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Japanese Encephalitis Virus Core Protein Inhibits Stress Granule
Formation through an Interaction with Caprin-1 and Facilitates Viral
Propagation

Hiroshi Katoh,® Toru Okamoto,” Takasuke Fukuhara,® Hiroto Kambara,® Eiji Morita,” Yoshio Mori,? Wataru Kamitani,©
Yoshiharu Matsuura?®

Department of Molecular Virology,” International Research Center for Infectious Diseases,” and Global COF Program,” Research Institute for Microbial Diseases, Osaka
University, Osaka, Japan; Department of Virology lll, National Institute of Infectious Diseases, Tokyo, Japan®

Stress granules (SGs) are cytoplasmic foci composed of stalled translation preinitiation complexes induced by environmental
stress stimuli, including viral infection. Since viral propagation completely depends on the host translational machinery, many
viruses have evolved to circumvent the induction of SGs or co-opt SG components. In this study, we found that expression of
Japanese encephalitis virus (JEV) core protein inhibits SG formation. Caprin-1 was identified as a bmdmg p'u-mer of the core
protein by an affinity capture mass spectrometry analysis. Alanine scanning mutagenesis revealed that Lys®” and Arg®® in the
a-helix of the JEV core protein play a crucial role in the interaction with Caprin-1. In cells infected with a mutant JEV in which
Lys’” and Arg” were replaced with alanines in the core protein, the inhibition of SG formation was abrogated, and viral propaga-
tion was impaired. Furthermore, the mutant JEV exhibited attenuated virulence in mice. These results suggest that the JEV core
protein circumvents translational shutoff by inhibiting SG formation through an interaction with Caprin-1 and facilitates viral

propagation in vitro and in vivo.

gn eukaryotic cells, environmental stresses such as heat shock,
oxidative stress, UV irradiation, and viral infection trigger a sud-
den translational arrest, leading to stress granule (SG) formation
(1). SGs are cytoplasmic foci composed of stalled translation pre-
initiation complexes and are postulated to play a critical role in
regulating mRNA metabolism during stress via so-called “mRNA
triage” (2). The initiation of SG formation results from phosphor-
ylation of eukaryotic translation initiation factor 2« (elF2w) at
Ser®' by various kinases, including protein kinase R (PKR), PKR-
like endoplasmic reticulum kinase (PERK), general control non-
repressed 2 (GCN2), and heme-regulated translation inhibitor
(HRI), which are commonly activated by double-stranded RNA
(dsRNA), endoplasmic reticulum (ER) stress, nutrient starvation,
and oxidative stress, respectively. Phosphorylation of elF2« re-
duces the amount of el F2-GTP-tRNA complex and inhibits trans-
lation initiation, leading to runoff of elongating ribosomes from
mRNA transcripts and the accumulation of stalled translation
preinitiation complexes. Thus, SGs are defined by the presence of
components of translation initiation machinery, including 40S
ribosome subunits, poly(A)-binding protein (PABP), eIF2, elF3,
eIF4A, eIF4E, eIF4G, and elF5. Then, primary aggregation occurs
through several RNA-binding proteins (RBPs), including T-cell
intracellular antigen-1{TIA-1), TIA-1-related protein 1 (TIAR),
and Ras-Gap-SH3 domain-binding protein (G3BP). These RBPs
are independently self-oligomerized with the stalled initiation fac-
tors and with other RBPs, such as USP10, hnRNP Q, cytoplasmic
activation/proliferation-associated - protein-1 (Caprin-1), and
Staufen and with nucleated mRNA-protein complex (mRNP) ag-
gregations (3, 4). SG assembly begins with the simultaneous for-
mation of numerous small mRNP granules which then progres-
sively fuse into larger and fewer structures, a process known as
secondary aggregation (5). The aggregation of TIA-1 or TIAR is
regulated by molecular chaperones, such as heat shock protein 70
(Hsp70) (3), whereas that of G3BP is controlled by its phosphor-
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ylation at Ser'"” (4). SG formation and disassembly in response to
cellular stresses are strictly regulated by multiple factors.

Viral infection can certainly be viewed as a stressor for cells,
and SGs have been reported in some virus-infected cells. Since the
propagation of viruses is completely reliant on the host transla-
tional machinery, stress-induced translational arrest plays an im-
portant role in host antiviral defense. To antagonize this host de-
fense, most viruses have evolved to circumvent SG formation
during infection. For example, poliovirus (PV) proteinase 3C
cleaves G3BP, leading to effective SG dispersion and virus propa-
gation (6). Influenza A virus nonstructural protein 1 (NS1) has
been shown to inactivate PKR and prevent SG formation (7). In

“the case of human immunodeficiency virus 1 (HIV-1) infection,

Staufenl is recruited in ribonucleoproteins for encapsidation
through interaction with the Gag protein to prevent SG formation
(8). In contrast, some viruses employ alternative mechanisms of
translation initiation and promote SG formation to limit cap-
dependent translation of host mMRNA (9, 10). In addition, vaccinia
virus induces cytoplasmic “factories” in which viral translation,
replication, and assembly take place. These factories include G3BP
and Caprin-1 to promote transcription of viral mRNA (11).
Japanese encephalitis virus (JEV) belongs to the genus Flavivi-
rus within the family Flaviviridae, which includes other mosquito-
borne human pathogens, such as dengue virus (DENV), West Nile
virus (WNV), and yellow fever virus, that frequently cause signif-
icant morbidity and mortality in mammals and birds (12). JEV has
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FIG 1 Dynamics of SG-associated factors during JEV infection. (A) Huh7 cells infected with JEV at an MOI of 0.5 were treated with or without 1.0 mM sodium
arsenite for 30 min at 37°C, and the levels of expression of G3BP and JEV core protein/NS2B were determined at 24 h postinfection by immunofluorescence
analysis with mouse anti-G3BP MAD and rabbit anti-core protein or anti-NS2B PAD, (ollowed by AF488-conjugated anti-mouse IgG (Invitrogen) and AF594-
conjugated anti-rabbit 1gG, respectively. Cell nuclei were stained with DAPI (blue). (B) Cellular localizations of G3BP and JEV NS2B in 2937 and HeLa cells
infected with JEV were determined at 24 h postinfection by immunofluorescence analysis with mouse anti-G3BP MAb and rabbit anti-NS2B PADb, followed by
AF488-conjugated anti-mouse IgG and AF594-conjugated anti-rabbit 1gG, respectively. Cell nuclei were stained with DAPI (blue). (C) Phosphorylation of el F2«
in cells prepared as described in panel A was determined by immunoblotting using the indicated antibodics. The band intensities were quantified by Image}
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a single-stranded positive-sense RNA genome of approximately
11 kb. The genomic RNA carries a single large open reading frame,
and a polyprotein translated from the genome is cleaved co- and
posttranslationally by host and viral proteases to yield three struc-
tural proteins, the core, precursor membrane (PrM), and envelop
(E) proteins, and seven nonstructural (NS) proteins, NS1, NS2A,
NS2B, NS3, NS4A, NS4B, and NS5 (13). PrM is further cleaved by
the multibasic protease, furin, and matured to membrane (M)
protein. The core, M, and E proteins are components of extracel-
lular mature virus particles. NS proteins are not incorporated into
particles and are thought to be involved in viral replication, which
occurs in close association with ER-derived membranes (14). Pre-
vious reports have shown that WNV and DENYV inhibit SG for-
mation by sequestering TIA-1 and TIAR through specific interac-
tion with viral RNA (15, 16). In addition, the membrane structure
induced by WNV infection was suggested to prevent PKR activa-
tion and avoid induction of $G formation (17). In this study, we
show that JEV core protein plays an important role in inhibition of
SG formation. JEV core protein recruited several SG-associated
proteins, including G3BP and USP10, through an interaction with
Caprin-1 and suppressed SG formation. Furthermore, a mutant
JEV carrying a core protein incapable of binding to Caprin-1 ex-
hibited lower propagation in vitro and lower pathogenicity in mice
than the wild-type (WT) JEV, suggesting that inhibition of SG
formation by the core protein is crucial to antagonize host de-
fense. These results reveal a novel strategy of JEV to inhibit SG
formation through an interaction with Caprin-1 and facilitate vi-
ral propagation. , ‘

MATERIALS AND METHODS

Plasmids. Plasmids encoding FLAG-tagged JEV core protein (pCAGPM-
FLAG-Core) and hemagglutinin (HA)-tagged JEV proteins (pCAGPM-
HA-JEV proteins) were generated as previously described (18, 19). The
¢DNA of'the core protein of JEV AT31 (amino acid residues 2 to 105) was
amplified from the pPCAGPM-FLAG-Core plasmid by PCR and cloned
into pET21b (Novagen-Merck, Darmstadt, Germany) for expression in
bacteria as a His-tagged protein and in pCAG-MCS2-FOS for expression
in mammalian cells as a FLAG-One-STrEP (FOS)-tagged protein. The
resulting plasmids were designated pET21b-Core-His and pCAG-Core-
FOS, respectively. The cDNA of the core protein of DENV2 (amino acid
residues 2 to 100) was amplified from the pCAG/FLAG-DEN2C-HA plas-
mid (19) by PCR and cloned into pPCAGPM-N-FLAG. The ¢cDNA of hu-
man Caprin-1 was amplified from 293T cells by reverse transcription-
PCR (RT-PCR) and cloned into pCAGPM-N-HA (20) and pGEX 6P-1
(GE Healthcare, Buckinghamshire, United Kingdom) for expression in
bacteria as a glutathione S-transferase (GST) fusion protein and desig-
nated pCAGPM-HA-Caprin-1 and pGEX-GST-Caprin-1, respectively.
The cDNAs of human G3BP1 and USP10 were also amplified from 293T
cells by RT-PCR and cloned into pCAGPM-N-HA. The nucleotide resi-
dues of the adenine at 384, adenine at 385, cytosine at 387, and guanine at

JEV Core Protein Inhibits Stress Granule Formation

388 of the JEV genome in pMWATGI were replaced with guanine, cyto-
sine, guanine, and cytosine, respectively, by PCR-based mutagenesis to
change Lys®” and Arg® of the core protein to Ala, yielding pMWAT/
KR9798A. The cDNA of the mutant core protein was also cloned into
pCAGPM-N-FLAG and pET21b. To generate stable cell lines expressing
Aequoren coerulescens green fluorescent protein (AcGFP)-fused Caprin-1,
the ¢cDNA of human Caprin-1 was amplified by RT-PCR and cloned into
PAcGFP N1 (Clontech, Mountain View, CA), and the Caprin-1-AcGFP
gene was subcloned into the lentiviral vector pCSII-EF-RfA (21) and des-
ignated pCSI1-EF-Caprin-1-AcGFP. All plasmids were confirmed by se-
quencing with an ABI Prism 3130 genetic analyzer (Applied Biosystems,
Tokyo, Japan). : :

Cells and stress treatment, Mammalian cell lines, Vero {African green
monkey kidney), 293T (human kidney), Huh7 (human hepatocellular
carcinoma), and HeLa (human cervical carcinoma), were maintained in
Dulbecco’s modified Eagle’s minimal essential medium (DMEM) (Sigma,
St. Louis, MO) supplemented with 100 U/ml penicillin, 100 mg/ml strep-
tomycin, nonessential amino acids (Sigma), and 10% fetal bovine serum
(FBS). The mosquito cell line C6/36 (Aedes albopictus) was grown in Lei-
bovitz's L-15 medium with 10% FBS. Huh7 cells were transduced with a
lentiviral vector expressing Caprin-1-AcGFP and AcGFP and designated

‘Huh7/Caprin-1-AcGFP and Huh7/AcGFP, respectively. For induction of

SGs, cells were treated with sodium arsenite at a final concentration of 1.0
mM in the culture medium for 30 min prior to fixation or lysis of the cells.
SG formation was defined morphologically by immunostaining using
anti-SG-related factor antibodies described below. Cell viability was de-
termined by using CellTiter-Glo (Promega, Madison, W1) according to
the manufacturer’s instruction,

Viruses. The wild-typeand 9798A mutant of the JEV AT31 strain were
generated by the transfection of pMWATGI and pMWAT/KR9798A, re-
spectively, as described previously (22). Viral infectivity was determined
by an immunostaining focus assay as described previously (20), and the
results are expressed in focus-forming units (FFU). JEV and DENV sero-
type 2 New Guinea C strain were amplified in C6/36 cells.

Antibodies. Anti-JEV core rabbit polyclonal antibody (PAb) and anti-
JEV NS§3 mouse monoclonal antibody (MAb) were prepared as described
previously (20, 23). Anti-JEV NS2B rabbit PAb was generated with syn-
thetic peptides of JEV NS2B at Scrum, Inc. (Tokyo, Japan). Anti-DENV
core protein rabbit PAb was prepared by using a GST-fused recombinant
protein containing amino acid residues 2 to 100 of the DENV core pro-
tein. Anti-FLAG mouse MAb (M2) and rabbit PAb and anti-B-actin
mouse MAb were purchased from Sigma. Anti-hnRNP Q mouse MAb
(ab10687), anti-USP10 rabbit PAb (ab70895), and anti-eIF4B rabbit PAb
(ab78916) were purchased from Abcam (Cambridge, United Kingdom).
Anti-elF2q, anti-phospho-elF2«, and anti-eIF3A rabbit PAbs were pur-
chased from Cell Signaling Technology (Danvers, MA). Anti-HA mouse
MAD (HA11), anti-HA rat MAb (3F10), anti-His mouse MAb, anti-GFP
mouse MAD (JL-8), anti-JEV envelope protein mouse MAb (6B4A-10),
anti-G3BP mouse MAb, anti-TI1A-1 goat PAb, anti-Caprin-1 rabbit PAb,
and anti-dsRNA mouse MAb were purchased from Covance (Richmond,
CA), Roche (Mannheim, Germany), R&D Systems (Minneapolis, MN),
Clontech, Chemicon (Temecula, CA), BD Biosciences (Franklin Lakes,
NJ), Santa Cruz (Santa Cruz, CA), Proteintech (Chicago, IL), and Bio-

software (N1H, Bethesda, MD), and the relative levels for the indicated proteins are shown based on the level of the mock-infected cells. (D) Cellular localizations
of G3BP, NS2B, and TIA-1 in Huh7 cells infected with JEV were determined at 24 h postinfection by immunofluorescence analysis with mouse anti-G3BP MAD,
rabbit anti-NS2B PAD, and goat anti-TIA-1 PAD, followed by AF488-conjugated anti-mouse 1gG, AF594-conjugated anti-rabbit 1gG, and AF633-conjugated
anti-goat 1gG, respectively. Cell nuclei were stained with DAPI (gray). (E) Dynamics of G3BP and TIA-1 during JEV infection. Huh7 cells infected with JEV were
immunostained at 0, 12, and 24 h postinfection (hpi) with mouse anti-G3BP MAD or goat anti-TIA-1 PADb and rabbit anti-NS2B PAb, followed by AF488-
conjugated anti-mouse 1gG or AF488-conjugated anti-goat 1gG and AF594-conjugated anti-rabbit IgG, respectively. Cell nuclei were stained with DAPI (blue).
(F) Cellular localization of $G-associated proteins (USP10, Caprin-1, TIA-1, hnRNP Q, elF3A, and elF4B) (green, AF488-conjugated secondary antibody) and
JEV NS2B/NS3 (red, AF-594-conjugate secondary antibody) in Huh7 cells infected with JEV was determined by immunoblotting at 24 h postinfection. Cell
nuclei were stained with DAPI (blue). (G) Numbers of G3BP-positive foci in 30 cells prepared as described in panel A were counted for each experimental
condition, Lines, boxes, and error bars indicate the means, 25th to 75th percentiles, and 95th percentiles, respectively. The significance of differences between the
means was determined by a Student’s f test.*, P < 0.01; ND, no significant difference.
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associated factor forms SGs under oxidative stress. After treatment with 1.0 mM sodium arsenite for 30 min at 37°C, Huh?7 cells were subjected

to immunofluorescence analysis with the indicated primary antibodies, followed by AF488-conjugated anti-goat 1gG and AF594-conjugated anti-mouse or

rabbit 1gG. Cell nuclei were stained with DAPI (blue).

center (Szirak, Hungary), respectively. Alexa Fluor (AF)-conjugated sec-
ondary antibodies were purchased from Invitrogen (Carlsbad, CA).

Immunofluorescence microscopy. Huh?7 cells were fixed in 4% para-
formaldehyde in phosphate-buffered saline (PBS) for 15 min at room
temperature. After cells were quenched for 10 min with PBS containing 50
mM ammonium chloride (NH,Cl), they were permeabilized with 0.2%
Triton X-100 in PBS for 10 min and blocked with PBS containing 2%
bovine serum albumin (BSA) for 30 min at room temperature. The cells
were then incubated with the antibodies indicated in the figure legends.
Nuclei were stained with 4’,6’-diamidino-2-phenylindole (DAPI). The
samples were examined by a Fluoview FV1000 laser scanning confocal
microscope (Olympus, Tokyo, Japan).

Transfection, immunoprecipitation, and immunoblotting. Plas-
mids were transfected into 293T or Huh7 cells by use of TransIT LTI
(Mirus, Madison, WI), and cells collected at 24 h posttransfection were
subjected to immunostaining, immunoprecipitation, and/or immuno-
blotting as described previously (24). The immunoprecipitates were
boiled in sodium dodecyl sulfate (SDS) sample buffer and subjected to
SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The proteins were
transferred to polyvinylidene difluoride membranes (Millipore, Bedford,
MA) and incubated with the appropriate antibodies. The immune com-
plexes were visualized with SuperSignal West Femto substrate (Thermo
Scientific, Rockford, IL) and detected by use of an LAS-3000 image ana-
lyzer system (Fujifilm, Tokyo, Japan).

492 jviasm.org

FOS-tagged purification and mass spectrometry. pCAG-Core-FOS
or empty vector was transfected into 293T cells, harvested at 24 h post-
transfection, washed with cold PBS, suspended in cell lysis buffer (20 mM
Tris-HCl, pH 7.4, 135 mM NaCl, 1% Triton X-100, and protease inhibitor
cocktail [Complete; Roche]), and centrifuged at 14,000 X g for 20 min at
4°C. The supernatant was pulled down using 50 ! of STrEP-Tactin Sep-
harose (IBA, Gottingen, Germany) equilibrated with cell lysis buffer for 2
h at 4°C. The affinity beads were washed three times with cell lysis buffer
and suspended in 2X SDS-PAGE sample buffer. The proteins were sub-
jected to SDS-PAGE, followed by Coomassie brilliant blue (CBB) staining
using CBB Stain One (Nakalai Tesque, Kyoto, Japan). The gels were di-
vided into 10 pieces, and each fraction was trypsinized and subjected to
liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis
to identify coimmunoprecipitated proteins. All of the proteins in gels were
identified comprehensively, and the proteins detected in cells transfected
with pCAG-Core-FOS but not in those with empty vector were regarded
as candidates for binding partners of JEV core.

Gene silencing. A commercially available small interfering RNA
(siRNA) pool targeting Caprin-1 (siGENOME SMARTpool, human
Caprinl) and control nontargeting siRNA were purchased from Dharma-
con (Buckinghamshire, United Kingdom) and transfected into 293T cells
using Lipofectamine RNAIMAX (Invitrogen) according to the manufac-
turer’s protocol.

Journal of Virology

AINN ¥MVSO Ag €102 ‘v 1 Ateniged uo /610 wse’1alj:diy wouy papeojumod



DENV B

Mock

DENV

Mock .

FIG 3 Subcellular localizations o the $G-ussociated protcrm durmg DENV infection. Cellular loca izati

JEV Core Protein Inhibits Stress Granule Formation

Laprind

Caprin-1, and TIA-1 (green, AF488-

conjugated secondary antibody) and viral componcnls (core protein and dsRNA) (red, AF-594- -conjugate secondary dnnbody)mlmlﬁ cells infected with DENV
were determined by xmnmnoﬂuorcscencganalys:s using the appropriate antibodies at 48 h postinfection. Cell nuclei were stained with DAPI (bluc).

Preparation of recombinant proteins and GST pulldown assay, His-
tagged JEV core protein (core-His) was purified as described in a previous
report (25). Briefly, core-His was expressed in Escherichia coli (E. col)
Rosetta-gami 2(DE3) strain cells (Novagen-Merck) transformed with
pET21b-Core-His (WT or 9798A). Bacteria grown to an optical density at
600 nm of 0.6 were induced with 0.5 mM isopropyl-B-p-thiogalactopyra-
noside (IPTG), incubated for 5 h at 37°C with shaking, collected by cen-
trifugation at 6,000 X g for 10 min,lysed in 10 ml of bacteria lysis buffer
(50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100,
and protease inhibitor cocktail {Complete; Roche]) by sonication on ice,
and centrifuged at 10,000 X g for 15 min. The supernatant containing
core-His was subjected to ammonium sulfate fractionation, followed by
cation exchange chromatography with a HiTrap SP column (GE Health-
care). The eluted core-His recombinant protein was dialyzed with 50 mM
Tris-HCl buffer containing 150 mM NaCl at 4°C overnight, GST-fused
Caprin-1 (GST-Caprin-1) was expressed in E. coli BL21(DE3) cells trans-
formed with pGEX-GST-Caprin-1. Bacteria grown to an optical density at
600 nm of 1.0 were induced with 0.1 mM IPTG, incubated for 5 h at 25°C
with shaking, collected by centrifugation at 6,000 X g for 10 min, lysed in
10 ml of bacteria lysis buffer by sonication on ice, and centrifuged at
10,000 X g for 15 min. The supernatant was mixed with 200 ! of gluta-
thione-Sepharose 4B beads (GE Healthcare) equilibrated with bacteria
lysis buffer for 1 h at room temperature, and then the beads were washed
five times with lysis buffer. Twenty micrograms of GST-Caprin-1 or GST
was mixed with equal volumes of the purified core-His for 2 h at 4°C with
gentle agitation. The beads were washed five times with bacteria lysis
buffer and then suspended in SDS-PAGE sample buffer.

Mouse experiments. Experimental infections were approved by the
Committee for Animal Experiment of RIMD, Osaka University (H19-2-
0). Female ICR mice (3 weeks old) were purchased from CLEA Japan
(Tokyo, Japan) and kept in specific pathogen-free environments. Groups
of mice (1 = 10) were intraperitoneally inoculated with 5 X 10" FFU (100
l) of the viruses. The mice were observed for 3 weeks after inoculation to
determine survival rates. To examine viral growth in the brain, 5 X 10*
FFU of the viruses were intraperitoneally administered to the groups of
mice (n = 3). At 7 days postinfection, mice were euthanized, and the
cerebrums were collected. The infectious titers in the homogenates of the
cerebrums were determined in Vero cells as described above,

RESULTS

JEV infection confersresistance to SG induction. To examine the
formation of SGs in cells infected with JEV, Huh?7 cells were in-
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expression of JEV proteinsand an accepted marker for SGs, G3BP,
was determined by immunofluorescence analysis at 24 h postin-
fection. G3BP was mainly accumulated in the perinuclear region
and partially colocalized with the JEV core protein, while only

_partial colocalization with the NS2B protein was also observed

(Fig. 1A, left). In addition, a few small G3BP-positive foci were
scattered in the cytoplasm. This accumulation of G3BP was ob-
served in not only Huh7 cells but also other cell lines, i.e., 293T
and Hela cells, infected with JEV (Fig. 1B). However, the expres-
sion level of G3BP in cells infected with JEV was comparable to
that in mock-infected cells (Fig. 1C). To further investigate SG
induction by JEV infection, expression of TIA-1, another SG
marker, was examined. Although accumulation of TIA-1 in the
perinuclear region was not observed, a few TIA-1-positive foci
were observed in the JEV-infected cells and were colocalized with
G3BP and JEV NS2B, indicating that SG foci were induced in cells
infected with JEV (Fig. 1D). The accumulation of G3BP and the
aggregation of TIA-1, indicating SG formation, appeared at 24 h
postinfection in accord with the expression of viral proteins (Fig.
1E). We further examined the dynamics of other SG-associated
factors in cells infected with JEV. Each factor formed clear SGs in
cells treated with sodium arsenite, a potent SG inducer eliciting
oxidative stress (Fig. 2). As shown in Fig. 1F, three distinct patterns
of the subcellular localization of SG components were observed.
USP10 and Caprin-1 were accumulated in the perinuclear region
and also formed a few small foci scattered throughout the cyto-
plasm, as seen for G3BP; TIA-1 and hnRNP Q formed cytoplasmic
foci but were not accumulated in the perinuclear region; and sub-
cellular localization of eIF3A and eIF4B was not changed. The
cytoplasmic foci were confirmed as SGs by immunofluores-
cence analyses using specific antibodies to SG-associated fac-
tors (data not shown). Taken together, these results indicate
that JEV infection induces accumulation of several RBPs and
formation of a few SGs.

It has been shown previously that infection with WNV or
DENV confers resistance to SG formation induced by sodium
arsenite (15). To determine the effect of JEV infection on the SG
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FIG 4 Iphibition of the arsenite-induced SG formation by the expression of JEV proteins. (A) Huh7 cells transfected with a plasmid, pCAGPM-HA-Core, were
treated with or without 1.0 mM sodium arsenite for 30 min at 37°C, and the cellular localizations of G3BP and HA-Core were determined at 24 h posttransfection
by immunofluorescence analysis with mouse anti-G3BP MAD and rat anti-HA MADb, followed by AF488-conjugated anti-mouse IgG and AF594-conjugated
anti-rat 1gG, respectively. Cell nuclei were stained with DAPI (blue). (B) Huh?7 cells, which were separately transfected with a plasmid expressing an individual
viral protein (pCAGPM-HA-JEV protein) as indicated in the figure, were treated with 1.0 mM sodium arsenite for 30 min at 37°C and subjected to an
immunofluorescence assay using mouse anti-G3BP MAD and rat anti-HA MAD, followed by AF488-conjugated anti-mouse 1gG and AF594-conjugated anti-rat

1gG, respectively, Cell nuclei were stained with DAP] (blue).

formation induced by sodium arsenite, JEV-infected cells were
treated with 0.5 mM sodium arsenite for 30 min at 24 h postinfec-
tion. Although many G3BP-positive foci were observed in mock-
infected cells by the treatment with sodium arsenite, accumula-
tion of G3BP in the perinuclear region was observed in the
JEV-infected cells (Fig. 1A, right), and the numbers of G3BP-
positive foci in the JEV-infected cells were less than those in the
mock-infected cells (Fig. 1G). Although it has been reported thata
significant reduction of the phosphorylation at Ser®' of elF2« in
cells treated with arsenite was induced by infection with WNV
(15), the phosphorylation of elF2a was slightly suppressed in the
JEV-infected cells (Fig. 1C). Furthermore, while previous studies
reported that Caprin-1 and TIA-1 were colocalized with dsRNA in
cells infected with DENV (15, 26), no colocalization of G3BP or
TIA-1 with the DENV core protein was observed in the present
study (Fig. 3), suggesting that the mechanisms of the viral circum-
vention of SG formation in cells infected with JEV are different
from those in cells infected with WNV and DENV.
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JEV core protein suppresses SG formation induced by so-
dium arsenite. To elucidate the molecular mechanisms of sup-
pression of SG formation induced by sodium arsenite during JEV
infection, we tried to identify which viral protein(s) is responsible
for the SG inhibition. Since G3BP was colocalized with JEV core
protein, we first examined the involvement of the core protein in
the perinuclear accumulation of G3BP and in the suppression of
SG formation. The expression of JEV core protein alone induced
the accumulation of G3BP in the perinuclear region (Fig. 4A, left
panel) and suppressed sodium arsenite-induced SG formation
(Fig. 4A, upper right cell in the right panel), similarly to JEV in-
fection. In contrast, inhibition of SG formation induced by so-
dium arsenite was not observed in cells expressing other JEV pro-
teins (Fig. 4B). These results suggest that JEV core protein is
responsible for the circumvention of the SG formation observed
in cells infected with JEV.

JEV core protein directly interacts with Caprin-1, an $G-as-
sociated cellular factor. Since JEV core protein was suggested to
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JEV Core Protein Inhibits Stress Granule Formation

The 30 highest scoring proteins associated with JEV core protein

Zinc finger ZZ-type and EF-hand domain-containing protein 1 (330 kDa)

HEAT repeat-containing protein 1 (240 kDa)
Endoribonuciease Dicer (220 kDa)

Fanconi anemia group D2 protein (170 kDa)
Ubiquitin-conjugating enzyme E2 (145 kDa)
CLIP-agsociating proteln 2 (140 kDa)

Zinc finger CCCH-type antiviral protein 1 (ZAP) (103 kDa)
Prohable E3 ubiquitin-proteln ligase HECTD3 (100 kDa)
Nuclear valosin-containing protein-like (100 kDa)
ATP-dependent RNA helicase DDX54 (100 kDa)

Cell division cycle 5-fike protein (92 kDa)

Transcriptlon intermediary factor 1-beta (90 kDa)

Cy tivation/proiiferati fated protein-1 {Caprin-1) {90 kDa)

80- P )
Trifunctional alpha, mi al (83 kDa)
FOS-tag purification Pentatrlcopepllde repeat-containing protein 3, mitochondrial (80 kDa)
58- Nucleolar GTP-blndlng pmteln 1 {75 kDa)
Calcium-bind) hondrlal carrier protein Aralar2 (75 kDa)
A Is-Inducl g factor 1, mitochondrial (67 kDa)
Nucleolar protein 5A (66 kDa)
46- Interferon-Indi led RNA d protein kinase (PKR) (62 kDa}
Nuclease Treatment Proteln phosphatase 1G (80 kDa)
Proteln FAM98A (56 kDa)
Protein SAAL1 (54 kDa)
Tl lonal enzyme it beta, hondrial (51 kDa)
Nucleoscmc aasembly protein 1-lke 1 (45 kDa)
LC-MS/MS analysis 30- y protein 1-like 4 (43 kDa)
Ak ine-protein ph hatase PP1-alpha cnlalyuc subunit (38 kDa)
Brlx domaln-contalning proteln 1(35 kDa)
Tricarb 1t protein, mitochondrlal (35 kDa)
Protein SET {33 kDa) :
Uncharacterized proteln C3orf26 (32 kDa)
Removal of no';z;:;cnigc precipitated Mitochondrial dicarboxylate carrler (31 kDa)
Rib P protein P30 (30 kDa)
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FIG 5 JEV core protein directly interacts with Caprin-1, an SG-associated cellular factor. (A) Identification of host cellular proteins associated with JEV core protein by
FOS-tagged purification and LC-MS/MS analysis. Overview of the FOS-tagged purification of cellular proteins associated with JEV core protein. (B) The 30 candidate

proteins as binding partners of JEV core protein exhibiting high scores are listed.

PKR and Caprin-1 are indicated in red. (C and D) FLAG-JEV core protein and

HA-Caprin-1 were coexpressed in 2937T cells, and the cell lysates harvested at 24 h posttransfection were treated with or without micrococcal nuclease for 30 min at 37°C

and immunoprecipitated (1P) with anti-HA («HA) or anti-FLAG («FLAG) antibody, as indicated.

The precipitates were subjected to immunoblotting (1B) to detect

coprecipitated counterparts. (E) FLAG-DENV core protein was coexpressed with HA-Caprin-1 in 293T cells, immunoprecipitated with anti-HA antibody, and
immunoblotted with anti-HA or anti-FLAG antibody. (F) His-tagged JEV core protein was incubated with either GST-fused Caprin-1 or GST for 2 h at 4°C, and the
precipitates obtained by GST pulldown assay were subjected to CBB staining and immunoblotting with anti-His antibody.

participate in the inhibition of SG formation, we tried to identify
cellular factors associated with the core protein by LC-MS/MS
analysis, as shown in Fig. 5A. Among the 30 factors with the best
scores, two SG-associated proteins, PKR (Mascot search score,
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206) and Caprin-1 {Mascot search score, 153), were identified as
binding partners of JEV core protein (Fig. 5B). Although PABP1,
hnRNP Q, Staufen, G3BP, and elF4G were also identified, their
scores were lower than those of PKR and Caprin-1. Because the
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FIG 6 Caprin-1 is colocalized with the JEV core protein in the perinuclear region. (A) Expression of Caprin-1 fused with AcGFP (Caprin-1-AcGFP), Caprin-1,
actin, or AcGFP in lentivirally transduced Huh7 cells was determined by immunoblotting using the appropriate antibodies. (B) Subcellular localization of
Caprin-1-AcGFP or AcGFP (green) and endogenous Caprin-1 (red) in cells treated with/without 1.0 mM sodium arsenite for 30 min at 37°C was determined by
immunofluorescence assity with rabbit anti-Caprin-1 PAb and AF594-conjugated anti-rabbit 1gG. Cell nuclei were stained with DAPI (blue). (C) Huh7/Caprin-
1-AcGFP cells were infected with either JEV or DENV at an MOI of 0.5, and the cellular localizations of JEV and DENV core (red) with Caprin-1-AcGFP and
G3BP (blue) were determined at 24 h and 48 h postinfection, respectively. Cells were stained with mouse anti-G3BP MAb and rabbit anti-JEV or DENV core
protein PAD, followed by AF633-conjugated anti-mouse IgG and AF594-conjugated anti-rabbit IgG, respectively, and examined by immunofluorescence

analysis.

results shown in Fig. 1B suggest that the inhibition of SG forma-
tion takes place downstream of elF2« phosphorylation, we fo-
cused on Caprin-1 as a key factor involved in the inhibition of SG
formation in cells infected with JEV. To confirm the specific in-
teraction of JEV core protein with Caprin-1, FLAG-JEV core pro-
tein and HA-Caprin-1 were coexpressed and immunoprecipitated
with anti-HA or anti-FLAG antibody in the presence or absence of
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nuclease. FLAG-JEV core protein was coprecipitated with HA-
Caprin-1 irrespective of nuclease treatment (Fig. 5C and D), sug-
gesting that the interaction between JEV core protein and
Caprin-1 is a protein-protein interaction. On the other hand,
FLAG-DENV core protein was not coprecipitated with HA-
Caprin-1 (Fig. 5E), indicating that the interaction with Caprin-1
was specific for JEV core protein. Next, the direct interaction be-
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FIG 7 Knockdown ol Caprin-1 cancels $G inhibition during JEV infection

and suppresses viral propagation. (A) (Upper) The levels of expression of

Caprin-1 in cells transfected with either siCaprin-1 or siNC was determined by
immunaoblotting using anti-Caprin-1 and anti-B-actin antibodies at 72 h post-
transfection (top panel). At 48 h posttransfection with either siCaprin-1 or
siNC, Huh7/Caprin-1-AcGFP cells were inoculated with JEV at an MO1 of 0.5.
At 24 h postinfection (72 h posttransfection), the infectious titers in the super-
natants were determined by focus-forming assay in Vero cells (bottom panel,
bar graph). Cell viability was determined at 72 h posttransfection and calcu-
lated as a percentage of the viability of cells treated with siNC (bottom panel,
line graph). The results shown are from three independent assays, with the
error bars representing the standard deviations. (B) At 48 h posttransfection
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tween JEV core protein and Caprin-1 was examined by a GST-
pulldown assay using purified proteins expressed in bacteria. The
His-tagged core protein was coprecipitated with GST-tagged
Caprin-1, suggesting that JEV core protein directly interacts with
Caprin-1 (Fig. 5F).

To further determine the cellular localization of Caprin-1 in
JEV-infected cells, Caprin-1 fused with AcGFP (Caprin-1-
AcGFP) was lentivirally expressed in Huh7 cells. The levels of
expression and recruitment of Caprin-1-AcGFP into SGs were
determined by immunoblotting and immunofluorescence analy-
sis, respectively (Fig. 6A and B). In cells infected with JEV, Caprin-
1-AcGFP was concentrated in the perinuclear region and colocal-
ized with core protein and G3BP, while no colocalization of the
proteins was observed in cells infected with DENV (Fig. 6C), sug-
gesting that Caprin-1 directly interacts with JEV core protein in
the perinuclear region of the infected cells.

Knockdown of Caprin-1 cancels §G inhibition during JEV
infection and suppresses viral propagation. To assess the biolog-
ical significance of the interaction of JEV core protein with
Caprin-1 in JEV propagation, the expression of Caprin-1 was sup-
pressed by using Caprin-1-specific siRNAs (siCaprin-1). Trans-
fection of siCaprin-1 efficiently and specifically knocked down the
expression of Caprin-1 with a slight increase of cell viability and
decreased the production of infectious particles in the culture su-
pernatants of cells infected with JEV, in comparison with those
treated with a control siRNA (siNC) (Fig. 7A). Furthermore, im-
munofluorescence analyses revealed that knockdown of Caprin-1
increased the number of G3BP-positive granules colocalized with
SG-associated factors, including TIA-1 and elF4B, and inhibited
the G3BP concentration in the perinuclear region (Fig. 7B and C).
These results suggest that knockdown of Caprin-1 suppresses JEV
propagation through the induction of SG formation.

Lys’” and Arg® in the JEV core protein are crucial residues
for the interaction with Caprin-1. To determine amino acid res-
idues of the core protein that are required for the interaction with
Caprin-1, we constructed a putative model based on the structural
information of the DENV core protein previously resolved by nu-
clear magnetic resonance (NMR) (27), as shown in Fig. 8A. Based
on this model, we selected hydrophobic amino acids, which were
located on the solvent-exposed side in the «l and o4 helices, as
amino acid residues responsible for the binding to host proteins.
Amino acid substitutions in each of the «-helices shown in Fig. 8B
were designed in the context of FLAG-Core (Ma1 and Ma4), and
the interaction of FLAG-Core mutants with Caprin-1 was exam-
ined by immunoprecipitation analysis. WT and Mal, but not
Ma4, core proteins were immunoprecipitated with Caprin-1
(Fig. 8B). To determine the amino acids responsible for interac-
tion with Caprin-1, further alanine substitutions were introduced
in the a4 helix, and the interaction was examined by immunopre-

with either siCaprin-1 or siNC, Huh7/Caprin-1-AcGFP cells were inoculated
with JEV at an MOI of 0.5. The cellular localizations of $G-associated factors
and JEV NS2B were determined at 24 h postinfection (72 h posttransfection)
by immunofluorescence analysis with mouse anti-G3BP MAb and rabbit anti-
NS2B PAb, rabbit anti-cIF4B PAD, or goat anti-TIA-1 PAb, followed by
AF633-conjugated anti-mouse 1gG and AF594-conjugated anti-rabbit 1gG or
AF594-conjugated anti-goat IgG, respectively. (C) Numbers of G3BP-positive
fociin 30 cells prepared as described in panel B were counted. Lines, boxes, and
error bars indicate the means, 25th to 75th percentiles, and 95th percentiles,
respectively. The significance of differences between the means was deter-
mined by a Student’s f test. *, P < 0.01.
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