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FIGURE 6. Metformin treatment did not suppress FoxO3a expression but did suppress its activity. A, FoxO3a mRNA expression in H4lIEC3 hepato-
cytes treated with metformin for 6 h. Expression values were normalized to Actb mRNA. Data represent means *+ S.D. (n = 5-6). B and C, modification
of FoxOs proteins by metformin treatment. Proteins were extracted after 6 h of metformin treatment. Immunoblotting was performed using anti-
FoxO3a antibody (B) or anti-FoxO1 antibody (C). Data represent means = S.D. (n = 3). **, p < 0.01. N.S,, not significant. IP, immunoprecipitation; /B,
immunoblot. D, intracellular localization of FoxO3a and FoxO1 in H4IIEC3 hepatocytes upon treatment with metformin. Proteins were extracted after 6 h
of metformin treatment. £, scheme of SeP suppression by metformin in the liver. FoxO3a positively regulates SEPPT promoter activity. Metformin
suppresses FoxO3a activity via AMPK activation, resulting in suppression of SeP expression. Thus, the hypoglycemic effects of metformin may be

mediated at least in part by SeP suppression in the liver.

FoxO3a participates in glucose homeostasis via regulation of
the hepatic production of SeP, an insulin resistance-induc-
ing hepatokine.

Knockdown of Foxo3a, but not Foxol, rescued the cells from
metformin-induced inactivation of the SEPPI promoter,
although knockdown of both Foxo3a and Foxol down-regu-
lated Sepp1 in the absence of metformin (Fig. 5, A and B). These
results are in harmony with early reports showing that FoxO1
positively regulates Seppl expression in cultured hepatocytes
(38, 39). The current data suggest that both FoxO3a and FoxO1
positively regulate expression of SEPPI in the basal conditions,
but FoxO3a has a dominant role in the suppression of SEPP1
downstream of metformin/AMPK pathway in H4IIEC3 hepa-
tocytes. Interestingly, metformin selectively phosphorylated
and deacetylated FoxO3a but not FoxO1 (Fig. 6, B and C). This
FoxO3a-selective phosphorylation by metformin is consistent
with the previous report showing that AMPK-induced phos-
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phorylation displays a strong preference toward FoxO3 com-
pared with FoxO1 by using in vitro kinase assays (16).

The current study is the first to demonstrate the decreased
nuclear localization and subsequent transcriptional inactiva-
tion of FoxO3a by AMPK downstream of metformin in the
cultured hepatocytes. Greer et al. (16) identified FoxO3a as a
direct phosphorylation target of AMPK using in vitro kinase
assays. However, the authors reported that phosphorylation by
AMPK increases FoxO3a transcriptional activity without
affecting FOXO3A subcellular localization in mouse embry-
onic fibroblasts or 293T cells. A similar activation of FoxO3a by
AMPK was reported in C2C12 myotubes (17). In this respect,
our results suggest that the AMPK-induced inactivation of
FoxO3a is hepatocyte-specific. When FoxO proteins are phos-
phorylated by Akt, the dissociation of nuclear co-factors from
FoxO is thought to be required for nuclear exclusion of FoxO
(40). Hence, the difference in nuclear co-activator/co-repressor
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recruitment between hepatocytes and other cells might explain
differences in the action of AMPK on FoxO3a cellular localiza-
tion and transcriptional activity. Notably, the siRNA-induced
knockdown of Foxo3a decreased Seppl and G6pc mRNA levels
in H4IIEC3 hepatocytes, suggesting that the AMPK/FoxO3a
pathway in the liver regulates gluconeogenesis and the produc-
tion of the hepatokine SeP. These findings shed light on a pre-
viously unrecognized role for the AMPK/FoxO3a pathway in
the regulation of glucose metabolism in the liver.

The cancellation of the metformin-induced suppression of
SeP by compound C, a known inhibitor of the AMPK pathway,
was only partial (Fig. 2B). Likewise, the overexpression of
FoxO3a only partially cancelled the suppressive action of met-
formin on Sepp1 gene expression (Fig. 6, D and E). These results
suggest that metformin decreases Seppl gene expression
through both AMPK/FoxO3a-dependent and other indepen-
dent pathways. Recently, Kalender et al. (41) reported that met-
formin acts to suppress mTORC]1 signaling in an AMPK-inde-
pendent manner. In addition, Guigas et al. (42) found that
metformin inhibits glucose phosphorylation in primary cul-
tured hepatocytes independently of AMPK activity. Additional
studies are needed to elucidate the AMPK-independent actions
of metformin on Seppl expression in H4IIEC3 hepatocytes.

The present sequence of SEPPI promoter completely corre-
sponds to the refseq of the National Center for Biotechnology
Information, but it misses one thymidine against the sequence
of a previous report (21). This site had been reported as an SNP
site (reference SNP ID rs201851607). Because both allele origin
and minor allele frequency of this SNP site are not available, it is
difficult to prove which genome sequence is “correct.” At least
this SNP site does not seem to affect basal SEPPI promoter
activity. In addition, the metformin-responsible element iden-
tified in the current paper locates in the other region of the SNP
site. Thus, we consider that the effect of this SNP on the con-
clusion of this paper is negligible.

A limitation of the present study is that the effects of met-
formin on SeP expression were not investigated in human sam-
ples. The metformin concentrations used in this study (0.25-1
mu) were higher than the blood levels of metformin in patients
treated with conventional doses of the drug (10— 40 um). How-
ever, it has been pointed out that concentrations of metformin
in liver tissue are much higher than those in the blood because
the liver receives portal vein blood, which may contain materi-
ally higher doses of metformin than plasma (43). An early
report indicated that metformin concentrations in the liver
were greater than 250 umol/kg in an ST'Z diabetic mouse model
treated with 50 mg/kg metformin (44). One previous study used
0.25-1 mMm metformin in rat primary hepatocytes as a more
physiological range of intrahepatic concentration (43). In addi-
tion, we show that administration of 300 mg/kg metformin was
effective on hepatic expression for Seppl in C57BL/6] mice
(Fig. 1F). Although clinical trials are necessary, we speculate
here that treatment with metformin decreases blood levels of
SeP in patients with diabetes. Additionally, the contribution of
SeP suppression to the anti-diabetic actions of metformin
should be confirmed by additional investigations using Sepp1-
knock-out mice.

344 JOURNAL OF BIOLOGICAL CHEMISTRY

In summary, the present data provide a novel mechanism
of action for metformin involving improvement of systemic
insulin sensitivity via the regulation of SeP production (Fig.
6E) and suggest that AMPK/FoxO3a pathway in the liver
may be a therapeutic target to the development of new anti-
diabetic drugs.
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Background & Aims: Recent evidence suggests that hepatocellu-
lar carcinoma can be classified into certain molecular subtypes
with distinct prognoses based on the stem/maturational status
of the tumor. We investigated the transcription program deregu-
lated in hepatocellular carcinomas with stem cell features.
Methods: Gene and protein expression profiles were obtained
from 238 (analyzed by microarray), 144 (analyzed by immuno-
histochemistry), and 61 (analyzed by qRT-PCR) hepatocellular
carcinoma cases. Activation/suppression of an identified tran-
scription factor was used to evaluate its role in cell lines. The rela-
tionship of the transcription factor and prognosis was statistically
examined.

Results: The transcription factor SALL4, known to regulate stem-
ness in embryonic and hematopoietic stem cells, was found to be
activated in a hepatocellular carcinoma subtype with stem cell
features. SALL4-positive hepatocellular carcinoma patients were
associated with high values of serum alpha fetoprotein, high fre-
quency of hepatitis B virus infection, and poor prognosis after
surgery compared with SALL4-negative patients. Activation of
SALL4 enhanced spheroid formation and invasion capacities,
key characteristics of cancer stem cells, and up-regulated the
hepatic stem cell markers KRT19, EPCAM, and CD44 in cell lines.
Knockdown of SALL4 resulted in the down-regulation of these
stem cell markers, together with attenuation of the invasion
capacity. The SALL4 expression status was associated with
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Chemosensitivity.
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histone deacetylase activity in cell lines, and the histone deace-
tylase inhibitor successfully suppressed proliferation of SALL4-
positive hepatocellular carcinoma cells.

Conclusions: SALL4 is a valuable biomarker and therapeutic tar-
get for the diagnosis and treatment of hepatocellular carcinoma
with stem cell features.

© 2013 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.

Introduction

Cancer is a heterogeneous disease in terms of morphology and
clinical behavior. This heterogeneity has traditionally been
explained by the clonal evolution of cancer cells and the accumu-
lation of serial stochastic genetic/epigenetic changes [1]. The
alteration of the microenvironment by tumor stromal cells is also
considered to contribute to the development of the heteroge-
neous nature of the tumor through the activation of various sig-
naling pathways in cancer cells, including epithelial
mesenchymal transition programs {2].

Recent evidence suggests that a subset of tumor cells with
stem cell features, known as cancer stem cells (CSCs), are capable
of self-renewal and can give rise to relatively differentiated cells,
thereby forming heterogeneous tumor cell populations {3]. CSCs
were also found to generate tumors more efficiently in immuno-
deficient mice than non-cancer stem cells in various solid tumors
as well as hematological malignancies [4]. CSCs are also more
metastatic and chemo/radiation-resistant than non-CSCs and
are therefore considered to be a pivotal target for tumor eradica-
tion [5,6].

Hepatocellular carcinoma (HCC) is a leading cause of .cancer
death worldwide |7]. Recently, we proposed a novel HCC classifi-
cation system based on the expression status of the hepatic stem/
progenitor markers epithelial cell adhesion molecule (EpCAM)
and alpha fetoprotein (AFP) {8]. EpCAM-positive (*) AFP* HCC
(hepatic stem cell-like HCC; HpSC-HCC) is characterized by an
onset of disease at younger ages, activation of Wnt/B-catenin
signaling, a high frequency of portal vein invasion and poor
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prognosis after radical resection, compared with EpCAM™ AFP~
HCC (mature hepatocyte-like HCC; MH-HCC) {9]. EPCAM is a tar-
get gene of Wnt/p-catenin signaling, and EpCAM* HCC cells iso-
lated from primary HCC and cell lines show CSC features
including tumorigenicity, invasiveness, and resistance to fluoro-
uracil {9,101 Thus, EpCAM appears to be a potentially useful mar-
ker for the isolation of liver. CSCs in HpSC-HCC. However, key
transcriptional programs responsible for the maintenance of
EpCAM* CSCs are still unclear.

In this study, we aimed to clarify the transcriptional programs
deregulated in HpSC-HCC using a gene expression profiling
approach. We found that the SALL4 gene encoding Sal-like 4 (Dro-
sophila) (SALL4), a zinc finger transcriptional activator and verte-
brate orthologue of the Drosophila gene spalt (sal) | 11], was up-
regulated in HpSC-HCC. In adults, SALL4 is known to be expressed
in hematopoietic stem cells and their malignancies, but its role in
HCC has not yet been fully elucidated [12-14]. We therefore
investigated the role of SALL4 in the regulation and maintenance
of EpCAM” HCC.

Materials and methods
Clinical HCC specimens

A total of 144 HCC tissues and adjacent non-cancerous liver tissues were obtained
from patients who underwent hepatectomy for HCC treatment from 2002 to 2010
at Kanazawa University Hospital, Kanazawa, Japan. These samples were formalin-
fixed and paraffin-embedded, and used for immunohistochemistry (IHC). A fur-
ther 61 HCC samples were obtained from patients who underwent hepatectomy
from 2008 to 2011; these were freshly snap-frozen in liquid nitrogen and used for
RNA analysis. Of these 61 HCCs, 8 and 36 cases were defined as HpSC-HCC and
MH-HCC, respectively, according to previously described criteria {8].

27 HCC cases were included in both the IHC cohort (n = 144) and quantitative
reverse transcription-polymerase chain reaction (qRT-PCR) cohort (n=61), and
SALL4 gene and protein expression were compared between these cases. An addi-
tional fresh HpSC-HCC sample was obtained from a surgically resected specimen
and immediately used for preparation of a single-cell suspension. All experimen-
tal and tissue acquisition procedures were approved by the Ethics Committee and
the Institutional Review Board of Kanazawa University Hospital. All patients pro-
vided written informed consent.

Microarray analysis

Detailed information on microarray analysis is available in the Supplementary
Materials and methods.

Cell culture and reagents

Human liver cancer cell lines HuH1, HuH7, HLE, and HLF were obtained from the
Japanese Collection of Research Bioresources (JCRB), and Hep3B and SK-Hep-1
were obtained from the American Type Culture Collection (ATCC). Single-cell sus-
pensions of primary HCC tissue were prepared as described previously {151
Detailed information is available in the Supplementary Materials and methods.
The histone deacetylase (HDAC) inhibitor suberic bis-hydroxamic acid (SBHA)
and suberoylanilide hydroxamic acid (SAHA) were obtained from Cayman Chem-
ical (Ann Arbor, MI). Plasmid constructs pCMV6-SALL4 (encoding SALL4A),
pCMV6-SALL4-GFP, and 29mer shRNA constructs against human SALL4 (No.
7412) were obtained from OriGene Technologies, Inc. (Rockville, MD). These con-
structs were transfected using Lipofectamine 2000 (Life Technologies, Carlsbad,
CA) according to the manufacturer’s protocol.

Western blotting

Whole cell lysates were prepared using RIPA lysis buffer. Nuclear and cytoplasmic
proteins were extracted using NE-PER Nuclear and Cytoplasmic Extraction
Reagents (Pierce Biotechnology Inc., Rockford, IL). Mouse monoclonal antibody

to human Sall4 clone 6E3 (Abnova, Walnut, CA), rabbit polyclonal antibodies to
human Lamin B1 {Cell Signaling Technology Inc., Danvers, MA), and mouse mono-
clonal anti-B-actin antibody (Sigma-Aldrich, St. Louis, MO) were used. Immune
complexes were visualized by enhanced chemiluminescence (Amersham Biosci-
ences Corp., Piscataway, NJ) as described previously [15,16].

Quantitative reverse transcription-polymerase chain reaction (qRT-PCR)

Detailed information on qRT-PCR is available in the Supplementary Materials and

methods,
[HC and immunofluorescence (IF) analyses

IHC was performed using an Envision+ kit (Dako, Carpinteria, CA) according to the
manufacturer’s instructions. Anti-SALL4 monoclonal antibody 6E3 (Abnova, Wal-
nut, CA), anti-EpCAM monoclonal antibody VU-1D9 (Oncogene Research Prod-
ucts, San Diego, CA), and anti-CK19 monoclonal antibody RCK108 (Dako Japan,
Tokyo, Japan) were used for detecting SALL4, EpCAM, and CK19, respectively.
Anti-Sall4 rabbit polyclonal antibodies (ab29112) (Abnova) and vector red (Vec-
tor Laboratories Inc., Burlingame, CA) were used for double color IHC analysis.
Samples with >5% positive staining in a given area were considered to be positive
for a particular antibody. For IF analyses, Alexa 488 fluorescein isothiocyanate
(FITC)-conjugated anti-mouse immunoglobulin G (IgG) (Life Technologies) was
used as a secondary antibody.

Cell proliferation, spheroid formation, invasion, and HDAC activity assay

Detailed information on this topic is available in the Supplementary Materials
and methods.

Statistical analyses

Student’s t tests were performed with GraphPad Prism software 5.0 (GraphPad
Software, San Diego, CA) to compare various test groups assayed by cell prolifer-
ation assays and gRT-PCR analysis. Spearman’s correlation analysis and Kaplan-
Meier survival analysis were also performed with GraphPad Prism software 5.0
(GraphPad Software).

Results
Activation of SALL4 in HpSC-HCC

To elucidate the transcriptional programs deregulated in HpSC-
HCC, we performed class-comparison analyses and identified
793 genes showing significant differences in differential expres-
sion between HpSC-HCC (n=60) and MH-HCC (n=96)
(p <0.001), as previously described [3]. Of them, 455 genes were
specifically up-regulated in HpSC-HCC, and we performed tran-
scription factor analysis using this gene set to identify their tran-
scriptional regulators by MetaCore software. We identified four
transcription factor genes, SALL4, NFYA, TP53, and SP1, that were
potentially activated in HpSC-HCC (Fig. 1A). Involvement of
TP53 and SP1 in the stemness of HCC has previously been
described {17,18], but the roles of SALL4 and NFYA were unclear.

We investigated the interaction networks affected by SALL4
and NFYA using the MetaCore dataset. We showed that SALL4
might be a regulator of Akt signaling (SP1), Wnt signaling
(TCF7L2), and epigenetic modification (JARID2, DMRT1, DNMT3B)
{19], and could potentially regulate two other transcriptional reg-
ulators, SP1 and NFYA, through Akt and Myb signaling pathways
(Fig. 1B). As a recent study indicated that SALL4 is a direct target
of the Wnt signaling pathway {20}, which is dominantly activated
in HpSC-HCC {9}, we focused on the expression of SALL4 in HpSC-
HCC, and confirmed its up-regulation in HpSC-HCC compared
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Fig. 1. Transcription factors potentially activated in HpSC-HCC. (A) Transcription factor analysis. Transcription factors regulating genes up-regulated in HpSC-HCC are
listed with their p values and z-scores as calculated by MetaCore software. (B) Interaction network analysis. Seven genes (ABL1, DMRT1, DNMT3B, JARID2, NFYA, SP1, and
TCF712, indicated in orange) shown to be up-regulated in HpSC-HCC were identified as potential target genes regulated by SALL4 (indicated in red). (C) SALL4 gene
expression evaluated by microarray analysis. Tumor/non-tumor (T/N) ratios of microarray data in HpSC-HCC (n = 60) and MH-HCC (n = 96). (D) SALL4 gene expression
evaluated by qRT-PCR. Gene expression of SALL4 in HpSC-HCC (n = 8) and MH-HCC (n = 36) samples. (E) Scatter plot analysis. Gene expression levels of EPCAM (upper panel)
and AFP (lower panel) were positively correlated with those of SALL4 in microarray data (n = 238, T/N ratios), as shown by Spearman’s correlation coefficients. (F) Scatter
plot analysis. Gene expression levels of EPCAM (upper panel) and AFP (lower panel) were positively correlated with those of SALL4 in qRT-PCR data (n = 61), as shown by

Spearman’s correlation coefficients. (This figure appears in colour on the web.)

with MH-HCC as evaluated by microarray data (Fig. 1C). We val-
idated this using an independent HCC cohort evaluated by qRT-
PCR (Fig. 1D). We further examined the expression of SALL4,
EPCAM, and AFP using microarray data of 238 HCC cases
(Fig. 1E) and gRT-PCR data of 61 HCC cases (Fig. 1F). For the
tumor/non-tumor ratios, we identified a weak positive correla-
tion between SALL4 and EPCAM (r = 0.31, p <0.0001) and between
SALL4 and AFP (r = 0.31, p = 0.0003) in the microarray cohort. We
further evaluated expression of these genes in HCC tissues by
qRT-PCR, and we validated the strong positive correlation
between SALL4 and EPCAM (r=0.70, p<0.0001) and between
SALL4 and AFP (r=0.66, p <0.0001) in the independent cohort.

Journal of Hepatology 2014 vol. 60 | 127-134

Next we performed [HC analysis of 144 HCC cases surgically
resected at Kanazawa University Hospital. We first confirmed
the nuclear accumulation of SALL4 stained by an anti-human
SALL4 antibody (Fig. 2A). We further confirmed the concordance
of SALL4 protein expression evaluated by IHC, and SALL4 gene
expression evaluated by gqRT-PCR using the same samples
(Fig. 2B). We detected the nuclear expression of SALL4 in 43 of
144 HCC cases (Table 1). After evaluating the clinicopathological
characteristics of SALL4-positive and -negative HCC cases, we
identified that SALL4-positive HCCs were associated with a signif-
icantly high frequency of hepatitis B virus (HBV) infection and
significantly high serum AFP values. We further identified that
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Fig. 2. SALL4 expression in human primary HCCs and cell lines. (A) Representative images of SALL4-positive and -negative HCC immunostaining (scale bar, 100 pm). (B)
Gene expression of SALL4 in SALL4-positive (n = 13) and -negative HCCs (n = 14) as shown by IHC (mean + SD). (C) Double color IHC analysis of HCC stained with anti-SALL4
and anti-EpCAM or anti-CK19 antibodies (scale bar, 100 pm). (D) Kaplan-Meier survival analysis with Log-rank. Recurrence-free survival of SALL4-positive (n=43) and -
negative (n = 101) HCCs was analyzed. (E) SALL4 expression in EpCAM" (Hep3B, HuH7, and HuH1) and EpCAM™ (SK-Hep-1, HLE, and HLF) HCC cell lines evaluated by qRT-
PCR. (F) SALL4 expression in EpCAM* and EpCAM~ HCC cell lines evaluated by Western blotting. (G) IHC analysis of SALL4 expression in subcutaneous tumors obtained from
EpCAM* (HuH7 and Hep3B) HCC cell lines xenografted in NOD/SCID mice. (H) Spheroid formation capacity of sorted EpCAM* and EpCAM™ cells obtained from a primary
HCC. Number of spheroids obtained from 2000 sorted cells is indicated (n = 3, mean + SD). Gene expression of SALL4 in sorted EpCAM™ and EpCAM™ cells obtained from a

primary HCC (n =3, mean # SD). (This figure appears in colour on the web.)

SALL4-positive HCCs were associated with expression of the
hepatic stem cell markers EpCAM and CK19. Co-expression of
SALL4, EpCAM, and CK19 was confirmed by double color IHC
analysis (Fig. 2C). Evaluation of the survival outcome of these sur-
gically resected HCC cases by Kaplan-Meier survival analysis
indicated that SALL4-positive HCCs were associated with signifi-
cantly lower recurrence-free survival outcomes within one year
compared with SALL4-negative HCCs (p = 0.0049) (Fig. 2D).
Because SALL4 expression was positively correlated with
EpCAM and AFP expression in primary HCC cases, we evaluated
the expression of SALL4 in EpCAM* AFP* and EpCAM~ AFP~
HCC cell lines. Consistent with the primary HCC data, two of three
EpCAM® AFP* HCC cell lines (Hep3B and HuH7) abundantly
expressed SALL4, as shown by gRT-PCR (Fig. 2E) and Western
blotting (Fig. 2F). We identified the expression of two isoforms
of SALL4 proteins with molecular weights of 165 kDa (SALL4A)

and 115 kDa (SALL4B), and SALL4B was found to be the dominant
endogenous isoform in HCC cell lines. All EpCAM~ AFP~ HCC cell
lines (SK-Hep-1, HLE, and HLF) and one EpCAM™ AFP* cell line
(HuH1) did not express SALL4. Nuclear accumulation of SALL4
in Hep3B and HuH?7 cells was confirmed by IHC using subcutane-
ous tumors developed in xenotransplanted NOD/SCID mice
(Fig. 2G). We further evaluated the expression of EPCAM and
SALL4 using single cell suspensions derived from a surgically
resected primary HCC. EpCAM* and EpCAM™ cells were separated
by magnetic beads, and we revealed a strong spheroid formation
capacity of sorted EpCAM" cells compared with EpCAM™ cells
(Fig. ZH, left panel). Interestingly, when comparing the expres-
sion of SALL4 in these sorted cells, we identified a high expression
of SALL4 in sorted EpCAM" cells compared with EpCAM™ cells
(Fig. 2H, right panel), indicating that SALL4 is activated in
EpCAM" liver CSCs.

130 Journal of Hepatology 2014 vol. 60 | 127-134

- 139 -



JOURNAL OF HEPATOLOGY

Table 1. Clinicopathological characteristics of SALL4-positive and -negative HCC cases used for IHC analyses.

Parameters SALL4-positive SALL4-negative p value*
(n=43) (n=101)

Age (yr, mean * SE) 60.8+1.8 64.6+ 1.0 0.13
Sex (male/female) 2716 70/18 0.06
Etiology (HBV/HCV/B + C/other) 21/14/0/8 20/63/3/15 0.0014
Liver cirrhosis (yes/no) 21/22 61/40 0.27
AFP (ng/ml, mean + SE) 13,701 + 9292 175.5 £ 55.0 <0.0001
Histological grade™*

-1l 3 18

- 33 68

n-v 7 15 0.24
Tumor size (<3 cm/>3 cm) 17/26 57/44 0.071
EpCAM (positive/negative) 27116 29/72 0.0002
CK19 (positive/negative) 12/31 12/89 0.027

*Mann-Whitney U-test or x? test.
**Edmondson-Steiner.

SALL4 regulates stemness of HpSC-HCC

To explore the role of SALL4 in HpSC-HCC, we evaluated the effect
of its overexpression in HuH1 cells which showed little expres-
sion of SALL4 irrespective of EpCAM" and AFP* HpSC-HCC pheno-
type. We transfected plasmid constructs encoding SALL4
(pCMV6-SALL4) or control (pCMV7), and we similarly identified
the expression of two isoforms by using this construct (Fig. 3A).
Evaluation of the subcellular localization of GFP-tagged SALL4
(pCMV6-SALL4-GFP) showed that it could be detected in both
the cytoplasm and nucleus (Fig. 3B). We observed strong up-reg-
ulation of the hepatic stem cell marker KRT19, modest up-regula-
tion of EPCAM and (D44, and down-regulation of the mature
hepatocyte marker ALB in HuH1 cells transfected with pCMV6-
SALL4 compared with the control (Fig. 3C). Up-regulation of
CK19 by SALL4 overexpression was also confirmed at the protein
level by IF analysis (Fig. 3D). Phenotypically, SALL4 overexpres-
sion in HuH1 cells resulted in the significant activation of spher-
oid formation and invasion capacities with activation of SNAIT,
which induces epithelial-mesenchymal transition, compared
with the control (Fig. 3E and F, Supplementary Fig. 1A).

We further investigated the effect of SALL4 knockdown in
HuH7 cells, which intrinsically expressed high levels of SALL4.
Expression of SALL4 was decreased to 50% in HuH7 cells transfec-
ted with SALL4 sh-RNA compared with the control when evalu-
ated by qRT-PCR (Fig. 4A). However, the reduction of SALL4
protein was more evident when evaluated by Western blotting,
suggesting that this sh-RNA construct might work at the transla-
tional as well as the transcriptional level (Fig. 4B). Knock down of
SALL4 resulted in a compromised invasion capacity and spheroid
formation capacity with decreased expression of EPCAM and
(D44 in HuH7 cells (Fig. 4C and D, Supplementary Fig. 1B and C).

SALL4 and HDAC activity in HpSC-HCC

The above data suggested that SALL4 is a good target and bio-
marker for the diagnosis and treatment of HpSC-HCCs. However,
it is difficult to directly target SALL4 as no studies have investi-
gated the inhibition of its transcription using chemical or other
approaches [21]. We therefore re-investigated the interaction
networks associated with SALL4, and found that SALL4 activation

appeared to induce epigenetic modification (Fig. 1B). In particu-
lar, a recent study suggested that SALL4 forms a nucleosome
remodeling and deacetylase (NuRD) complex with HDACs and
potentially regulates HDAC activity [22]. We therefore confirmed
that SALL4 knock down resulted in the reduced activity of total
HDAC in HuH7 cells (Fig. 4E). We also evaluated the effect of
the overexpression of SALL4 in HuH1 and HLE cells, which do
not express SALL4 endogenously, and SALL4 overexpression was
found to result in a modest increase of HDAC activity and mild
enhancement of chemosensitivity to an HDAC inhibitor SBHA in
both cell lines (Supplementary Fig. 2A and B). We further inves-
tigated HDAC activity in two SALL4-positive (Hep3B, HuH7) and
two SALL4-negative (HLE, HLF) HCC cell lines. Interestingly, high
HDAC activities were detected in SALL4-positive compared with
SALL4-negative HCC cell lines (Fig. 4F). The HDAC inhibitor SBHA
was found to inhibit proliferation of SALL4-positive HCC cell lines
at a concentration of 10 pM. By contrast, SBHA had little effect on
the proliferation of SALL4-negative HCC cell lines at this concen-
tration (Fig. 4G). SBHA treatment suppressed the expression of
SALL4 gene/protein expression in SALL4-positive HuH7 and
Hep3B cell lines (Supplementary Fig. 3A and B). We further inves-
tigated the effect of SAHA, an additional HDAC inhibitor, in these
HCC cell lines, and SAHA was found to more efficiently suppress
the cell proliferation of SALL4-positive cell lines compared with
SALL4-negative cell lines (Supplementary Fig. 3C).

Taken together, our data suggest a pivotal role for the tran-
scription factor SALL4 in regulating the stemness of HpSC-HCC.
SALL4 was detected in HpSC-HCCs with poor prognosis, and inac-
tivation of SALL4 resulted in a reduced invasion/spheroid forma-
tion capacity and decreased expression of hepatic stem cell
markers. The HDAC inhibitors inhibited proliferation of SALL4-
positive HCC cell lines with a reduction of SALL4 gene/protein
expression, suggesting their potential in the treatment of
SALL4-positive HpSC-HCC.

Discussion

Stemness traits in cancer cells are currently of great interest
because they may explain the clinical outcome of patients
according to the malignant nature of their tumor. Recently, we
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proposed an HCC classification system based on the stem/matu-
ration status of the tumor by EpCAM and AFP expression status
[8]. These HCC subtypes showed distinct gene expression pat-
terns with features resembling particular stages of liver lineages.
Among them, HpSC-HCC was characterized by a highly invasive
nature, chemoresistance to fluorouracil, and poor prognosis after
radical resection, warranting the development of a novel thera-
peutic approach against this HCC subtype {9].

In this study, we showed that the transcription factor SALL4
was activated in HpSC-HCC and that SALL4 might regulate HCC
stemness, as characterized by the activation of EpCAM, CK19,
and CD44 with highly tumorigenic and invasive natures. Further-
more, we identified that SALL4-positive HCC cell lines tended to
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Fig. 4. Effect of SALL4 knockdown and HDAC activity. (A) gRT-PCR analysis of
SALL4 in HuH7 cells transfected with control or SALL4 sh-RNAs (n = 3, mean # SD).
(B) Western blots of lysates obtained from HuH7 cells transfected with control or
SALL4 sh-RNAs with anti-SALL4 antibodies. (C) gRT-PCR analysis of EPCAM and
(D44 in HuH7 cells transfected with control or SALL4 sh-RNAs (n = 3, mean # SD).
(D) Invasion assay of HuH7 cells transfected with control or SALL4 sh-RNAs (n = 3,
mean + SD). (E) HDAC activity of nuclear extracts obtained from HuH7 cells
transfected with control or SALL4 sh-RNAs. (F) HDAC activity of nuclear extracts
obtained from each cell line. HDAC activity was measured in duplicate and
average amounts of deacetylated products are indicated (upper panel). Lamin B
included in the nuclear extracts loaded for HDAC activity assays was measured by
Western blotting (lower panel). (G) Cell proliferation assay of HCC cell lines. Each
cell line was treated with control DMSO or 10 uM SBHA and cultured for 72 h
(n=4, mean £ SD).

show high HDAC activity and chemosensitivity to the HDAC
inhibitors SBHA and SAHA. This study reveals for the first time
the utility of SBHA for the treatment of HCC with stem cell
features.

SALL4 is a zinc finger transcription factor originally cloned
based on sequence homology to Drosophila sal {11]. SALL4 muta-
tions are associated with the Okihiro syndrome, a human disease
involving multiple organ defects {23,24]. SALL4 plays a funda-
mental role in the maintenance of embryonic stem cells, poten-
tially through interaction with Oct4, Sox2, and Nanog [25-30].
Furthermore, knockdown of SALL4 significantly reduces the effi-
ciency of induced pluripotent stem cell generation {31]. SALL4
is also expressed in hematopoietic stem cells and leukemia cells,
where it regulates their maintenance {14,32]. SALL4 is known to
encode two isoforms (SALL4A and SALL4B), and a recent study
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suggested the important role of SALL4B on maintaining the stem-
ness of embryonic stem cells {25]. Interestingly, our data indi-
cated that SALL4B is also a dominant form in HpSC-HCC cell
lines. It is unclear how SALL4 isoform expression is regulated in
cancer, and future studies are required to explore the mecha-
nisms of SALL4 isoform regulation.

In the liver, SALL4 is expressed in fetal hepatic stem/progen-
itors but not in adult hepatocytes, and a mouse study demon-
strated that inhibition of SALL4 in hepatic stem/progenitors
contributes to their differentiation [33]. Interestingly, recent
studies indicated that AFP-producing gastric cancer expresses
SALL4, suggesting that SALL4 might play a role in the hepatoid
differentiation of gastric cancer |{34]. Consistently, our data indi-
cated a positive correlation between SALL4, AFP, and EPCAM
expression in two independent HCC cohorts. Strikingly, SALL4
was recently shown to be expressed in a subset of human liver
cancers with poor prognoses, while modification of SALL4
expression resulted in the alteration of cell proliferation
in vitro and tumor growth in vivo, consistent with our current
study [35]. A recent study reported the expression of SALL4 in
46% of HCC cases, which is almost comparable to our present
study [36]. Furthermore, a very recent study of two indepen-
dent large cohorts demonstrated that SALL4 is a marker for a
progenitor subclass of HCC with an aggressive phenotype [37].
It is still unclear how SALL4 expression is regulated and which
target genes are directly activated by SALL4 binding. Future
studies using next generation sequencing are required to fully
understand the mechanisms of SALL4 regulation of HCC
stemness.

In this study, we demonstrated that SALL4-positive HCC cell
lines have high HDAC activity and chemosensitivity against the
HDAC inhibitors SBHA and SAHA compared with SALL4-negative
HCC cell lines. SALL4 was recently found to directly connect with
the epigenetic modulator NuRD complex [22], thereby possibly
affecting the histone modification associated with stemness.
The NuRD complex is a multiunit chromatin remodeling complex
containing chromodomain-helicase-DNA-binding proteins and
HDACs that regulate histone deacetylation {38]. Its role in cancer
is still controversial, while its function in HCC has not yet been
determined.

Our data suggest that SALL4 plays a role in controlling HDAC
activity and contributing to the maintenance of HCC with stem
cell features. Consistently, HDAC inhibitors might be useful for
the eradication of SALL4-positive HCC cells through their inhibi-
tory effects on histone deacetylation by NuRD [39]. Encourag-
ingly, a recent study demonstrated the utility of a SALL4-
binding peptide to inhibit its binding to phosphatase and tensin
homolog deleted on chromosome 10 (PTEN) through interaction
with HDAC, thereby targeting leukemia cells [21]. Further studies
are required to understand the relationship between SALL4, the
NuRD complex, and the maintenance of stemness in HCC.
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A new cloning and expression system yields and
validates TCRs from blood lymphocytes of patients

with cancer within 10 days

Eiji Kobayashil4, Eishiro Mizukoshi*4, Hiroyuki Kishi!, Tatsuhiko Ozawa!, Hiroshi Hamana!, Terumi Nagail,
Hidetoshi Nakagawa?, Aishun Jin»3, Shuichi Kaneko? & Atsushi Muraguchi!

Antigen-specific T cell therapy, or T cell receptor (TCR) gene
therapy, is a promising immunotherapy for infectious diseases
and cancers. However, a suitable rapid and direct screening
system for antigen-specific TCRs is not available. Here, we
report an efficient cloning and functional evaluation system

to determine the antigen specificity of TCR cDNAs derived
from single antigen-specific human T cells within 10 d. Using
this system, we cloned and analyzed 380 Epstein-Barr virus—
specific TCRs from ten healthy donors with latent Epstein-
Barr virus infection and assessed the activity of cytotoxic

T lymphocytes (CTLs) carrying these TCRs against antigenic
peptide-bearing target cells. We also used this system to clone
tumor antigen-specific TCRs from peptide-vaccinated patients
with cancer. We obtained 210 tumor-associated antigen—
specific TCRs and demonstrated the cytotoxic activity of

CTLs carrying these TCRs against peptide-bearing cells.

This system may provide a fast and powerful approach for

TCR gene therapy for infectious diseases and cancers.

New immunotherapies such as adoptive cell transfer, TCR gene therapy
and peptide vaccination have the potential to cure human disease in the
future. Rosenberg and his colleagues have reported the adoptive transfer of
TCR gene-modified T cells into patients using autologous T cells express-
ing a TCR recognizing the melanoma-melanocyte differentiation anti-
genl2. Subsequent clinical trials have targeted antigens such as oncofetal
antigen, cancer testis antigen, tissue-specific antigen and overexpressed
tumor-associated antigens (TAAs)>*. However, despite its great potential,
TCR gene therapy for cancer is still limited to certain tumor antigens and
common human leukocyte antigen (HLA) complexes. The conventional
approaches for TCR gene cloning involve the establishment of antigen-
specific T cell clones, which usually requires several months. Thus, a rapid
screening system for antigen-specific TCR genes is needed.

Our group and others have reported single-cell RT-PCR proto-
cols that permit the simultaneous identification of complementarity
determining region 3o (CDR3ar) and CDR3 transcripts in human®
and mouse® TCRs. However, these protocols cannot retrieve TCRo3
pairs and determine their properties, including antigen specificity and

cytotoxicity-inducing activity. In this study, we attempted to establish
a direct TCR cloning system that would allow the unbiased analysis
of the TCR repertoire, as well as the retrieval of antigen-specific
TCRo pairs and the characterization of their function for future TCR
gene therapy.

RESULTS

Rapid cloning and evaluation of antigen-specific TCRs

We depict the schematic for our rapid cloning and functional assay
system, which can obtain TCRo§ cDNA pairs from a single antigen-
specific human T cell and confirm their antigen specificity within
10 d (Fig. 1 and Supplementary Fig. 1). This system was designated
‘hTEC10’ (human TCR efficient cloning within 10 d).

To evaluate the hTEC10 system for analyzing T cells in human dis-
ease, we first analyzed Epstein-Barr virus (EBV)-specific CD8* T cells
derived from healthy HLA-A24" donors with latent EBV infection.
We used an HLA-A*2402-restricted major histocompatibility com-
plex (MHC) tetramer mixture of five EBV epitopes (BRLF-1, BMLF-1,
latent membrane protein 2 (LMP2), Epstein-Barr nuclear antigen 3A
(EBNA3A) and EBNA3B)” to detect EBV-specific CD8* T cells. We
detected varying frequencies (0.00-0.64%) of tetramer-positive cells
within the CD8" T cell populations from 19 HLA-A24* donors (Fig. 2a
and Supplementary Table 1). We then used FACS to sort single
tetramer-positive cells from ten donors whose frequencies of tetramer-
positive cells were more than 0.06% of CD8* T cells (with donor I hav-
ing the minimum frequency of 0.06%). The efficacy of amplifying
the TCRo and TCRf} ¢cDNA pairs from the sorted single T cells was
13-72%, using the 5" rapid amplification of cDNA ends (RACE)
method® (Supplementary Table 2).

We then analyzed the obtained TCR pairs from each donor.
A small population expressed dual TCRa., dual TCR or both. In
some donors, a large number of T cells expressed dual TCRo. or dual
TCRP. This may be due to clonal expansion (Supplementary Table 3).
In total, we obtained 380 EBV-specific TCRs from ten healthy donors
with latent EBV infection (Supplementary Table 2).

The diversity of the EBV-specific TCRs was highly restricted (from
one to ten in each donor) (Fig. 2b and Supplementary Fig. 2). Because
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Figure 1 Schematic of the hTEC10 system.

(a) A schematic depicting the procedure of the
hTEC10 system. Briefly, human TCR cDNAs
were amplified from single cells, cloned into
an expression vector and then transduced into
the TCR-negative T cell line TG40. The antigen
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(1) Detection of antigen-specific T cells

the TCR repertoire of the tetramer-negative cells was not skewed toward
a particular TCRo V or TCRB V subgroup (Supplementary Fig. 3), the
skewing of the TCR repertoire in the tetramer-positive cells was not
due to PCR bias. Notably, our system can clone rare antigen-specific
T cell clones (indicated by asterisks in Fig. 2b and Supplementary
Fig. 2) that may be missed when using conventional cloning methods.

To determine the antigen specificity of the cloned TCRs, we first
transferred the cDNA into TG40 cells and stained the cells with
MHC-peptide tetramer mixture. The tetramer mixture bound to 95%
of the cloned TCRs that were expressed on the TG40 cells (Fig. 2c). We
then determined the antigenic peptide specificity of the cloned TCRs by

Q4
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(3) Specificity assay
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(2) TCR cDNA amplification

stimulating the TCR-expressing TG40 cells with HLA-A24* PBLs that
were pulsed with each of the EBV peptides (BRLF-1, BMLF-1, LMP2,
EBNA3A or EBNA3B), followed by examining the cell-surface expres-
sion of CD69 with flow cytometry. The percentages of TCRs specific
for BRLF-1, BMLF-1, EBNA3A, EBNA3B and LMP-2 among the EBV-
specific TCRs were 65.5%, 12.6%, 19.7%, 1.6% and 0.5%, respectively
(Fig. 2d and Supplementary Table 4).

EBV-specific TCR cDNA-transduced T cells kill target cells
To determine the cytotoxic activity of EBV-specific TCR ¢cDNA-
transduced T cells, we transduced cDNAs encoding BRLF-1-specific
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Figure 2 Analysis of EBV-specific human TCRof pairs obtained by hTEC10. (a) Flow cytometric analysis of EBV-specific _ 60k
. '] . gt . o
CD8* T cells in human PBLs by staining with CD8-specific antibody and HLA-A*2402 EBV tetramers. Data for two out % P
of ten donors are shown (donors B and 1). The experiments were performed only once for each donor. (b) TCR repertoire 3
analysis of EBV-specific CD8* T cells from ten latent healthy donors. n, number of analyzed T cell clones; r, repertoire ~a0r
number; asterisks, repertoire obtained from only a single T cell clone. (c) Determination of TCR antigen specificity by 0 m
staining of TCR cDNA-transduced TG40 cells with CD3-specfic antibody and EBV tetramer mixture. Data for two TCRs /T ratio

out of analyzed EBV-specific TCRs are shown (E-21 and F-7 TCR). The experiments were performed twice for each TCR.

(d) Flow cytometric analysis of CD69 expression in TG40 cells expressing E-21 or F-7 TCRs in the presence of various EBV-derived peptides and HLA-
A24+ PBLs. (e) TCR expression analysis of BRLF-1-specific VB5.1+ TCRs (Q-22, U-19 or F-39) on TCR cDNA-transduced primary T cells by staining
with VB5.1-specific antibody and BRLF-1-specific tetramer (BRLF-1-tet). Profile of only VB5.1* population is shown. The percentage of V5.1 was
15.4%, 19.1% and 16.9% of PBLs for Q-22, U-19 and F-39, respectively. The percentage of tetramer-positive cells in VB5.1* cell population is
indicated. Representative data of three independent experiments are shown. (f) Cytotoxicity of TCR cDNA-transduced primary T cells against T2-A24
cells pulsed with BRLF-1 peptide (closed circle) or EBNA3A peptide (open circle) labeled with calcein. The results shown are mean + s.d. of triplicate

experiments. E/T ratio, ratio of effector T cells to target cells.
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(a,b) Clinical responses. Patients 1 and 2 were monitored /T ratio E/T ratio BT ratio EIT ratio

by serum AFP levels (top) and MR (patient 1) or computed

tomography (patient 2) (bottom). Black arrows show examination dates and red arrowheads show metastatic lesions of HCC. Scale bars in a, 50 mm;

in b, 50 mm (top) and 30 mm (bottom). (c) Detection of AFP357 peptide—specific CD8* T cells of PBLs in patients with HCC with CD8-specific antibody
and AFP3s7-specific tetramers. Percentages of AFP357-specific tetramer-positive cells in CD8* T cells are indicated. (d) Repertoire of AFP3g7 tetramer+
CD8* T cells. n, number of analyzed T cell clones; r, repertoire number; asterisk, repertoire obtained from only a single T cell clone. (e) Expression of
AFP357-specific TCRs on TCR cDNA-transduced primary T cells. Profile of only CD8* population is shown. Percentages of AFP357-specific tetramer-
positive cells among CD8* T cells are indicated. (f) Cytotoxicity of AFP-specific TCR cDNA-transduced primary T cells toward C1R-A24 cells pulsed
with AFP357-peptide (closed circle) or control peptide (open circle). Data are expressed as mean * s.d. of triplicate experiments. Representative data of
three independent experiments are shown. (g) Cytotoxicity of hTERT-specific TCR cDNA-transduced primary T cells toward C1R-A24 cells pulsed with
hTERT46; peptide (closed circle) or control peptide (open circle). Data are expressed as mean + s.d. of triplicate experiments. Representative data of

three independent experiments are shown.

VPB5.1* TCRs (clones Q-22, U-19 and F-39) into primary human T cells
using retroviral vectors and compared their ability to kill T2-A24 cells,
a TAP-deficient T2 cell line expressing HLA-A*2402 (ref. 8), that had
been pulsed with the BRLE-1 peptide. These three TCRs have the same
VP region (VB5.1+) but distinct CDR3 sequences and Vo regions. The
BRLF-1 tetramer bound to 12.0%, 7.6% and 1.2% of VP5.1* cells in
the T cell populations that were transduced with Q-22, U-19 and F-39
TCR cDNAs, respectively, whereas the percentages of VB5.1% cells in
the Q-22, U-19 and F-39 TCR ¢DNA transfectants were the same level
(Fig. 2e and Supplementary Fig. 4a). This result indicates that the
transduced TCRs tend to mispair with endogenous TCRs®.

We then determined the cytotoxic activity of T cells that were trans-
duced with the BRLF-1-specific TCR cDNAs against T2-A24 cells
that had been pulsed with the BRLF-1 or the EBNA3A peptide. T cells
transduced with BRLF-1-specific TCR ¢cDNAs exhibited cytotoxic-
ity toward the BRLF-1 peptide-pulsed T2-A24 cells but not toward
the EBNA3A peptide-pulsed cells (Fig. 2f), demonstrating that the
cytotoxic activity was peptide specific. Similarly, T cells transduced
with EBNA3A-specific TCR (E-21) cDNAs demonstrated cytotoxic-
ity toward EBNA3A peptide—pulsed T2-A24 cells but not BRLF-1
peptide-pulsed cells (Supplementary Fig. 5a,c).

We also measured the cytokine secretion of the TCR cDNA-transduced
T cells after antigen stimulation. Peripheral blood lymphocytes (PBLs)
transduced with BRLF-1-specific TCR ¢cDNAs (Q-22, U-19 and F-39)
secreted multiple cytokines (interferon-y (IFN-y), tumor necrosis
factor-o (TNF-) and interleukin-2 (IL-2)) upon stimulation with the
BRLEF-1 peptide, but not with the EBNA3A peptide (Supplementary
Fig. 6). In contrast, PBLs transduced with the EBNA3A-specific TCR

(E-21) cDNAs secreted IFN-y upon stimulation with the EBNA3A
peptide but with the BRLF-1 peptide (Supplementary Fig. 5b).

Furthermore, we examined the functional avidity of the EBV-
specific TCRs using the TG40-based TCR downregulation assay, and
we determined the half-maximum inhibitory concentration (ICsg)
of the peptide responses. The Q-22 TCR exhibited the highest func-
tional avidity (Supplementary Fig. 7 and Supplementary Table 5).
Therefore, we examined whether T cells transduced with the Q-22
TCR c¢DNA could respond to EBV-transformed lymphoblastoid
cell line (LCL) cells endogenously expressing the EBV antigen and
HLA-A*2402 (JTK-LCL cells). The Q-22 TCR cDNA-transduced
T cells exhibited a marked response to JTK-LCL cells and produced
IFN-v (Supplementary Fig. 8). However, we did not detect CTL activ-
ity of the Q-22 TCR cDNA-~transduced T cells against JTK-LCL cells.
These data are in agreement with a previous report’. This lack of cyto-
toxicity may be owing to limited presentation of the BRLE-1 peptide
by HLA-A*2402 on the cell surface of JTK-LCL cells.

In summary, we obtained 380 EBV-specific TCRa3 cDNA pairs and
analyzed the TCR repertoires. All of the cloned TCRs were previously
uncharacterized (Supplementary Table 6).

Clinical application of hTEC10 system in people with cancer

To apply the hTEC10 system to patients with cancer, we obtained PBLs
from two patients with hepatocellular carcinoma (HCC) who had been
treated with o.-fetoprotein (AFP)-derived peptide vaccines and exhibited
clinical responses. We show the clinical courses of cancer in these patients
(Fig. 3a,b). The first patient (patient 1), who was infected with hepatitis B
virus (HBV) and had a large HCC tumor with vascular invasion of
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the portal vein, was vaccinated with the AFP35; and AFP,4; peptides
biweekly for 72 weeks. After vaccination, the patient’s elevated serum
AFP value was normalized; the size of the HCC tumor also decreased,
and it eventually disappeared, as evaluated by magnetic resonance imag-
ing (MRI) (Fig. 3a), indicating a complete response. The second patient
(patient 2), who was infected with HBV and had multiple metastatic
HCC lesions in the abdominal wall and lungs, was vaccinated with the
AFPs357 and AFP 43 peptides biweekly for 88 weeks. After vaccination, the
patient’s elevated serum AFP value decreased, and the metastatic HCC
lesions in the abdominal wall disappeared, as evaluated by computed
tomography (Fig. 3b). The size and number of lung metastases did not
change over the 88 weeks of treatment, indicating stable disease.

We examined whether AFP;3s5;-specific T cells could be detected in
the PBLs of patients 1 and 2 before or during vaccination by employ-
ing an AFPs3s;-specific tetramer and flow cytometry. We could not
detect AFP-specific CD8* T cells detected in the PBLs of the patients
either before or during treatment (Supplementary Fig. 9). However,
when we incubated the PBLs with AFP-derived peptides for 3 weeks
to expand the AFP-specific CD8* T cells, we detected AFP;s;-specific
T cells in the PBLs obtained from both patients during vaccination
but not from the PBLs obtained before vaccination (Supplementary
Fig. 10). These data indicate that the detection of AFP;s;-specific
TCRs in the patients’ PBLs was due to peptide vaccination.

1.5% and 2.6% of the CD8* T cells were positive for tetramer stain-
ing in patients 1 and 2, respectively (Fig. 3c). We then sorted the single
AFP tetramer-positive CD8* T cells, amplified the TCR cDNAs and
analyzed their sequences. We obtained 73 and 126 AFP-specific TCRs
from patients 1 and 2, respectively. The sequence analysis revealed
that the hTEC10 system yielded three and four T cell clones from
patients 1 and 2, respectively (Fig. 3d), suggesting that peptide vac-
cination induced the oligoclonal expansion of AFP-specific T cells
in these patients. Alternatively, in vitro culture may have resulted in
the oligoclonal expansion of AFP-specific T cells. In contrast to EBV-
specific TCRs, the repertoires of AFP-specific TCRs might be biased
by in vitro culture, as suggested by Zhou et al.1%. Notably, the hTEC10
system could clone TCRs from very rare antigen-specific T cells, as
in the case of EBV-specific minor clones (Fig. 3d).

We then transduced three of the obtained AFP-specific TCR cDNAs
into primary T cells of a healthy donor and analyzed the binding of
the AFP tetramer. The TCR cDNAs were transduced into 28-32% of
the T cells (Supplementary Fig. 4b), and 3.7-16.2% of the total CD8*
cells bound the AFP tetramer (Fig. 3e). We then determined the cyto-
toxic activity of the transduced T cells toward C1R-A24 cells (an LCL
transfected with HLA-A*2402)!! pulsed with the AFP peptide. The
T cells transduced with these TCR cDNAs showed marked cytotoxic-
ity toward AFP peptide-pulsed C1R-A24 cells but not control peptide
(HIV5g4_595)-pulsed cells (Fig. 3f), indicating that the cytotoxic activity
was peptide specific. We also measured cytokine secretion by the TCR
cDNA-transduced T cells after antigen stimulation. PBLs transduced
with AFP;57-specific TCR cDNAs (AFP1-14, AFP2-28 and AFP2-29),
but not PBLs transduced with control GFP vector, secreted [FN-ywhen
stimulated with the AFP;5; peptide (Supplementary Fig. 11).

Next, we examined the cytotoxic activity of the T cells transduced
with AFP-specific TCR ¢cDNAs to HepG2 cells, which endogenously
express AFP!L. However, they did not show any specific cytotoxicity to
the target cells (data not shown). We also obtained four kinds of human
telomerase reverse transcriptase (WI'ERT)-specific TCRs from patients
with HCC who had been vaccinated with hTERT peptide in the clinical
trial (Supplementary Fig. 12). We transduced three hTERT-specific TCR
¢DNAs in primary T cells and examined their cytotoxic activity toward
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Figure 4 Repertoire analysis of cytokine-secreting CD8* T cells by
stimulation with a specific peptide. (a) Secretion of IFN-y by BRLF-1
peptide-stimulated PBLs. Percentages of IFN-y-secreting cells in CD8*
T cells are indicated. (b) Upregulation of CD137 on BRLF-1 peptide-
stimulated PBLs. (¢) Repertoires of IFN-y* CD8+ T cells and CD137+
CD8* T cells. n, number of analyzed T cell clones; r, repertoire number.
The same color denotes the same Vo or VB repertoires.

hTERT peptide-pulsed C1R-A24 cells or HepG2 cells that endogenously
expressed hTERT. The T cells transduced with human TERT-specific
TCR cDNAs (hTERT28, hTERT42 and hTERT58) showed marked cyto-
toxicity toward hTERT peptide—pulsed C1R-A24 cells (Fig. 3g). However,
they did not show marked cytotoxicity toward HepG2 cells (data not
shown). These results demonstrate that the hTEC10 system can clone
functional TAA peptide-specific TCRs from patients with cancer.

Improvement of the hTEC10 system

We next established new MHC tetramer-independent systems to
clone TCR c¢DNAs using cytokine secretion and CD137 upregula-
tion. We obtained PBLs from healthy donors with latent EBV infec-
tion and incubated these cells with the BRLF-1 peptide to expand
the BRLF-1-specific CD8* T cells in vitro. We then stimulated the
expanded BRLF-1-specific CD8* T cells in the presence of CD28-
specific antibody with or without the BRLF-1 peptide and examined
IFN-y secretion or CD137 upregulation. 0.86% of the CD8* T cells
were IFN-v positive, and 0.82% of the CD8* T cells had upregulated
CD137 (Fig. 4a,b). We then sorted the single T cells and analyzed
their TCR sequences. We obtained 48 TCRs from the IFN-y-secreting
cells and 44 TCRs from the CD137-upregulated cells, and we com-
pared the repertoires of these populations with those obtained from
the MHC-peptide tetramer staining method (Fig. 4c).

We found that 86% of the TCR repertoire of the IFN-y-positive
T cells and 68% of that for the CD137-upregulated T-cells was iden-
tical to that identified by staining with the MHC-peptide tetramer.
We also tested the tetramer-binding ability of five TCR clones that
were isolated with the IFN-y-based protocol and five TCR clones
that were isolated with the CD137 upregulation protocol. All of the
clones bound the tetramer (data not shown). In addition, we exam-
ined the ability of six TCRs that bound the MHC-peptide tetramer
(Supplementary Fig. 13) to induce IFN-y production when trans-
duced into PBLs. All six TCR cDNA~transduced PBLs produced IFN-y
(Supplementary Fig. 14). Taken together, these results demonstrate
that the hTEC10 system can rapidly and efficiently clone TCR cDNAs
by assessing cytokine secretion or CD137 upregulation.

DISCUSSION
In this study, we established a system for the rapid and direct cloning and
functional evaluation of TCR cDNAs derived from single antigen-specific
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human T cells (h"TEC10 system). We used this system to obtain and analyze
antigen-specific TCRs from healthy donors and patients with cancer.

With regard to minimal frequencies of specific T cells required for
the proper identification of TCRs, the frequency of the EBV tetramer*
cells of donor I was the minimum (0.06% of the CD8* T cells or 0.01%
of the total PBLs). We sorted 48 EBV tetramer cells from 8 x 106 cells.
Twenty-three pairs of TCR o and B cDNAs were amplified. Fifteen of
them could be expressed in TG40 cells and could bind EBV tetramer.

Regarding the processing time, the hTEC10 system can obtain
antigen-specific TCR cDNAs within 10 d when the antigen-specific
T cells are detected on day 1. If the antigen-specific T cells cannot
be detected in primary T cells, they need to be cultured for a
certain duration. Thus, 8 d, plus additional days for in vitro culture,
are required to obtain antigen-specific TCRs.

Concerning the EBV-specific TCR repertoires, all of the cloned
TCRs were previously uncharacterized. The repertoire of EBV-specific
TCRs was highly restricted, in agreement with previous reports!?13,
The analysis was reproducible, as we obtained similar results from
donor B and donor E in two independent experiments.

To determine candidate TCRs for gene therapy for cancer, we used
the hTEC10 system to analyze PBLs derived from patients with HCC
who had been successfully treated by AFP-derived peptide vaccina-
tion. The appropriateness of oncofetal antigens as targets for TCR
gene therapy has recently been questioned!4. However, Butterfield
et al.!5 previously reported that a phase 1/2 clinical trial of immu-
nization with dendritic cells pulsed with HLA-A*0201-restricted
AFP peptides in patients with HCC showed no adverse events.
Furthermore, we previously compared the in vitro effect of various
TAA peptides on PBLs from patients with HCC and showed that
HLA-A*2402-restricted AFP peptides may be candidates for pep-
tide vaccination of patients with HCC!L16. Thus, a clinical trial to
determine the effectiveness of AFP-derived peptide vaccination for
patients with HCC has already been conducted, and several patients
have exhibited positive clinical responses.

Our data showed that primary T cells transduced with AFP-specific
and hTERT-specific TCR cDNAs showed potent antigen-specific cyto-
toxicity toward AFP- or hTERTpeptide-pulsed target cells, but they
did not show marked cytotoxicity toward HepG2 cells that had been
reported to endogenously express AFP and hTERT (data not shown).
We reasoned three possibilities. The first is that the efficiencies of TCR
transduction into PBLs were low. The second is that HepG2 cells may
present an insufficient amount of hTERT peptide on their HLA-A24
molecules. The third is the weak affinity of the obtained TCRs. We
need to clone more AFP- and hTERT-specific TCRs to acquire TCRs
with sufficient affinity to induce cytotoxicity toward HepG2 cells.

Finally, we applied the hTEC10 system to detect and retrieve
TCRaf pair cDNAs by analyzing cytokine secretion and CD137
upregulation. Most of the TCR repertoire of IFN-y-positive T cells
or CD137-upregulated T cells was identical to that identified by the
MHC-peptide tetramer, whereas the rest were not identical. These
results, along with the CD69 induction assay, indicate that the hTEC10
system can be used with cytokine-secreting or CD137-upregulated
CD8* T cells without the need for staining with an MHC-peptide
multimer. Therefore, we can apply the hTEC10 system to isolate
T cells from patients with cancer for whom the identity of the tumor
antigen is unknown. The T cells can be stimulated with tumor
cells, and the IFN-y-secreting or CD137-upregulated CD8* cells
can be sorted. After cloning the TCRs, their specificity can be exam-
ined by analyzing the response of TCR cDNA-transduced T cells to
the tumor cells.

METHODS
Methods and any associated references are available in the online
version of the paper.

Accession codes. cDNA sequences were deposited in DNA Data Bank
of Japan with accession codes from AB749820 to AB749925.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.
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ONLINE METHODS

Healthy donors and human leukocyte antigen typing. Human experiments
were performed with the approval of the Ethical Committee at the University
of Toyama, Toyama, Japan. Informed consent was obtained from all sub-
jects. PBLs were isolated as described previously!6. HLA-A24 and HLA-A02
haplotype positivity was screened by staining PBLs with FITC-conjugated
HLA-A24 (clone 17A10) and HLA-A2 (clone BB7.2) antibody (MBL) and
analyzed with flow cytometry.

Peptide vaccination of patients. The clinical trial of the HLA-A24-restricted
AFP357 (EYSRRHPQL) and AFP4g; (KYIQESQAL) peptide vaccines (trial
registration: UMIN000003514) and that of the HLA-A24-restricted hTERT 4,
(VYGFVRACL) peptide vaccines (trial registration: UMIN000003511) were
conducted at Kanazawa University Hospital, Kanazawa, Japan. Patients with
verified radiological diagnoses of HCC stage III or IV were enrolled in this
study. The patients each received 3.0 mg of AFP-derived peptide vaccine in
each dose. The peptides, which were synthesized as GMP-grade products at
Neo MPS, were administered as an emulsified solution containing incomplete
Freund’s adjuvant (Montanide ISA-51 VG; SEPPIC) by biweekly subcutane-
ous immunization for 72 weeks (patient 1) and 88 weeks (patient 2). Clinical
responses were monitored by measuring the serum AFP value and carrying out
dynamic computed tomography or MRI and were evaluated according to the
Response Evaluation Criteria in Solid Tumors, version 1.1. All patients provided
written informed consent to participate in the study in accordance with the
Helsinki Declaration, and this study was approved by the regional ethics com-
mittee (Medical Ethics Committee of Kanazawa University, No. 858). Blood
samples from the patients were tested for the surface antigen of the HBV and
hepatitis C virus using commercial immunoassays (Fuji Rebio). HLA-based typ-
ing of patient PBLs was performed using the polymerase chain reaction-reverse
sequence-specific oligonucleotide (PCR-RSSO) method. The serum AFP level
was measured by ELISA (Abbott Japan). PBLs were isolated from patients as
described previously!6, resuspended in RPMI 1640 medium containing 80%
FCS and 10% dimethyl sulfoxide and cryopreserved until use.

Cell culture and cell lines. RPMI 1640 and DMEM media (Wako Pure
Chemical) were supplemented with 10% FBS (Biowest), 100 pg ml-! strep-
tomycin and 100 U ml~! penicillin. Human CD8-expressing TG40 cells!?,
T2-A24 cells® from a transporter associated with antigen presentation (TAP)-
deficient T2 cell line transfected with HLA-A*2402 and C1R-A24 cells from
a C1R lymphoblastoid cell line transfected with HLA-A*2402 (ref. 11) were
maintained in RPMI 1640 medium. PLAT-E!8 and Phoenix-A!° (a retroviral
packaging cell line) and HepG2, (hepatocellular carcinoma cell line, purchased
from ATCC), were maintained in DMEM medium.

Antibody and MHC tetramer staining. FITC-conjugated CD8-specific
antibody (1: 200, clone T8) and PC5-conjugated CD8-specific antibody
(1: 1,000, clone B9.11) were purchased from Beckman Coulter. Phycoerythrin-
conjugated CD137-specific antibody (1:40, clone 4B4-1) was purchased from
BioLegend. Biotin-conjugated CD3e-specific antibody (1:200, clone 145-2C11),
allophycocyanin-conjugated streptavidin and phycoerythrin-conjugated
CD69-specific antibody (1:200, clone H1.2F3) were purchased from
eBioscience. EBV-specific T cells were stained with phycoerythrin-
conjugated HLA-A*2402-peptide tetramers or HLA-A*0201-peptide
tetramers. The sequences of the HLA-A*2402-restricted EBV peptides are
as follows: TYPVLEEMF (BRLEF-1195.506), DYNFVKQLF (BMLF-1350_328)>
TYVLVMLVL (LMP2y,;_»30), RYSIFFDYM (EBNA3A,46_554) and TYSAGIVQI
(EBNA3B;)7.225). The sequences of the HLA-A*0201-restricted EBV pep-
tides are GLCTLVAML (BMLF'lzgo_zgg) and YLQQNWWTL (LMP1159_167).
AFP-specific or hTERT-specific T cells were stained with the phycoerythrin-
conjugated HLA-A*2402 peptide (AFP3s7_345)'! or HLA-A*2402 peptide
(hTERT 46)-469)%°. All tetramers were purchased from MBL.

Single-cell sorting and RT-PCR. Tetramer-positive cells that had been
stimulated with IL-2 and phytohemagglutin for 2 d were single-cell-
sorted by FACSAria (Becton Dickinson) into MicroAmp reaction tubes
(Applied Biosystems) that contained a cell lysis solution composed of

29.2 ug Dynabeads Oligo(dT),s (Invitrogen), 2.9 pl Lysis/Binding Buffer
(Invitrogen) and 0.29 pmol of each gene-specific primer. The sequences
of the primers were as follows: alpha-RT 5-AGCAGTGTTTGGCAGCT
CTT-3’, betal-RT 5-CTGGCAAAAGAAGAATGTGT-3" and beta2-RT
(5’-ACACAGATTGGGAGCAGGTA-3’). The Dynabeads were then
transferred into a solution containing 4.0 U SuperScriptIIl (Invitrogen),
0.3 U Murine RNase inhibitor (New England BioLabs), 0.5 mM each dNTP,
5 mM DTT, 0.2% Triton X-100 and 1x First-Strand Buffer (Invitrogen). The
reverse transcription reaction was performed for 40 min at 50 °C. After the
reverse transcription reaction, the Dynabeads were transferred into another
solution containing 8 U of terminal deoxynucleotidyl transferase (Roche),
0.5 mM dGTP, 0.4 U murine RNase inhibitor, 4 mM MgCl,, 0.2% Triton X-100,
50 pM K,HPO, and 50 pM KH2PO4, pH 7.0, and were incubated for
40 min at 37 °C to add a poly-dG tail to the 3" end of the cDNA. The
Dynabeads were then transferred into a new PCR tube containing the first
PCR reaction mixture. The first PCR was performed using PrimeSTAR
HS DNA polymerase (TaKaRa) according to the manufacturer’s instruc-
tions with the AP-1, alpha-1st, betal-1st and beta2-1st primers. The PCR
cycles for AP-1 (5-ACAGCAGGTCAGTCAAGCAGTAGCAGCAGTTCG
ATAACTTCGAATTCTGCAGTCGACGGTACCGCGGGCCCGGGATC
CCCCCCCCCCCCDN-3"), alpha-1st (5-AGAGGGAGAAGAGGGGCA
AT-3’), betal-1st (5-CCATGACGGGTTAGAAGCTC-3") and beta2-1st
(5"-GGATGAAGAATGACCTGGGAT-3") were as follows: 5 min at 95 °C
followed by 30 cycles of 15 s at 95 °C, 5 s at 60 °C and 1 min 30 s at 72 °C.

The resultant PCR mixtures were diluted 100-fold with water, and 2 ul
of the diluted PCR mixtures were added to 23 pl of the nested PCR mix-
ture as template DNA. The nested PCR was performed in a reaction mix-
ture similar to that for the first PCR but with the adaptor primer AP-2
(5’-AGCAGTAGCAGCAGTTCGATAA-3") and a primer specific for the con-
stant region of TCRa. (alpha-nest, 5-GGTGAATAGGCAGACAGACTT-3")
or TCRB (beta-nest, 5-GTGGCCAGGCACACCAGTGT-3'). The PCR cycles
were as follows: 1 min at 98 °C followed by 35 cycles of 15 s at 98 °C, 5 s at
60 °Cand 45 s at 72 °C.

The PCR products were then analyzed with the alpha-nest or beta-nest
primer by either direct sequencing or sequencing after subcloning into an
expression vector. The TCR repertoire was analyzed with the IMGT/V-Quest
tool (http:/fwww.imgt.org/)?L.

Retroviral transfection. The cDNAs encoding the TCRo or TCR chain were
independently inserted into a pMX vector or pMX-IRES-EGFP vector??, which
was then transfected into PLAT-E cells with FuGENE 6 (Roche). The cul-
ture supernatant was collected 72 h after transfection and added to human
CD8-TG40 cells together with polybrene (Sigma-Aldrich). EBV-specific
tetramer binding was analyzed by flow cytometry. For transduction into human
PBLs, the TCRo and TCRp chains were linked by a viral F2A sequence??
or a P2A sequence??, cloned into the pMX-IRES-EGFP vector and trans-
fected into the Phoenix A cells. Transduction efficiency was monitored by the
expression of EGFP.

Determination of the antigen specificity of cloned TCRs. The antigen specif-
icity of the cloned TCRO.B pairs was analyzed using the CD69 induction assay,
tetramer staining or both. Briefly, TCR-expressing human CD8-TG40 cells
were incubated overnight with HLA-A24* PBLs in the presence of each of the
EBV peptides (BRLF-1, BMLF-1, LMP2, EBNA3A or EBNA3B). After incuba-
tion, the cell surface expression of CD69 was analyzed by flow cytometry.

Preparation of PBLs transduced with cloned TCR cDNAs. 5 x 10° PBLs were
stimulated in vitro with CD3/CD28 Dynabeads (Invitrogen) and 30 IU ml~!
recombinant hIL-2 (Peprotech) according to the manufacturer’s instructions.
On day 2, the stimulated PBLs were washed, and 5 x 10° cells were resus-
pended in the medium containing 30 JU ml~! recombinant hIL-2. The cells
were added to each well in the plates that had been coated with 50 pg ml~!
retronectin (TaKaRa) and spin-loaded with TCR-encoding retroviral super-
natant by centrifuging for 2 h at 1,900g at 32 °C. The cells were spun down at
1,000g at 32 °C for 10 min and incubated overnight at 37 °C in 5% CO,. On
day 3, the PBLs were transferred onto newly prepared retroviral-coated plates
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as on day 2 and cultured with 30 IU mi~! recombinant hIL-2. On day 10, the
TCR cDNA-transduced PBLs were evaluated for expression of the appropriate
TCR by tetramer staining and flow cytometry.

Cytotoxic T lymphocyte assay. In the case of the AFP-specific and hTERT-
specific TCRs, the cytotoxicity of the TCR cDNA~-transduced PBLs was mea-
sured by the Slchromium release assay!!. In the case of the EBV-specific TCR,
the cytotoxicity of the TCR cDNA-transduced PBLs was measured using the
calcein-AM (Wako Pure Chemical) release assay. Briefly, peptide-loaded
T2-A24 target cells were labeled with 25 UM calcein-AM for 30 min at 37 °C.
Then, the target cells and TCR cDNA-transduced PBLs (effector cells) were
plated in 96-well plates at the indicated effector-to-target (E/T) ratios and incub-
ated for 4 h. After incubation, the fluorescence of calcein in the supernatants was
measured using FLUOstar OPTIMA microplate reader (BMG LABTECH). The
percentage of cytotoxicity was calculated using the following formula: % lysis =
(F experiment - F spontaneous)/(F maximal - F spontaneous) x 100.

IFN-y secretion assay. IFN-y-secreting cells were detected using the IFN-y
secretion assay (Miltenyi Biotec) according to the manufacturer’s instructions.
Briefly, PBLs were stimulated with the BRLF-1 peptide for 14 d. After in vitro
stimulation, the PBLs were stimulated with CD28-specific antibody with or
without the BRLF-1-peptide for 6 h. The PBLs were washed and stained with
IFN-v Catch Reagent (Miltenyi Biotec). The PBLs were then suspended in
1 ml medium and incubated for 45 min to allow cytokine secretion. After wash-
ing, the PBLs were stained with phycoerythrin-conjugated IFN-y Detection
Reagent (Miltenyi Biotec) and FITC-conjugated CD8-specific antibody.

ELISA assay. ELISA assays were performed according to the manufacturer’s
instructions. Briefly, 1 x 105 TCR ¢cDNA-~transduced PBLs were cocultured
with 1 x 10° T2-A24 cells pulsed with specific peptide. After 16 h incubation,
the supernatants were collected, and IFN-y, IL-2 and TNF-o. in the supernatant
were measured by ELISA (R&D systems). The results shown are the mean +
s.d. of triplicate experiments.

TG40-based TCR downregulation assay. The ICs, of the peptide responses
of the TCRo3 cDNA-transduced TG40 was determined with TCR downregu-
lation assay’. Briefly, human CD8-TG40 cells expressing TCRs specific for
BRLEF-1 were incubated overnight with T2-A24 cells in the presence of various
concentrations of BRLF-1 peptide. After incubation, the CD3€ expression was

analyzed by flow cytometry. The percentage of CD3€ expression was calculated
using the following formula: % CD3e expression = (CD3¢ expression in the
presence of indicated concentration of specific peptide)/(CD3e expression
in the absence of specific peptide) x 100. The ICsq values were calculated by
probit analysis?>.

ELISPOT assay. IFN-y ELISPOT assays were performed as previously
reported?6. 96-well multiscreen filter plates (Millipore) were coated with 5 ug
ml~! human IFN-y-specific antibody (catalog number DY285, R&D Systems)
and blocked with culture medium. Then, EBV-transformed JTL-LCL cells with
or without HLA-ABC-specific antibody (clone B9.12.1) (Beckman Coulter)
were plated with TCR cDNA-transduced PBLs at the indicated cell numbers
and incubated for the indicated times. After incubation, 1 pg ml~! biotin-
conjugated human IFN-y-specific antibody (catalog number BAF285, R&D
systems) was added, followed by alkaline phosphatase-conjugated streptavidin
(Sigma). After washing, a mixture of 3-bromo-4-chloro-3-indolyl-phosphate
toluidine and p-nitroblue tetrazolium chloride (Sigma) was added to detect
the immunospots.
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Mesenchymal stromal stem cells (MSCs) are an attractive therapeutic model for regen-
erative medicine due to their pluripotency. MSCs are used as a treatment for several
inflammatory diseases, including hepatitis. However, the detailed immunopathological
impact of MSC treatment on liver disease, particularly for adipose tissue derived stromal
stem cells (ADSCs), has not been described. Here, we investigated the immuno-
modulatory effect of ADSCs on hepatitis using an acute ConA C57BL/6 murine hepati-
tis model. i.v. administration of ADSCs simultaneously or 3 h post injection prevented
and treated ConA-induced hepatitis. Immunohistochemical analysis revealed higher
numbers of CD11b*, Gr-1*, and F4/80* cells in the liver of ConA-induced hepatitis mice
was ameliorated after the administration of ADSCs. Hepatic expression of genes affected
by ADSC administration indicated tissue regeneration-related biological processes, affect-
ing myeloid-lineage immune-mediating Gr-1* and CD11b* cells. Pathway analysis of
the genes expressed in ADSC-treated hepatic inflammatory cells revealed the possible
involvement of T cells and macrophages. TNF-o and IFN-y expression was downregu-
lated in hepatic CD4* T cells isolated from hepatitis livers co-cultured with ADSCs. Thus,
the immunosuppressive effect of ADSCs in a C57BL/6 murine ConA hepatitis model was
dependent primarily on the suppression of myeloid-lineage cells and, in part, of CD4*
T cells.
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Introduction

Mesenchymal stromal stem cells (MSCs) are somatic cells that
reside in the mesenchymal tissues, such as the BM, umbilical cord,
and adipose tissue [1,2]. MSCs are able to differentiate into several
types of cells (pluripotent) in the same lineage, such as chondro-
cytes, osteocytes, adipocytes, and cardiomyocytes, as well as those
of different lineages, such as hepatocytes. Because of this differen-
tiation capability, they have been studied as a possible application
in regenerative therapy of miscellaneous impaired organs, such as
breast reconstruction [3] and repair of ischemic heart tissue [4].
Another intriguing characteristic of MSCs is their immunomod-
ulatory potency [5]. Because most liver diseases, including viral
hepatitis [6,7], primary biliary cirrhosis [8], autoimmune hepatitis
[9], and steatohepatitis [10], are associated with hepatic inflam-
matory cells [11], elucidation of the effect of MSCs on hepatic
inflammation is important when considering the use of MSCs for
treating liver diseases. Although the efficacy of MSC treatment of
liver diseases has been reported [12], the detailed immunopatho-
logical impact of MSC treatment on liver diseases, particularly for
adipose tissue derived stromal stem cells (ADSCs), has not been
investigated.

ConA, a plant lectin [13], is frequently used to induce acute
hepatitis in rodents [14] to model the pathological features of
autoimmune hepatitis. Although this model is mediated mainly
by lymphocyte-lineage cells such as T cells and NKT cells, Kupffer
cells/macrophages also participate in hepatitis. Therefore, eval-
uating the therapeutic efficacy of ADSCs in this murine hepati-
tis model is important. Although the potential efficacy of ADSCs
in a BALB/c ConA hepatitis model has been reported [15], the
immunopathology has not been investigated.

We confirmed that immediate i.v. administration of ADSCs
after ConA injection prevented hepatitis. We also observed that
administering ADSCs 3 h after the ConA injection resulted in suc-
cessful treatment of hepatitis, as the liver was already infiltrated by
CD11b* and Gr-1* inflammatory cells. Gene expression analysis
of the liver showed that ADSC treatment affected myeloid-lineage
cells, providing repair and regenerative effects in ConA-induced
hepatitis mice. Moreover, gene expression analysis of hepatic
inflammatory cells indicated pathways related to T cells and
monocyte-lineage cells. Pathologically important cytokines such as
TNF-a and IFN-y were upregulated in CD4+ T cells isolated from
ConA-induced hepatitis mice but were significantly suppressed
by co-culture with ADSCs. Thus, the anti-inflammatory effects
of ADSCs in the C57BL/6 murine ConA hepatitis model were
mediated by the suppression of myeloid-lineage and CD4™ T cells.

Results

Characteristics of the immune response in
ConA-induced hepatitis mice

To examine the characteristics of ConA-induced acute hepatitis,
we injected 300 g ConA into C57BL/6 female mice (n = 4) and

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Immunomodulation

determined serum alanine transferase (ALT) and lactate dehy-
drogenase (LDH) activities. Serum ALT and LDH activities were
elevated through 24 h (Fig. 1A). The macroscopic appearance
and histology of the liver obtained 24 h after ConA injection
revealed intense necrosis (Fig. 1B). The immunohistochemical
analysis showed that the number of CD4™ T cells in the liver
peaked at 6 h after the ConA injection, and remained high for
24 h (Fig. 1C and D). The numbers of CD11b* cells and Gr-1*
cells accumulated in the liver increased at 3 h and reached a max-
imum at 12 h after ConA injection (Fig. 1C and D). The numbers of
F4/80*" monocyte/macrophage lineage cells increased at 6 h after
the ConA injection, but returned to basal levels after 24 h (Fig. 1C
and D). We also assessed the frequency of CD11b*/Gr-1% cells,
as a phenotype of myeloid-derived suppressor cells (MDSCs), in
ConA hepatitis mice at 6 h (n = 3). The frequency of CD11b*/Gr-
1% cells was higher than that in WT mice (Fig. 1E). Scavenger
receptor CD204 expression was higher in CD11b*/Gr-1% cells
than CD11b*/Gr-1" cells (Fig. 1F), and the population gated for
CD11b™ cells contained granulocytic Ly-6C*/Ly-6G* cells as well
as monocytic Ly-6C*/Ly-6G™ cells (Fig. 1G).

To determine the type of immune-mediating cells involved
in ConA-induced acute hepatitis, we depleted mice of various
immune cell subpopulations (n = 4 per group). Mice that were
pretreated with clodronate, a reagent that depletes monocyte-
macrophage lineage cells [16], followed by injection of ConA, did
not show a significant elevation in serum ALT or LDH activity
(Fig. 1H). Mild elevation of serum activity for these enzymes in
mice depleted of CD4* T cells was observed, whereas depletion
of CD8* T cells had no significant effect. These results suggest
the importance of monocyte-macrophage myeloid-lineage cells,
as well as the contribution of CD4% T cells, in ConA-induced
hepatitis.

ConA-induced acute hepatitis is ameliorated by i.v.
administration of ADSCs in vivo

Next, we determined the therapeutic efficacy of ADSCs in the
ConA-induced hepatitis model. We obtained and expanded stro-
mal cells from adipose tissue by passaging them eight to ten times
(Fig. 2A). Almost all cells expressed the mesenchymal lineage
markers, CD29 and CD44 (Fig. 2B). With regard to stem cell mark-
ers [17], approximately 40% and 73% of cells expressed CD105
and CD90, respectively (Fig. 2B). Moreover, the cells were pluripo-
tent and were able to differentiate into osteocytes, chondrocytes,
and adipocytes (Fig. 2C-F). When 1 x 10° ADSCs were admin-
istered via the tail vein immediately after ConA injection in mice
(n = 3), the elevation of serum ALT and LDH activity was substan-
tially ameliorated, compared with mice without ADSC treatment
(n = 4) 24 h after injection (Fig. 3A). In terms of therapeutic effi-
cacy, 1 x 10° ADSCs were administered to mice 3 h after ConA
injection (n = 3), serum ALT and LDH activities were significantly
reduced in acute hepatitis mice treated with ADSCs, compared
with ConA-induced hepatitis mice without treatment (n = 4),
24 h after ConA administration (Fig. 3B). The macroscopic
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