Mouse CD47 cDNA Plasmid Construction and
Transfection

The entire coding region of the CD47 cDNA was PCR-
amplified from reverse-transcribed mouse lymphocyte cDNA with
primers (sense) 5'-GCGAAGTGACAGAGTTATCC-3' and (an-
tisense) 5'-TGGCTCACATGCCATGATGC-3'. The amplified
PCR product was digested with EcRI/ANofl and cloned into the
pRc/CMV vector (kindly provided by Dr. Tadashi Furusawa,
National Institute of Animal Research Industry, Japan), which had
been predigested with the same restriction endonucleases. Rat
insulinoma cells (INS-1E) were transfected with either pRc/CMV-
mouse CD47 or the empty plasmid, using Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA). Five hours after the transfection,
cells were selected with G418 (Sigma-Aldrich; 800 pg/mL) for
1 week to generate stable cell lines and analyzed for expression of
mouse CD47 by FACS analyses.

Diabetic Mice Generation

Rag2 ™/~ y chain ~/~ mice were rendered diabetic through a
single i.p. administration of 200 mg/kg streptozotocin (Sigma-
Aldrich) at 6 days prior to injection of rat INS-1E cells. Diabetic
mice with non-fasting blood glucose levels of >400 mg/dL on the
day of transplantation were used as the recipients. The blood
glucose levels were monitored with a blood glucose test meter
(Medisafemini GR-102; Terumo, Somerset, NJ, USA). In the
absence of INS-1E cell transplantation, diabetes persisted in all
diabetic mice (blood glucose level: 0.350 mg/dL), and no
spontaneous reversal of diabetes was observed for at least the
next 3 months.

In vivo Phagocytic Assay

Target cells were stained with the fluorescent dye 5/6-CFSE
(Molecular Probes, Eugene, OR, USA) according to the manu-
facturer’s protocol. Either CFSE-labeled mCD47-INS-1E cells
(10%10°% or cont-INS-1E cells (10x10°% were injected into the
peritoneal cavity of streptozotocin-induced diabetic Rag2 ™"~ vy
chain =/ mice. After 6 h, the recipient intraperitoneal cells were
harvested and the macrophages that phagocytosed the target cells
could be identified by FACS analysis, based on CFSE labeling.

Statistical analysis. Significant differences between groups
were determined using Student’s t-test. A p-value of <0.05 was
considered statistically significant.

Results

Rat CD47 does not Induce Tyrosine Phosphorylation of
SIRPa in Mouse Macrophages

In the CD47-SIRP system, the interaction between SIRP, on
macrophages, and CD47, on target cells, inhibits phagocytosis of
the target cells by promoting phosphorylation of tyrosine in the
cytoplasmic domain, and recruitment of Src homology 2 domain-
containing protein tyrosine phosphatase-1, which is the major
regulator of phagocytic responses [20].

To determine whether rat CD47 can interact with mouse
SIRPa, we assessed tyrosine phosphorylation of SIRPa in mouse
macrophages after contact with either rat or mouse RBCs.
Western blotting revealed that incubation of mouse peritoneal
cavity macrophages with mouse RBCs resulted in SIRPa. tyrosine
phosphorylation, as expected (Fig. 1). However, after incubation
with rat RBCs, this tyrosine phosphorylation was not induced in
mouse macrophages above the level in control macrophages,
which had been incubated with medium alone, indicating that rat
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CD47 fails to induce SIRPo tyrosine phosphorylation in mouse
macrophages.

Mouse CD47 Expression on Rat Cells Markedly Reduces
the Susceptibility to Phagocytosis by Mouse
Macrophages

To determine whether expression of mouse CD47 on rat cells
could efficiently prevent their phagocytosis by mouse macrophag-
es, we generated rat insulinoma cell lines that express mouse
CD47 by transfecting rat cells with a mouse CD47-expressing
plasmid, pRc/CMV-mouse CD47 (Fig. 2A). Mouse CD47
expression on the transfected INS-1E cells was confirmed by
FACS analysis (Fig. 2B). The expression level of CD47 on the
pRc/CMV-mouse CD47 vector-transfected INS-1E  cells
(mCD47-INS-1E) was higher than that on mouse PBMCs,
whereas the control vector-transfected INS-1E (cont-INS-1E) cells
tested negative for mouse CD47. We have confirmed constant
expression of mouse CD47 on mCD47-INS-1E cells in diabetic
Rag?2 ™/~ y chain™’~ mice without further G418-selection at least
until 8 days after the inoculation. Western blotting revealed that
incubation of mouse macrophages with mCD47-INS-1E resulted
in significant tyrosine phosphorylation of SIRPa, indicating that
mCD47-INS-1E cells functionally interact with mouse SIRPo
(Fig. 2C). Except for functional mouse CD47 expression, mCD47-
INS-1E cells were comparable to cont-INS-1E cells with respect to
their morphology, proliferation rates, and insulin producing
activity (data not shown).

The phagocytic activities of mouse macrophages toward both
INS-1E cell lines were evaluated by i vivo assays. CFSE-labeled
mCD47-INS-1E or cont-INS-1E cells were injected into the
peritoneal cavity of streptozotocin-induced diabetic Rag2 ™/~ y
chain ~’" mice, which lack T, B, and NK cells. The recipient
intraperitoneal cells were harvested after 6 h, and macrophages
that phagocytosed the target cells were then detected as CD11b-
and CFSE-double—positive cells, using FACS analysis (Fig. 3A).
The proportion of CFSE™ cells among all the CD11b" cells was
significantly lower in cells obtained from mCD47-INS-1E
recipients than from cont-INS-1E recipients. This result indicated
that mouse CD47 expression on rat cells markedly reduced the
susceptibility of these cells to phagocytosis by mouse macrophages
(Fig. 3B).

To investigate whether these protections were due to CD47
overexpression or to the species-specific effect of mouse CD47,
another line of rat insulinoma cells (mCD47"°"-INS-1E) labeled
with CFSE, which expressed lower levels of mouse CD47 (MFI
330.67) than the original mCD47-INS-1E cells (MFI 506.88), were
injected into the peritoneal cavity of streptozotocin-induced
diabetic Rag2 ™"~ y chain™’~ mice. Intraperitoneal cells of the
recipients were harvested after 6 h, and macrophages that
phagocytosed the target cells were detected using FACS analysis.
The proportion of CFSE® cells among all CD11b" cells was
significantly lower in cells obtained from mCD47°"-INS-1E
recipients than in those from cont-INS-1E recipients. However,
no significant difference was observed in phagocytic activity
between mCD47-INS-1E  recipients and mCD47°"-INS-1E
recipients. This result indicated that, in this model, the protection
was not simply due to overexpression of mouse CD47 (Fig. 3B).

Diabetic Rag2™’~ v chain =/~ Mice became
Normoglycemic after Receiving mCD47-INS-1E

Next, mCD47-INS-1E or cont-INS-1E cells were injected into
the peritoneal cavity of Rag2™’~ y chain /7 mice with
streptozotocin-induced diabetes; the blood glucose levels of these
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Figure 2. Generation of mouse CD47-expressing rat cell line. (A) Structure of pRc/CMV-mouse CD47. The entire coding region of the mouse
CD47 cDNA was PCR-amplified. The amplified PCR product was digested and full-length mouse CD47 cDNA was inserted into the expression vector

pRc/CMV. (B) Expression of mouse CD47 on a transfected rat insulinoma cell (INS-1E) was confirmed by FACS analysis. Representative histograms
obtained by FACS analysis for mouse PBMCs, pRc/CMV-transfected rat INS-1E cells (cont-INS-1E), and pRc/CMV-mouse CD47-transfected rat INS-1E

PLOS ONE | www.plosone.org 4 March 2013 | Volume 8 | Issue 3 | 58359

-139 -



CD47-SIRPa. Signaling in Xenograft Rejection

cells (MCD47-INS-1E) are shown. Open and filled histograms represent staining with isotype control and with anti-mouse CD47 mAb, respectively. (C)
Tyrosine phosphorylation of SIRPa in mouse macrophages was induced by incubation with pRc/CMV-mouse CD47-transfected rat INS-1E cells
(mCD47-INS-1E), but not with control vector-transfected rat INS-1E cells (cont-INS-1E). Differentiated mouse macrophages were incubated with
mCD47-INS-1E or cont-INS-1E at 37°C for 30 min. The cells were lysed, and the lysates were mixed with mouse anti-mouse SIRPa. antibodies and 50%
slurry of protein G-sepharose beads by rotation at 4°C for 8 hrs. Precipitated proteins were separated by 8% SDS-PAGE, followed by blotting to a
nitrocellulose membrane. Rabbit immunoaffinity-purified anti-phosphotyrosine IgG and goat anti-rabbit HRP-conjugated IgG were used as primary
and secondary antibodies, respectively. Mouse CD47-transfected INS-1E (mCD47-INS-1E) alone (lane 2), mouse macrophages incubated in medium
alone (lane 3) or mouse macrophages incubated with cont-INS-1E (lane 4) or mCD47-INS-1E (lane 5) are shown. Immunoblotting with anti-mouse
SIRPo. was used as loading control. IP, immunoprecipitation; IB, immunoblotting; anti-pY, anti-phosphotyrosine.
doi:10.1371/journal.pone.0058359.g002

normoglycemia (Fig. 4). Thus, the in vivo transplant model proved that
genetically engineered expression of mouse CD47 in rat insulinoma
cells could inhibit macrophage-mediated xenograft rejection.

mice were monitored for 7 days. Diabetic Rag2 ™"~ v chain ~/~
mice became normoglycemic after receiving mCD47-INS-1E. In
contrast, the mice that received cont-INS-1E failed to achieve

CD47-SIRPa. Signaling Blockade Prevents the Effects of
Mouse CD47 on Macrophage-mediated Xenograft
Rejection

We further explored the practical contribution of CD47-SIRPa
signaling to the successful engraftment of mCD47-INS-1E
xenografts in the diabetic Rag2 ™"~ y chain ~/~ mice by using
the anti-mouse SIRPo Ab (P84) to block this signaling. Mouse
SIRPo, on the peritoneal macrophages of Rag2—/— vy chain —/
— mice, had not been decreased and had been capped after the
intraperitoneal injection of P84 for at least 8 days (Fig. 5A and B).
Twenty-four hours after P84 injection, either mCD47-INS-1E or
cont-INS-1E cells were injected into the peritoneal cavity of the
diabetic Rag2 ™"~ v chain ~/~ mice. Irrespective of which cell line
recipients received, mice failed to achieve normoglycemia
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Figure 3. Mouse CD47-expressing rat INS-1E cells attenuate ©
phagocytosis by mouse macrophages. (A) CFSE-labeled pRc/CMV- 'g 200 A
mouse CD47-transfected rat INS-1E cells (mCD47-INS-1E) and control K=}
vector-transfected rat INS-1E cells (cont-INS-1E) were injected into o
100

peritoneal cavity of streptozotocin-induced diabetic Rag2 ™~ vy chain ~
~ mice. After 6 h, the intraperitoneal cells from the recipient mice were
harvested. Mouse macrophages counterstained with allophycocyanin- 0
conjugated anti-mouse CD11b and phagocytosis of CFSE-labeled
targets were measured by FACS analysis. Representative FACS profiles
are shown. Regions representing non-phagocytosing macrophages are

0 1 2 3 4 5 6 7(days)

shown in the upper left quadrants, regions representing phagocytosing
macrophages are shown in the upper right quadrants, and regions
representing residual targets are shown in the lower right quadrants. (B)
Phagocytic activity was calculated by the following formula: phagocytic
activity = (percentage of engulfing macrophages/percentage of total
harvested macrophages) x100. Data are given as the means = SD.
doi:10.1371/journal.pone.0058359.g003
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Figure 4. Diabetic Rag2™’~ y chain ~/~ mice became normo-
glycemic after receiving mCD47-INS-1E. Either mCD47-INS-1E or
cont-INS-1E cells were injected into the peritoneal cavity of Rag2™"~ v
chain ™/~ mice with streptozotocin-induced diabetes. Blood glucose
levels were monitored for 7 days. Data are presented as the means +
SD.

doi:10.1371/journal.pone.0058359.g004
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Figure 5. Inhibition of CD47-SIRPu signaling prevents the
effect of genetic induction of recipient CD47 in xenografts. (A)
Either P84 or control antibody was injected into the peritoneal cavity of
diabetic Rag2™’~ y chain™~ mice. After injection, intraperitoneal cells
from recipient mice were harvested and SIRPa+ peritoneal cells were
counted. (B) Anti-mouse SIRPa mAb (P84) was injected into the
peritoneal cavity of Rag2—/— vy chain —/— mice. Expression of mouse
SIRPa. on mouse peritoneal macrophages was confirmed by FACS
analysis. Open and filled histograms represent staining with isotype
control and with anti-mouse SIRPo mAb, respectively. (C) Twenty-four
hours after the injection of anti-mouse SIRPo. mAb (P84), either mCD47-
INS-1E or cont-INS-1E cells were injected into the peritoneal cavity of
the diabetic Rag2™~ y chain ~/~ mice. Blood glucose levels were
monitored for 7 days. Data are given as the means = SD. N.S.: not
significant.
doi:10.1371/journal.pone.0058359.g005

in phagocytosis by mouse cells. Twenty-four hours after injection
of either P84 or control antibody, CFSE-labeled congenic T cells
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Figure 6. CD47-SIRPa signaling blockade does not induce
phagocytosis of congenic cells. (A) Twenty-four hours after
injection of either P84 or control antibody, CFSE-labeled congenic T
cells were injected into the peritoneal cavity of mice. After 6 h, the
intraperitoneal cells from recipient mice were harvested. Mouse
macrophages counterstained with allophycocyanin-conjugated anti-
mouse CD11b and phagocytosis of CFSE-labeled congenic T cells were
determined by FACS analysis. Representative FACS profiles are shown.
Regions representing non-phagocytosing macrophages are shown in
the upper left quadrants, regions representing phagocytosing macro-
phages are shown in the upper right quadrants, and regions
representing residual congenic T cells are shown in the lower right
quadrants. (B) Phagocytic activity was calculated by using the following
formula: phagocytic activity = (percentage of engulfing macrophages/
percentage of total harvested macrophages)x100. Data are presented
as means * SD.

doi:10.1371/journal.pone.0058359.g006

were injected into the peritoneal cavity of mice. After 6 h,
intraperitoneal cells of the recipients were harvested and mouse
macrophages that phagocytosed congenic T cells were then
detected as CD11b- and CFSE-double—positive cells using FACS
analysis. As shown in Fig. 6, no significant difference was observed
in phagocytic activity between the 2 groups. This result indicated
that CD47-SIRPa signaling blockade does not induce phagocy-
tosis of congenic cells.

Discussion

In the present study, genetic induction of the expression of
mouse CD47 on rat insulin-producing cells could deliver
inhibitory signaling to SIPRo on mouse peritoneal macrophages,
preventing rejection of the rat cells during observation periods. It
has previously been reported that CD47-SIRPo interactions
exhibit limited cross-species reactivity probably because of
species-specific posttranslational modifications of CD47 such as
glycosylation, i.e. CD47 on pig but not on mouse, cow, or rat
RBCs binds the recombinant extracellular dommain of human
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SIRPal [21]. It has been also demonstrated that pig CD47 does
not interact with mouse SIRPa [22]. Consistently, the phagocytic
synapse at cell contacts has been proven to involve a basal level of
actin-driven phagocytosis that is made more efficient by phospho-
activated myosin in the absence of species-specific CD47 signaling
[23]. Recently, we have verified that pig CD47 also does not
interact with human SIRPo, and, importantly, that genetic
manipulation of porcine cells for expression of human CD47
markedly reduces the susceptibility of these cells to phagocytosis by
human macrophages  vitro [10].

Other groups have also shown that functional species-specific
CD47/SIRPa interaction is required for generating improved
models of mouse/human chimeras: mouse CD47-expression in
transplanted human hematopoietic cells is required for optimal
human T- and natural killer-cell homeostasis in mice [24].
Furthermore, the introduction of mouse CD47 into primary
human hepatocytes confers a positive selective advantage upon
engraftment into the mouse liver i vivo [25]. Currently available
data from in vivo experiments assessing xenograft survival
indicates that CD47 provides a potential molecular target for
inhibiting macrophage-mediated rejection of xenogeneic cells.
Hence, this suggests the necessity of establishing human CD47-
transgenic pigs as clinically applicable donors of xenografts.

It is well known that innate immune responses mediated by
monocytes/macrophages can drive and shape the process of
adaptive immunity. Phagocytic activities of macrophages form a
first line of defense against invading infectious microbes, and these
macrophages can present antigens derived from such phagocy-
tosed foreign pathogens to T cells. It is likely that these
mechanisms also take place in xenotransplantation from phyloge-
netically distant species. Therefore, specific elimination of
phagocytic activity of host macrophages toward xenogeneic cells
by genetically inducing host-type CD47 expression may also
attenuate subsequent T cell immune responses against xenoanti-
gens, while maintaining normal responses against other pathogens.

It has also been reported that a similar CD47-SIRP system
negatively regulates the functions of both T cells and APCs in
humans [14]. In contrast, it has been demonstrated that the
interaction between CD47 on APCs and SIRPy (also known as
SIRPB2) on T cells promotes the proliferation of antigen-specific T
cells and co-stimulates T cell activation [26]. These observations
raise a question as to whether interspecies incompatibility of CD47
affects CD4+ T cell-mediated responses to xenoantigens positively
or negatively. In our previous study, recombinant human CD47-
Fc fusion protein (which contains the extracellular domain of
human CD47 fused to the Fc portion of human immunoglobulin)
significantly reduced the indirect response of human CD4+ T cells
to porcine antigens, but did not affect the direct response of these
cells in in vitro pig-to-human mixed lymphocyte reaction assays
[27]. Inhibition of the phagocytic activity of human APCs toward
porcine cells by interaction between the human CD47-Fc fusion
protein and the corresponding ligand, probably SIRPo, might
might attenuate subsequent CD4+ T cell immune responses
against porcine antigens. Taking into consideration that SIRPy
binds CD47 with a lower affinity (KD: about 23 uM) than SIRPo
(KD: about 2 uM) [28], the interaction between human CD47-Fc
and SIRPy on human CD4+ T cells conferring direct xenospe-
cificity may might not affect CD4+ T cell immune responses.
Unlike this in vitro system, however, if human CD47 molecules
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are highly expressed on porcine APCs by genetic manipulations,
there will be a risk that CD4+ T cell-mediated responses to
xenoantigens are promoted. These possibilities should be ad-
dressed in further studies employing an immunocompetent animal
model enabling long-term observation. In that particular case, the
model utilizing rat inslinoma in mice would not be suitable, since
the mouse recipients of mCD47-INS-1E cells in this study
eventually died from hypoglycemia due to growth of the inocula.
Further studies are needed for long-term observation employing a
rat CD47-transfected normal mouse islet model.

It has been reported that the ability of glucocorticoids to
promote macrophage phagocytosis of CD47-deficient targets
could, in part, be mediated by an upregulation of expression of
LDL receptor-related protein-1 (LRP1/CD91/a2-macroglobulin
receptor) macrophages [29]. Since glucocorticoids are indispens-
able in immunosuppressive therapy after xenogeneic or even
allogeneic cellular/organ transplantation, glucocorticoid-treated
macrophages may enhance phagocytosis of xenogeneic cells.
Therefore, genetic manipulation of xenogeneic cells for host-type
CD47 expression would be particularly useful to reduce the
likelihood of phagocytosis by macrophages.

It has been recently demonstrated that CD47 is a molecule
commonly expressed on neoplastic cells. Its function to block
phagocytosis is known, and blockade of this function leads to
tumor cell phagocytosis and elimination [30,31]. Consistently, in a
separate experiment, we also observed that insulinoma cell
function in a syngeneic model depends on SIRPa-mediated
inhibition of macrophages through engagement with its ligand
CD47, ie., treatment with anti-SIRPo Abs enhanced macro-
phage-mediated elimination of mouse insulinoma cells in diabetic
Rag2™’~ vy chain™’~ mice (data not shown). It remains to be
elucidated whether the observations made in neoplastic cells in this
study apply to normal xenografts. However, together with our
previous in vitro finding that genetic induction of human CD47
on porcine non-neoplastic lymphoblastoid cells radically reduced
the susceptibility of those cells to phagocytosis by human
macrophages, our results of the present study may lead to the
development of approaches for attenuating macrophage-mediated
xenograft rejection by genetic manipulation of porcine cells for
human CD47 expression.

In conclusion, we have here demonstrated that interspecies
incompatibility of CD47 significantly contributes to < vivo
rejection of xenogeneic cells by macrophages. Our results imply
that genetic induction of recipient CD47 on xenogeneic donor
cells could provide inhibitory signals to recipient macrophages via
SIPRa; this constitutes a novel approach to prevent macrophage-
mediated xenograft rejection.
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