC-mediated NK cell activation is also important for adjuvancy of
TLR3 ligands. Akazawa et al.?® showed that the TLR3-TICAM-1 pathway
1s essential for poly(I:C)-induced NK cell-mediated tumor regression in a
syngeneic mouse tumor implant model. NK cell activation requires cell—cell
contact with BMDCs preactivated by poly(I:C), but not IFN-a or IL-12.
TICAM-1-IRF3-dependent expression of INAM in myeloid DCs is
required for NK activation.”” Further, Shime ef al.'' recently reported that
TLR3-TICAM-1 signaling converts tumor-supporting myeloid cells to
tumoricidal effectors. Thus, the TLR3-TICAM-1 pathway is not only
important to mature myeloid DCs for cross-priming and NK cell activation
in the induction of tumor immunity, but also critically engaged in tumor
suppression by converting tumor-supporting macrophages to those with
tumoricidal properties.'"'

Although poly(I:C) has pivotal antitumor activity, the use of poly(I:C)
as a vaccine adjuvant is restricted by severe side effects.’'>'"®> As described
above, poly(I:C) activates both TLR3 and MDAS, although the tran-
sporting mechanisms are unknown, resulting in the strong induction of type
I IFNs, proinflammatory cytokines, and chemokines that are likely respon-
sible for poly(I:C)-induced side effects. Therefore, it is important to devise
an effective means for specific delivery of TLR3 ligands to TLR 3-positive
endosomes or new TLR 3 ligands that activate TLR 3 alone. Identification of
the putative dsRINA uptake receptor is crucial for analyzing the intracellular
transport of dsRINA. Further, clarification of the differences between
the RLR-IPS-1- and TLR3-TICAM-1-mediated signaling pathways is

important for assessment of dsRNA-induced immune responses.

6. CONCLUDING REMARKS

Accumulating evidence indicates that innate immune signaling is
compartmentally regulated in PRRs and signaling adaptors, which is impor-
tant for determination of cellular responses. TLR3- and TLR 4-mediated
signaling for IFN- production is initiated from early endosomes through
the recruitment of naive TICAM-1 to endosomal TLR3 and TICAM-2,
respectively. TICAM-1 then oligomerizes and forms a speckle-like
signalosome with downstream signaling molecules in the cytosol apart
from endosomes. Although there is a wide range of signaling cascades down-
stream from TICAM-1, including type I and type III IFN production,
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proinflammatory cytokine production, DC-mediated NK and CTL activa-
tion, and induction of apoptosis and necroptosis, it is unknown whether or
not distinct TICAM-1 signalosomes are formed and how TICAM-1 signal-
ing 1s regulated according to stimuli. Further, localization sites of TICAM-1
signalosome. have not been clearly defined. Proteomic analyses of the
TICAM-1 signalosome using difterent stimuli and responding cells may give
new insight into the TICAM-1 function linking innate immunity to adaptive
immunity.
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A method for rapid production of single-round infectious particles (SRIPs) of flavivirus would be
useful for viral mutagenesis studies. Here, we established a DNA-based production system for
SRIPs of flavivirus. We constructed a Japanese encephalitis virus (JEV) subgenomic replicon
plasmid, which lacked the C-prM-E (capsid—pre-membrane—envelope) coding region, under the
control of the cytomegalovirus promoter. When the JEV replicon plasmid was transiently co~
transfected with a JEV C-prM-E expression plasmid into 293T cells, SRIPs were produced,
indicating successful frans-complementation with JEV structural proteins. Equivalent production
levels were observed when C and prM-E proteins were provided separately. Furthermore,
dengue types 1-4, West Nile, yellow fever or tick-borne encephalitis virus prM-E proteins could
be utilized for production of chimaeric flavivirus SRIPs, although the production was less efficient
for dengue and yellow fever viruses. These results indicated that our plasmid-based system is
suitable for investigating the life cycles of flaviviruses, diagnostic applications and development of

Accepted 8 October 2013 safer vaccine candidates.

Japanese encephalitis virus (JEV) is the leading cause of
viral encephalitis with severe mortality in eastern and
south-eastern Asia, and is estimated to be responsible for
67900 cases annually, mostly in children (Campbell ef al,
2011). The virus is transmitted by Culex mosquito vectors
between pigs and/or wild birds, and humans and horses are
thought to be dead-end hosts. JEV is a member of the
genus Flavivirus within the family Flaviviridae, which
includes dengue virus (DENV), West Nile virus (WNV),
yellow fever virus (YFV) and tick-borne encephalitis virus
{TBEV). JEV is an enveloped single-stranded positive-sense
RNA virus with an 11 kb genome that is translated as a
single large polyprotein. The polyprotein is co-translation-
ally cleaved by host and viral proteases into three structural
proteins — capsid (C), pre-membrane (prM) and envelope

1These authors contributed equally to this paper.

One supplementary figure is available with the online version of this
paper.

(E) — and seven non-structural (NS) proteins (Sumiyoshi
et al., 1987).

For several flaviviruses, subgenomic replicons, which lack
structural protein genes but can replicate in cells, have been
constructed (Khromykh & Westaway, 1997; Pang et al,
2001; Shi et al.,, 2002). In addition, the expression of viral
structural proteins in cells harbouring replicon RNA has
been shown to produce single-round infectious particles
(SRIPs), which are infectious, but progeny viruses cannot
be spread from the infected cells, as the packaged genome

" lacks structural protein genes (Gehrke er al, 2003; Jones

et al., 2005; Khromykh et al., 1998; Ng et al, 2007; Scholle
et al,, 2004; Yun et al, 2009). Furthermore, trans-packaging
of replicons by the prM-E proteins from heterologous
flaviviruses have been reported (Ansarah-Sobrinho et al.,
2008; Yoshii et al., 2008).

A method for rapidly producing SRIPs of flaviviruses
would be useful for viral mutagenesis studies, diagnostic
applications and the production of vaccines with reduced
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risk of infection. In this study, to establish a DNA-based
production system for SRIPs, we constructed a JEV
subgenomic replicon plasmid, which lacked the C-prM-E
coding region, under the control of the cytomegalovirus
(CMV) promoter. As DNA-based replicons can be
transfected directly into eukaryotic cells without in vitro
transcription, SRIPs ‘can be rapidly produced by co-
transfection with structural protein-expression plasmids.

In order to generate a subgenomic replicon from the JEV
Nakayama strain (McAda et al, 1987), viral RNA was
extracted from infected Vero cells, reverse transcribed into
¢DNA and amplified in individual dsDNA fragments
containing T7 RNA polymerase promoter and hepatitis
delta virus ribozyme (HDV-RZ) as shown in Fig. 1(a). For
deletion of the C-prM-E region, a synthetic antisense
oligonucleotide was used to add a BspTT site at codons 17—
18 of the C-coding region following the cyclization
sequence, and a sense oligonucleotide was designed that
added the BspTI site before the C-terminal transmembrane
domain, which consists of 30 aa of the E protein coding
sequence, in order to permit ligation of C to NS1. The five
individual fragments required to produce a replicon-length
c¢DNA were readily assembled into the low-copy-number
plasmid pACYC177, designated pJEVrep#97. Replication
of in vitro-transcribed RNAs derived from the plasmid was
confirmed in RNA-transfected cells (data not shown).
Next, to construct a DNA-based replicon plasmid, the T7
RNA polymerase promoter was replaced with the CMV
promoter, and the simian virus 40 polyadenylation signal
was inserted downstream of the HDV-RZ; the resulting
plasmid was designated pCMV-JErep (Fig. 1a). pCMV-
JErep-fs, which contains a frameshift mutation through a
4 nt insertion upstream of the GDD motif of RNA-
dependent RNA polymerase in NS5, was also constructed
as a negative control with no replication activity. To
characterize the replication activity of the plasmid-derived
replicon, 293T cells were transfected with plasmids as
described previously (Suzuki ef al, 2013). Indirect immuno-
fluorescence with an anti-dsRNA antibody showed positive
staining in the cytoplasm of cells transfected with pCMV-
JErep plasmid or infected with JEV Nakayama strain,
whereas no signal was detected in the cells transfected with
pCMV-JErep-fs, indicating the ability of viral RNAs
transcribed intracellularly from the plasmid pCMV-JErep
to replicate in cells (Fig. 1b). It should be noted that NS1
protein was detected in the cytoplasm of cells transfected
with both pCMV-]Erep and pCMV-JErep-fs.

We also constructed expression plasmids for JEV C-E,
mature C consisting of 105 aa, and prM-E, which we
designated pCAG-JECE, pCAG-JEC and pCAG-JEprME,
respectively (Fig. 2a). To reduce sequence homology and
intergenomic recombination potential with the truncated
C and E genes in the subgenomic replicon, 21 nt mutations
were incorporated into the 5’ region of the C gene and 3’
region of the E gene. These changes also include two
nucleotides in the conserved 5’ cyclization sequence (CS)
(Hahn et al., 1987; Khromykh et al, 2001), producing a

sequence that was non-complementary to the 3’ CS of the
replicon genome, thereby preventing replication of a
recombinant genome. To produce SRIPs of JEV, 293T
cells were transfected with a mixture of two (pCMV-JErep
and pCAG-JECE) or three (pCMV-JErep, pCAG-JEC and
pCAG-JEprME) plasmids. The infectivity of SRIPs was
determined by inoculating the culture supernatant of
transfected cells into Vero cells, followed by immunostain-
ing with anti-NS1 antibody. 293T cells produced a titre of
3 days after transfection with two or three plasmids,
respectively. In contrast, no infectious particles were
detected in the supernatant when one of the two or three
plasmids was omitted or the replicon containing a
frameshift mutation was introduced. The production levels
of SRIPs from cells transfected with two or three plasmids
were similar, as shown in Fig. 2(d).

In order to confirm that the SRIPs have only single-round
infectivity potential, Vero cells were inoculated with medium
harvested from 293T cells transfected with replicon and
structural protein plasmids, and were examined for antigen-
positive cells. SRIPs were demonstrated to be infectious in
the first round (Fig. 3a). However, no antigen-positive cells
were observed in a second round, in which the supernatants
of the cells infected with SRIPs were transferred to naive
Vero cells (Fig. 3a). As a control, supernatant from JEV-
infected cells produced antigen-positive cells in second-
round infection.

We then evaluated whether the SRIPs could be used in
neutralization tests instead of infectious live virus by using
anti-JEV sera raised in rabbits as a representative antibody.
Serial fourfold dilutions of serum were mixed with aliquots
of SRIPs or virus of equivalent infectivity. The virus—
antibody mixture was incubated for 1 h at room tem-
perature, followed by titration for infectivity on Vero cell
monolayers in a 96-well plate. The neutralizing activity of
each antibody dilution was expressed as a percentage of the
infectivity obtained with the control, which was tested in
the absence of any serum. Infection with SRIPs and JEV
Nakayama strain were similarly neutralized by anti-JEV
antibody in a dose-dependent manner, although normal
serum did not atfect infection with SRIPs and JEV (Fig.
3b).

Next, to examine whether SRIPs derived from other
flaviviruses could be generated using our plasmid-based
method, we used prM-E expression plasmids for the
following viruses: DENV1, Mochizuki strain; DENV2, New
Guinea C strain; DENV3, H87 strain; DENV4, H241 strain
(Konishi et al., 2006); WNV, NY99-6922 strain (Ishikawa
et al., 2007); YFV, 17D strain; and TBEV, Oshima 5-10
strain (Yoshii et al, 2003). Detection of each E protein
in cells transfected with prM-E expression plasmids by
immunofluorescence revealed indistinguishable efficiency of
transfection as shown in Fig. S1 (available in JGV Online).
Efficient production of chimaeric flavivirus SRIPs by co-
transfection with JEV C and JEV replicons was achieved for

http://vir.sgmjournals.org
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(a) 5'UTR NS2 NS4 3'UTR
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PCR fragments ) — I [l
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POMV-JErep-fs R~~~ CTIT [T T s i e
(b) pCMV-JErep pCMV-JErep-fs JEV Mock
dsRNA
NS1

Fig. 1. (a) Schematic representation of the position of the JEV genome showing restriction enzymes sites (Notl, BspTl, BspEl,
BamHI, Miul, Xhot and Xbal), fragments used to assembile for replicon construction, position of the T7 promoter, CMV promoter
(CMV), HDV-RZ and polyadenylation signal (pA). (b) 293T cells were transfected with the indicated plasmids or were infected
or mock-infected with JEV. Two days posi-transfection or post-infection, cells were fixed and permeabilized as described
previously (Suzuki ef al., 2013). Samples were then incubated with anti-dsRNA antibody (12; English & Scientific Consulting) or
anti-NS1 antibody (2D5; Konishi et al,, 2004). Green signals were obtained with Alexa-Fluor-488-labelled goat anti-mouse IgG
secondary antibody (Invitrogen). Cell nuclei were counterstained with DAPI.

WNV and TBEV, although production of SRIPs was less
efficient for DENV1-4 and YFV (Fig. 3c).

It is curious that TBEV prM-E protein can be utilized
efficiently for assembly of SRIPs in combination with the
JEV C protein and replicon RNA producing equivalent
titres to JEV and WNV, as TBEV is a tick-borne virus and
is classified as a distinct serogroup from JEV. In contrast,
production of DENV- and YFV-SRIPs was less efficient.
The low infectious titre of SRIPs containing at least dengue
prM-E may be explained by the low specific infectivity of
particles encapsidated in DENV envelope protein (van der
Schaar et al., 2007; Winkelmann et al., 2011), although we
were unable to exclude the possibility that the viral
assembly and/or secretion with dengue prM-E is not

efficient (Chang et al, 2003; Hsieh et al, 2008). Adaptive
mutations in structural and NS proteins could possibly
enhance the production of infectious particles by improv-
ing the specific infectivity of the resulting particles
(Winkelmann et al, 2011). In addition, it has been
reported that a chimaeric WNV genome with DENV2
prM-E genes but lacking the C gene replicates much better
in DENV2-C-expressing cells than in WNV-C-expressing
cells (Suzuki et al, 2009), thus suggesting that the
combination of homologous C protein and prM-E proteins
improves the production of viral particles. Therefore, it is
possible to obtain a better yield of dengue SRIPs by using
DENV C protein instead of JEV C protein. Such DENV-
SRIPs can be useful for studying infection-enhancing and
neutralizing antibody activities.
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Fig. 2. Schematic representation of JEV replicon and structural protein-expression plasmids. (a) Top: JEV subgenomic replicon
with deletion of structural proteins. This replicon contains a partial C and E gene. Bottom: JEV structural protein-expression
plasmids showing the region of overlap with JEV replicon. Boxes indicate the 8 nt in the 5’ CS that are 100 % conserved among
all mosquito-borne flaviviruses. The JEV C-E, C and prM-E coding sequences harbour silent mutations designed to prevent
homologous recombinations that included two changes to the CS sequence, which must be 100% complementary to the 3’
CS of JEV in order to permit genome replication. The termination codon is underlined. Nucleotide substitutions are shown in red.
(b, c) Titres of JEV-SRIPs produced by transfection of 293T cells with replicon plasmid and structural protein-expression
plasmids. Dilutions of supernatant collected at 3 days post-transfection were used to inoculate monolayers of Vero cells. Cells
were fixed at 2 days post-infection and stained with anti-NS1 antibody. Stained cells were then counted to determine the titres
(IU mI™") produced by transfections. ND, Not detected. (d) Time course of JEV SRIP production from transfected cells. At each
time point, medium was removed and frozen for subsequent titration and fresh medium was added. JEV SRIP titres were
determined by assaying infectivity in Vero cells.

The plasmid-based production system offers an advantage
for vaccine production in terms of stability and safety, as
this method is able to reduce the chance of mutations
in the structural protein region, as well as the risk
of infection when compared with live virus production.
In addition, our replicon plasmids have the potential
for application to DNA-based vaccines, as described

previously (Cao et al, 2011; Chang er al, 2008; Huang
et al., 2012).

In conclusion, we established a DNA-based production
system for SRIPs of flaviviruses. This system has potential
value as a basic research and diagnostic tool, and could be
used to enhance the safety of neutralization assay, as well as
vaccine production.

http://virsgmjournals.org
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Fig. 3. Vero cells were inoculated with supernatant of 293T cells transfected with the indicated plasmids or infected with JEV.
Two days post-inoculation, culture supernatants were collected, and cells were fixed and stained with NS1 antibodies (first
round). Naive Vero cells were reinfected with culture supernatants from the first round. Two days post-inoculation, cells were
fixed and stained with NS1 antibodies (second round). Cell nuclei were counterstained with DAPI. (b) JEV SRIP inoculum was
incubated with serially diluted (1:2000, 1:8000 and 1:32000) rabbit normal serum or anti-JEV serum for 1 h at room
temperature, followed by inoculation onto Vero cells. Cells were immunostained with anti-NS1 antibody at 2 days post-
infection, and antigen-positive cells were counted and used to calculate a titre based on £.f.u. mi™" for spreading infections or IU
mi™? for non-spreading infections. Data for each condition are means of values obtained from three independent experiments
with error bars showing sb. The value for controls without serum (no serum) was set at 100 %. (c) Infectious titres of flavivirus
SRIPs, including dengue types 1-4 (D1-4), produced by transfection of 293T cells with pCMV-JErep, pCAG-JEC and
flavivirus prM-E expression plasmids. Dilution of supernatant collected at 3 days post-transfection was used to inoculate

monolayers of Vero cells. Cells were fixed at 2 days post-infection and stained with anti-JEV NS1 antibody, and stained cells
were counted in order to determine titres.
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Hepatitis C virus (HCV) is a major causative agent of hepatocellular carcinoma. Although various classes
of anti-HCV agents have been under clinical development, most of these agents target RNA replication in
the HCV life cycle. To achieve a more effective multidrug treatment, the development of new, less expen-
sive anti-HCV agents that target a different step in the HCV life cycle is needed. We prepared an in-house

Keywords: natural product library consisting of compounds derived from fungal strains isolated from seaweeds,
HCv mosses, and other plants. A cell-based functional screening of the library identified sulochrin as a com-
gzl?clhrin pound that decreased HCV infectivity in a multi-round HCV infection assay. Sulochrin inhibited HCV
Natural product infection in a dose-dependent manner without any apparent cytotoxicity up to 50 M. HCV pseudopar-
Screening ticle and trans-complemented particle assays suggested that this compound inhibited the entry step in
Compound the HCV life cycle. Sulochrin showed anti-HCV activities to multiple HCV genotypes 1a, 1b, and 2a. Co-

treatment of sulochrin with interferon or a protease inhibitor telaprevir synergistically augmented their
anti-HCV effects. Derivative analysis revealed anti-HCV compounds with higher potencies (ICso < 5 uM).
This is the first report showing an antiviral activity of methoxybenzoate derivatives. Thus, sulochrin

derivatives are anti-HCV lead compounds with a new mode of action.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Hepatitis C virus (HCV) infection is a major causative agent of
chronic liver diseases such as liver cirrhosis and hepatocellular car-
cinoma {1}. The standard anti-HCV therapy has been a co-treat-
ment with pegylated-interferon (IFN)a and ribavirin, but this
therapy is limited by less efficacy to certain HCV genotypes, poor
tolerability, serious side effects, and high cost {2,3]. In addition to
the newly approved protease inhibitors, telaprevir and boceprevir,
a variety of anti-HCV candidates are under clinical development.
Although these drugs improve the virological response rate, the
emergence of drug-resistant virus is expected to be a significant
problem. Moreover, these compounds are expensive due to their
complex structure and the many steps required for their total syn-

Abbreviations: HCV, hepatitis C virus; IFN, interferon; HCVpp, HCV pseudopar-
ticle; HCVcc, HCV derived from cell culture; HCVtcp, HCV trans-complemented
particle; MOI, muitiplicity of infection; HBs, HBV envelope protein; CsA, cyclosporin
A; VSV, vesicular stomatitis virus.

* Corresponding author. Adress: Department of Virology II, National Institute of
Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan. Fax: +81
35285 1161.

E-mail address: kwatashi@nih.go.jp (K. Watashi).

0006-291X/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http:/ids.doiorg/10.1016/1.bbre.2013.09.100

thesis. To overcome the drug-resistant virus and achieve a long-
term antiviral effect, multidrug treatment is essential. Thus, the
development of drugs targeting a different step in the HCV life cy-
cle and presumably requiring low cost is urgently needed.

HCV propagates in hepatocytes through its viral life cycle
including: attachment and entry (defined as the early step in this
study); translation, polyprotein processing, and RNA replication
(the middle step); and assembly, trafficking, budding, and release
(the late step) (Supplementary Fig. $1). The middie step has been
extensively analysed, especially after the establishment of the
HCV replicon system {4]. The early step can be analysed with
HCV pseudoparticle (HCVpp) |{5,6], which is a murine leukemia
virus- or human immunodeficiency virus-based pseudovirus carry-
ing HCV E1 and E2 as envelope proteins. The HCV-producing cell
culture system (HCVcc) is used for analyzing the whole life cycle
[7--81. In addition, the HCV trans-complemented particle (HCVtcp)
system carrying an HCV subgenomic replicon RNA packaged in
HCV E1 and E2-containing particles can evaluate the life cycle from
the early to the middle step [10]. The majority of anti-HCV agents
currently under clinical development, such as inhibitors of
protease, polymerase, NS5A, and cellular cyclophilin, inhibit poly-
protein processing and/or RNA replication. A desirable approach
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to achieving efficient multidrug therapy is to identify new antiviral
drugs targeting different steps in the viral life cycle. A combination
of drugs with different targets can greatly decrease the emergence
of drug-resistant virus.

Natural products generally contain more characteristics of high
chemical diversity than combinatorial chemical collections, and
therefore have a wider range of physiological activities [11,12}.
They offer major opportunities for finding novel lead structures
that are active in a biological assay. Moreover, biologically active
natural products are generally small molecules with drug-like
properties, and thus development costs of producing orally active
agents tend to be lower than that derived from combinatorial
chemistry {13]. In addition, there is a wide variety of natural com-
pounds reported to possess antiviral activity { 14,15]. In the present
study, we have taken advantage of the potential of natural prod-
ucts by screening a natural product library derived from fungal ex-
tracts with a cell-based assay that supports the whole life cycle of
HCV.

2. Materials and methods
2.1. Cell culture

Huh-7.5.1 [8] and HepaRG cells {16} were cultured as described
previously.

2.2. Natural product library and reagents

Natural products were extracted essentially as previously de-
scribed [17]. Culture broths of fungal strains isolated from sea-
weeds, mosses, and other plants were extracted with CH,Cl,. The
crude extracts were separated by silica gel column chromatogra-
phy to purify compounds. The chemical structure of each com-
pound was determined by NMR and mass spectrometry analyses.
Thus, we prepared an in-house natural product library consisting
of approximately 300 isolated compounds.

Cyclosporin A was purchased from Sigma. Bafilomycin A1 and
chlorpromazine were purchased from Wako. Heparin was obtained
from Mochida Pharmaceutical. IFN« was purchased from Schering-
Plough.

2.3. Compound screening

Huh-7.5.1 cells were treated with HCV ]J6/JFH1 at a multiplicity
of infection (MOI) of 0.15 for 4 h. The cells were washed and then
cultured with growth medium treated with 10 pM of each com-
pound for 72 h. The infectivity of HCV in the medium was quanti-
fied. Cell viability at 72h post-treatment was simultaneously
measured. Compounds that decreased the cell viability to less than
50% of that without treatment were eliminated for further evalua-
tions. Normalised infectivity was calculated as HCV infectivity di-
vided by cell viability. Compounds reducing the normalised
infectivity to less than 40% were selected as initial hits. The initial
hits were further evaluated for data reproduction and dose-
dependency.

2.4. HCVcc assay

HCVcc was recovered from the medium of Huh-7.5.1 cells
transfected with HCV J6/JFH-1 RNA as described | 7]. HCVcc was in-
fected into Huh-7.5.1 cells at 0.15 MOI for 4 h. After washing out
the inoculated virus, the cells were cultured with normal growth
medium in the presence or absence of compounds for 72 h. The
infectivity of HCV and the amount of HCV core protein in the med-
ium were quantified by infectious focus formation assay and

chemiluminescent enzyme immunoassay (Lumipulse II HCV core
assay, ortho clinical diagnostics), respectively [7,18].

2.5. Immunoblot analysis

Immunoblot analysis was performed as described previously
[19]. The anti-HCV core antibody (2H9) was used as a primary anti-
body with 1:1000 dilution {7].

2.6. MTT assay

The viability of cells was quantified by using a Cell Proliferation
Kit Il XTT (Roche Diagnostics) as described previously [20].

2.7. HCV replicon assay

Huh-7.5.1 cells were transfected with an HCV subgenome repli-
con RNA (SGR-JFH1/Luc) for 4 h and then incubated with or with-
out compounds for 48 h {21]. The cells were lysed with 1xPLB
(Promega), and the luciferase activity was determined with a lucif-
erase assay system (Promega) according to the manufacturer’s pro-
tocol {22].

2.8. HCVpp assay

HCVpp was recovered from the medium of 293T cells transfec-
ted with expression plasmids for HCV JFH-1 E1E2, MLV Gag-Pol,
and luciferase, which were kindly provided from Dr. Francois-Loic
Cosset at Universite de Lyon [5]. Vesicular stomatitis virus pseudo-
particles (VSVpp) was similarly recovered with transfection by
replacing HCV E1E2 with VSV G.

Huh-7.5.1 cells were preincubated with compounds for 3 h and
were then infected with HCVpp in the presence of compounds for
4 h. After washing out virus and compounds, cells were incubated
for an additional 72 h before recovering the cell lysates and quan-
tifying the luciferase activity.

2.9. HCVtcp assay

The HCVtcp assay was essentially performed as described {10}
Briefly, Huh-7 cells were transfected with expression plasmids for
the HCV subgenomic replicon carrying the luciferase gene and for
HCV core-NS2 based on genotype 1a (RMT) (kindly provided by
Dr. Michinori Kohara at Tokyo Metropolitan Institute of Medical
Science), 1b (Con1), and 2a (JFH-1) {4,10,23] to recover HCVtcp.
HCVtcp can reproduce RNA replication as well as HCV-mediated
entry into the cells [10].

2.10. Synergy analysis

To determine whether the effect of the drug combination was
synergistic, additive, or antagonistic, MacSynergy (kindly provided
by Mark Prichard), a mathematical model based on the Bliss inde-
pendence theory, was used to analyse the experimental data
shown in Fig. 3A. In this model, a theoretical additive effect with
any given concentrations can be calculated by Z=X+Y(1-X),
where X and Y represent the inhibition produced by each drug
alone, and Z represents the effect produced by the combination
of two compounds if they were additive. The theoretical additive
effects were compared to the actual experimental effects at various
concentrations of the two compounds and were plotted as a three-
dimensional differential surface that would appear as a horizontal
plane at O if the combination were additive. Any peak above this
plane (positive values) indicates synergy, whereas any depression
below the plane (negative values) indicates antagonism. The 95%
confidence interval of the experimental dose-response was consid-
ered to reveal only effects that were statistically significant.
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3. Results

3.1. Screening of natural products possessing anti-HCV activity

We extracted culture broths of fungal strains isolated from sea-
weeds, mosses, and other plants and purified compounds as de-
scribed in the Section 2 [17]. The chemical structure of each
compound was determined by NMR and mass spectrometry anal-
yses. Thus, we prepared an in-house natural product library con-
sisting of approximately 300 isolated compounds. As shown in
the Section 2, compounds reducing the normalised HCV infectivity
to less than 40% as compared with DMSO were selected as primary
hits. The primary hits were then validated by examining the
reproducibility, dose-dependency, and cell viability in the HCVcc
system. Sulochrin [methyl 2-(2,6-dihydroxy-4-methylbenzoyl)-5-
hydroxy-3-methoxybenzoate] (Fig. 1A) was one of the compounds
showing the highest anti-HCV activity, and the following analyses
focus mainly on this compound.

3.2. Sulochrin decreased HCV infectivity in HCV cell culture assay
To characterise the anti-HCV activity of the compounds, Huh-

7.5.1 cells were infected with HCV J6/JFH1 at an MOI of 0.15 and
then cultured for 72 h in the presence or absence of compounds.
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Fig. 1. Sulochrin decreased HCV production in a multi-round HCV infection assay.
(A) Chemical structure of sulochrin. (B) Huh-7.5.1 cells were infected with HCV 6/
JFH-1 at an MOI of 0.15 for 4 h and then incubated with or without 0.3% DMSO,
2 pM cyclosporin A (CsA), or 30 uM sulochrin for 72 h. The resultant medium was
inoculated into naive Huh-7.5.1 cells to detect intracellular HCV core and actin
protein at 48 h postinoculation by immunoblot. (C) HCV infectivity (left) and HCV
core protein (right) in the medium as prepared in (B) were quantified as shown in
the Section 2. (D) HCV infectivity (left) determined as shown in (C) with varying
concentrations (0-50 uM) of sulochrin. Cell viability was examined by MTT assay
(right).

In this system, infectious HCV is secreted into the medium and
then re-infects into uninfected cells to support the spread of HCV
during a 72 h period (Section 2). Cell cultures were treated with
sulochrin or cyclosporin A (CsA) as a positive control in this mul-
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Fig. 2. Sulochrin blocked HCV entry. (A) Replicon assay. Huh-7.5.1 cells were
transfected with an HCV subgenomic replicon RNA for 4 h followed by treatment
with or without the indicated compounds for 48 h. Luciferase activity driven by the
replication of the subgenomic replicon was quantified. (B and C) HCV pseudopar-
ticle (HCVpp) and trans-complemented particle (HCVtcp) assay. Huh-7.5.1 cells
were pretreated with the indicated compounds for 3h and then infected with
HCVpp (B) or HCVtcp (C) for 4 h. After washing out virus and compounds, cells were
further incubated for 72 h and harvested for measuring luciferase activity driven by
the infection of HCVpp or HCVicp. HCVicp assay was performed with HCV E1 and E2
derived from genotypes 1a (RMT), 1b (Conl), and 2a (JFH1). (D) Left, the
pseudoparticle assay was performed as shown in (B) with VSV G instead of HCV
E1 and E2. Right, HBV infection assay. HepaRG cells were pretreated with the
indicated compounds for 3 h and then infected with HBV for 16 h. After washing out
virus and compounds, cells were incubated for an additional 12 days. HBV infection
was evaluated by measuring HBs secretion from the infected cells. Heparin was
used as a positive control that inhibits HBV entry.
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ti-round infection system. To examine the level of infectious HCV
particles produced from the cells, the resultant medium was inoc-
ulated into naive Huh-7.5.1 cells to detect HCV core protein in the
cells. As shown in Fig. 1B, intracellular production of HCV core but
not that of actin was reduced in the cells inoculated with suloch-
rin- and CsA-treated medium (Fig. 1B). Quantitative analysis
showed that sulochrin decreased HCV infectivity and HCV core
protein in the medium to 1/3-1/4 of the untreated levels
(Fig. 1C). Reduction of HCV infectivity by sulochrin was dose-
dependent without serious cytotoxicity up to 50 pM (Fig. 1D).

3.3. Sulochrin blocked HCV entry

We investigated the step in the HCV life cycle that was inhibited
by sulochrin. The middle step of the life cycle including translation
and RNA replication was evaluated with the transient replication
assay by using the HCV subgenomic replicon. Sulochrin had little
effect on the replicon activity at doses up to 50 pM (Fig. 2A). In

the HCVpp system, which reproduced the early step of HCV infec-
tion including entry, sulochrin significantly inhibited HCVpp infec-
tion (Fig. 2B). Sulochrin also inhibited the infection of HCVtcp,
which reproduced both the viral entry and RNA replication, further
supporting that this compound targeted the entry step (Fig. 2C). In
contrast, VSV G-mediated viral entry efficiency was not altered by
sulochrin treatment (Fig. 2D). Additionally, HBV entry was not
inhibited by the presence of sulochrin (Fig. 2D). These data suggest
that the inhibitory activity of sulochrin on viral entry is specific to
HCV. The anti-HCV entry activity of sulochrin was conserved
among different HCV genotypes, 1a (RMT), 1b (Con1), and 2a
(JFH-1) [4,10,23] (Fig. 20).

3.4. Synergistic effect of cotreatment of sulochrin with IFNo. or
telaprevir

We examined the anti-HCV activity of sulochrin co-adminis-
tered with clinically available anti-HCV agents, IFNa and a prote-
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Fig. 3. Cotreatment of sulochrin with IFNo or telaprevir, (A, B) Huh-7.5.1 cells infected with HCV were treated with the indicated concentrations of sulochrin with [FNo (left)
or telaprevir (right) to determine HCV infectivity in the medium (A) as shown in Fig. 1C. Cell viability was also quantified (B). (C) Synergy analysis. The results of the
combinations shown in (A) were analysed with a mathematical model, MacSynergy, as described in the Section 2. The three-dimensional surface plot represents the
difference between actual experimental effects and theoretical additive effects of the combination treatment (95% confidence interval). The theoretical additive effects are
shown as the zero plane (dark gray) across the z-axis. A positive value in the z-axis as a peak above the plane indicates synergy, and a negative value with a valley below the
plane indicates antagonism. Sulochrin in combination with IFNe (left) or telaprevir (right) produced synergistic antiviral effects that were greater than the theoretical

additive effects.
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ase inhibitor telaprevir. As shown in Fig. 3, addition of sulochrin
with IFNa or telaprevir led to a further decrease in HCV infectivity
(Fig. 3A) without significantly enhancing cytotoxicity (Fig. 3B) at
any given concentrations. Thus, the combination of sulochrin and
[FNo or telaprevir always resulted in a greater reduction in HCV
infectivity as compared with that achieved by either agent alone.
Synergy/antagonism analysis with the Bliss independence model
showed that the experimental anti-HCV activity in combination
with sulochrin and IFNa or telaprevir showed a peak above the
zero plane in the z-axis, which shows the calculated theoretical
additive effect (Fig. 3C). Any peak above the zero plane indicates
more than an additive effect, namely, synergy (Section 2). The data
clearly indicate that sulochrin had a synergistic anti-HCV effect
with both IFNa and telaprevir.

3.5. Derivative analysis of sulochrin

We examined the anti-HCV activity of a series of sulochrin
derivatives (Fig. 4A) in the HCVcc system. Monochlorosulochrin
and dihydrogeodin, mono- or dichloro-substituted derivatives of
sulochrin, possessed even higher anti-HCV activity than sulochrin
(Fig. 4B and C). Deoxyfunicone, of which one aromatic ring was re-
placed by a 4-pyrone ring, had approximately 5-fold greater HCV
inhibitory activity as compared with sulochrin (Fig. 4B and C). An
additional compound, 3-O-methylfunicone, also possessed
anti-HCV activity (Fig. 4B and C). These data suggest that the
1,3-dihydroxy-5-methylbenzene moiety of sulochrin is important
for anti-HCV activity. Furthermore, funicone derivatives as well
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as sulochrin derivatives are likely to be lead compounds for a
new class of anti-HCV agents.

4. Discussion

In the present study, we prepared a natural product library con-
sisting of approximately 300 isolated compounds derived from
fungi extract [17]. Among these compounds, we focused on suloch-
rin, which reduced HCV infectivity in the HCVcc system. Sulochrin
suppressed the viral entry efficiencies both in the HCVpp and the
HCVtcp systems, suggesting that this compound blocked HCV
envelope-mediated entry. HCV was reported to enter host cells
through clathrin-dependent endocytosis after engagement to host
receptors {24-27]. Sulochrin is not likely to be a general inhibitor
of clathrin-dependent endocytosis, but rather is specific for HCV
entry, as it did not affect the entry of other viruses such as VSVpp
and HBV, which were reported to enter by clathrin-dependent
manners {28,29].

Sulochrin inhibits eosinophil degranulation, activation, and che-
motaxis {30,31]. It also inhibits VEGF-induced tube formation of
human umbilical vein endothelial cells {32]. In addition, 3-O-methyl-
funicone, a sulochrin derivative possessing anti-HCV activity, has
an anti-tumor activity {33]. It is unknown if these activities of
the compounds are related to their anti-HCV activity. The estab-
lishment of drug-resistant virus and the identification of the target
molecule are in progress to reveal the mechanism of action of
sulochrin and its derivatives. However, the present study is the
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Fig. 4. Derivative analysis of sulochrin. (A) Chemnical structures of sulochrin derivatives examined in this study, monochlorosulochrin, dihydrogeodin, deoxyfunicone, 3-0-
methyfunicone, as well as sulochrin. (B) Anti-HCV effects of the sulochrin derivatives (10, 30, and 50 tM) were investigated as shown in Fig. 1C. (C) The ICso and CCsg values of
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first report to demonstrate the antiviral activity of these com-
pounds. It is important to note that sulochrin inhibited the entry
of HCV genotype 1a and b, which are the dominant genotypes in
North America, Europe, and East Asia, indicating that this com-
pound has potential clinical applications. Promising applications
of entry inhibitors include the prevention of HCV recurrence in pa-
tients after liver transplantation. In patients with HCV-related end-
stage liver diseases undergoing liver transplantation, re-infection
of the graft is universal and characterised by accelerated progres-
sion of liver diseases. Entry inhibitors may be effective especially
in these conditions under robust re-infection of HCV into hepato-
cytes. In the present study, we showed that co-treatment of
sulochrin with IFNa and a protease inhibitor, teleprevir, synergis-
tically augmented the anti-HCV effects of these approved drugs.
These results suggest the possibility that co-treatment with
sulochrin and probably its effective derivatives helps to inhibit
the spread of HCV infection. We also identified the chemical
structure and the derivatives of sulochrin as lead compounds for
anti-HCV agents. Further derivatives analysis may identify more
preferable anti-HCV agents.

In conclusion, our results demonstrate that sulochrin and its
derivatives are potent and selective inhibitors of HCV infection in
cell culture. Although further studies including an analysis of mode
of action and pharmacological properties in vivo are required, this
class of compounds should be pursued for its clinical potential in
the treatment of HCV infection.
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