Table 3 Determinants of hypophosphatemia | | Univariate analysis | | Multivariate analysis | | | | |---|---------------------|----------|-----------------------|----------|--|--| | | HR (95 % CI) | P value | HR (95 % CI) | P value | | | | Age ≥50 years | 1.325 (0.836–2.100) | 0.230 | | | | | | Male sex | 3.690 (1.600-8.475) | 0.002 | 2.824 (1.212-6.759) | 0.016 | | | | Body weight < 60 kg | 1.417 (0.850-2.360) | 0.181 | | | | | | Current cirrhosis | 1.854 (1.143-3.008) | 0.012 | | | | | | Current and/or history of HCC | 1.824 (1.089-3.054) | 0.022 | 1.871 (1.106-3.166) | 0.020 | | | | History of diabetes mellitus | 1.355 (0.546-3.362) | 0.513 | | | | | | History of hypertension | 1.558 (0.870-2.791) | 0.136 | | | | | | Baseline eGFR < 80 (eGFR ≥50) | 1.264 (0.788-2.029) | 0.332 | | | | | | Baseline IP < 3.2 mg/dl | 3.155 (1.965–5.051) | < 0.0001 | 2.833 (1.751-4.032) | < 0.0001 | | | | Platelet count $< 15 \times 10^4 / \text{mm}^3$ | 1.472 (0.925–2.342) | 0.103 | | | | | Abbreviations as in Table 2 with a fall in serum phosphate level to < 2.5 mg/dl. Patients with baseline serum phosphate of < 2.5 mg/dl (n=23) were excluded from the analysis. Univariate analysis showed that male sex (P=0.002), cirrhosis (P=0.012), current and/or history of HCC (P=0.012), and low baseline phosphate level (P<0.0001) correlated with hypophosphatemia. On the other hand, multivariate analysis identified male sex (P=0.016), current and/or history of HCC (P=0.020), and low baseline serum phosphate level (P<0.0001) as significant determinants of ADV-induced hypophosphatemia. Further analysis showed that decreases in eGFR of more \geq 30 % relative to the baseline value in 2.5 years correlated significantly with hypophosphatemia (P = 0.007). Effect of modification of ADV dosing interval on hypophosphatemia and liver function The median serum phosphate level after 1-, 2-, and 3- years of modification of ADV dose was 2.9, 3.1, and 3.0 mg/dl, respectively. Serum phosphate level fluctuated even after the dose modification. We also analyzed changes in serum ALT and HBV-DNA. After ADV dose modification, serum ALT level decreased to within the normal range (ALT < 40 IU/L) in 16 of 17 patients. Although serum ALT level of the remaining single case increased transiently after the modification, it normalized 1 year later. The HBV-DNA level was below the detection level at ADV dose modification in 14 of the 17 Table 4 Clinical features of patients with persistent ADV-induced hypophosphatemia | | | | | | | | | - | | | | | | | | |-----|-----|---------|------|--------|------|-------|-----|-----|-------|------|------|------|------|--------------|-----------| | | Sex | Age | BW | LC/CH/ | Base | eline | | | | Min. | Max. | Min. | Max. | Fall in eGFR | Ostealgia | | no. | | (years) | (kg) | НСС | IP | ALP | UA | Cr | eGFR | IP | ALP | UA | Cr | (%) | | | 1 | F | 63 | 64.6 | LC/HCC | 2.7 | 323 | 5.4 | 0.5 | 93.3 | 0.8 | 1081 | 1.2 | 0.9 | 47.9 | + | | 2 | F | 73 | 57.2 | CH | 3.6 | 285 | 4.1 | 0.5 | 89.3 | 1.9 | 1102 | 2.2 | 0.8 | 41.1 | + | | 3 | M | 35 | 61.4 | CH | 3.9 | 149 | 4.3 | 0.8 | 89.3 | 2.2 | 174 | 3.4 | 1.2 | 37.8 | _ | | 4 | M | 57 | 66.2 | LC/HCC | 2.9 | 361 | 2.8 | 0.8 | 77.7 | 2.2 | 742 | 1.7 | 1.2 | 37.1 | | | 5 | F | 40 | 60.4 | CH | 2.9 | 259 | 4.9 | 0.5 | 105.8 | 1.1 | 1012 | 2.5 | 0.7 | 33.1 | _ | | 6 | M | 47 | 57.4 | CH | 3.9 | 203 | 3.9 | 0.7 | 95.1 | 1.8 | 241 | 3.1 | 1.0 | 32.3 | | | 7 | M | 50 | 70.2 | LC/HCC | 3.4 | 300 | 5.4 | 0.6 | 110.2 | 1.1 | 351 | 5.3 | 0.8 | 29.3 | _ | | 8 | M | 41 | 80.3 | LC/HCC | 2.7 | 206 | 5.3 | 0.8 | 85.3 | 2.0 | 268 | 4.3 | 1.0 | 23.2 | | | 9 | M | 58 | 73.0 | СН | 2.6 | 259 | 2.9 | 0.9 | 67.8 | 2.2 | 378 | 2.2 | 1.1 | 20.5 | _ | | 10 | M | 31 | 89.0 | LC | 3.4 | 180 | 4.4 | 0.8 | 92.2 | 1.6 | 502 | 1.8 | 0.9 | 17.7 | + | | 11 | M | 34 | 62.9 | CH | 2.7 | 111 | 6.4 | 0.6 | 123.7 | 2.2 | 179 | 4.6 | 0.7 | 16.2 | annua. | | 12 | M | 49 | 83.0 | CH | 3.1 | 442 | 6.1 | 0.8 | 80.9 | 2.2 | 383 | 5.0 | 0.9 | 14.5 | www. | | 13 | M | 40 | 83.9 | LC/HCC | 3.7 | 216 | 6.9 | 0.9 | 75.4 | 1.9 | 383 | 6.0 | 1.0 | 10.9 | | | 14 | M | 39 | 66.0 | CH | 4.1 | 144 | 6.4 | 1.0 | 67.7 | 2.1 | 179 | 6.3 | 1.1 | 9.9 | | Fall in eGFR represents fall in eGFR relative to the baseline BW body weight, IP inorganic phosphate, ALP alkaline phosphatase, UA uric acid, Cr creatinine, LC liver cirrhosis, CH chronic hepatitis, HCC hepatocellular carcinoma Fig. 4 Two cases who developed Fanconi's syndrome. a Case 1: a 63-year-old woman with HBeAg-positive liver cirrhosis. b Case 10: a 31 year-old man with HBeAg-positive liver cirrhosis patients, and the level did not increase after the modification. The remaining three patients with detectable HBV-DNA at modification did not show any change in HBV-DNA. ## Patients with persistent hypophosphatemia Fourteen (5.2 %) patients developed persistent hypophosphatemia. There were no significant differences in clinical features and results of laboratory tests at baseline between patients with transient and persistent hypophosphatemia. Table 4 lists the clinical features of these patients. Three of these patients complained of bone pain during treatment. They had markedly elevated alkaline phosphatase (ALP) and low serum uric acid (UA) levels during the combination therapy. Their serum creatinine level remained normal, but their eGFR decreased relative to baseline. Figure 4 provides a summary of the clinical course of cases 1 and 10. Case 1 was a 63-year-old woman with HBeAg-positive liver cirrhosis. She was first treated with LAM for chronic hepatitis, but ADV was added 17 months later due to the development of LAM resistance. The laboratory data (serum phosphate, ALP, UA and creatinine) were within normal ranges at baseline, and she had no other health problems. Continuous treatment with ADV for about 3 years resulted in increase in ALP level and decrease in UA and serum phosphate. After 4.5 years, she developed lumbago and right ankle pain. Blood tests showed ALP of 1102 IU/ml, UA of 1.2 mg/dl, and serum phosphate of 0.8 mg/dl. Other laboratory tests demonstrated metabolic acidosis, aminoaciduria, low tubular reabsorption of phosphate (34.8 %; normal value 85-98 %), and high fractional excretion of uric acid (47.6 %; normal value 4-14 %). These results indicated generalized dysfunction of the proximal renal tubules. A technetium bone scan showed increased uptake in bilateral ribs, carpal bones, lumbar spine, and bilateral calcaneus. She was diagnosed with acquired Fanconi's syndrome with hypophosphatemic osteomalacia associated with ADV therapy. ADV was discontinued and replaced with entecavir (ETV) while hypophosphatemia was treated with oral phosphate. Three months after cessation of ADV and oral phosphate supplementation, the patient reported symptomatic improvement and blood tests showed normalization of phosphate level and low ALP level. Case 10 was a 31-year-old man with HBeAg-positive liver cirrhosis. He was also first treated with LAM, and ADV was added on 16 months later. The laboratory data were within the normal ranges at baseline. Treatment for 1.5 year with ADV resulted in decrease in serum phosphate and UA, and 4-year treatment increased ALP level. After 7 years, the right metatarsal bone broke in an accident. After 9 years of treatment, blood tests showed serum phosphate of 1.3 mg/dl. Detailed clinical examination was conducted at that stage. Other laboratory tests showed aminoaciduria, low tubular reabsorption of phosphate (65.5 %), and high fractional excretion of uric acid (19.1 %). A technetium bone scan showed increased uptake in bilateral ribs, bilateral ankles, tarsal bones, and right metatarsal. He was also diagnosed with acquired Fanconi's syndrome and hypophosphatemic osteomalacia associated with ADV therapy. ADV dosing interval was changed from 10 mg every day to 10 mg every other day, and oral phosphate supplementation and calcitriol were added to the treatment. Treatment for 2 months resulted in improvement of symptoms and normalization of phosphate level. #### Discussion Renal impairment is one of the most serious adverse effects of ADV. The following mechanism is considered to explain ADV-induced nephrotoxicity: the human organic anion transporter-1 (hOAT1) is a renal membrane protein expressed at the basolateral membrane of the proximal tubule cells. hOAT1 can efficiently transport cyclic nucleoside phosphonate, and thus contribute to ADV nephrotoxicity by accumulation of the drug in renal proximal tubules [18, 19]. Previous studies indicated that the ADV-related nephrotoxicity is dose-dependent [12]. In a large-scale clinical trial, 8 % of patients treated with 30 mg/day ADV for 48 weeks had high serum creatinine (≥0.5 mg/dl), relative to baseline. On the other hand, none of the patients treated with 10 mg/day ADV showed increase in creatinine $(\geq 0.5 \text{ mg/dl})$, relative to baseline [20]. Thus, ADV at a dose of 10 mg/day has been used previously for the treatment of patients with CHBI. However, renal dysfunction has been reported even after the use of ADV at this dose, especially after long-term administration [13-15]. For example, in a study of the 10 mg ADV combined with LAM, serum creatinine increased in 38 % of patients following median treatment duration of 38 months [14]. In another retrospective study of 687 patients, during a median treatment period of 27 months, 10.5 % of patients developed renal impairment, which was defined as a decrease in eGFR of more than 20 % relative to the baseline [15]. In our study, 9.6 % of patients developed renal impairment during a median treatment duration of 64.3 months. Our results also showed that 20.2 % of the patients exhibited more than 30 % decrease in eGFR, and a much larger proportion (43.2 %) of the patients showed more than 20 % decrease in eGFR. These rates are higher than those reported previously. Furthermore, as shown in Fig. 2a, patients
with rapid falls in eGFR within the first 2 years of treatment should be carefully monitored for any renal dysfunction. Based on the results of our study, it seems that longer dosing period is associated with higher incidence of renal dysfunction. We also analyzed the risk factors of renal impairment defined by a decrease in eGFR to less than 50 ml/min/ $1.73 \, \text{m}^2$. Ha et al. [13] reported that age >50 years, mild renal impairment at baseline, hypertension and/or diabetes mellitus, and male sex were significant predictors of renal impairment characterized by decrease in eGFR of $\geq 20 \, \%$ relative to baseline. Furthermore, Yu et al. [15] also reported that age ≥ 50 years was a significant predictor of renal dysfunction in those patients treated with ADV. In our study, age was also identified as a significant and independent determinant of the primary endpoint, together with liver cirrhosis and history of arterial hypertension. Considered together, these data indicate that care should be taken when ADV-based therapy is used for elderly patients with CHBI. Cross-sectional studies have demonstrated a decline in GFR with age [21, 22]. Moreover, hypertension and diabetes mellitus are also reported to worsen the rate of decline of renal function [23–25]. Renal failure is common and often severe in patients with cirrhosis due to the activation of various vasoconstrictor systems, including the renin–angiotensin system and the sympathetic nervous system [26]. Taken together, eGFR is more likely to decrease during ADV therapy in patients with older age, hypertension, diabetes mellitus, cirrhosis, mild renal dysfunction at baseline. ADV-induced proximal tubule failure can lead to hypophosphatemia. In a randomized clinical control trial using 120 mg/day ADV for treatment of patients with HIV, hypophosphatemia occurred in 50 % of patients after 48 weeks and in 61 % of patients after 72 weeks of ADV treatment [27]. On the other hand, in another study using 10 mg/day ADV for patients with CHBI, there was no overall change in serum phosphorus level during the 96-week study period [28]. However, in recent years, several reports have described the development of hypophosphatemia in patients treated with ADV at a daily dose of 10 mg [14, 29]. In our study, 27.1 % of patients developed hypophosphatemia during the combination therapy. Although 21.9 % of patients developed transient hypophosphatemia, 5.2 % of patients who had normal phosphate level at baseline developed persistent hypophosphatemia. In this regard, one previous study reported that approximately 2 % of hospitalized patients had hypophosphatemia [30]. Collectively, the above results and our findings indicate that ADV-based treatment is associated with a high incidence of hypophosphatemia. Tamori et al. [14] reported that serum phosphate level decreased to less than 2.5 mg/ml in 16.2 % of their patients during the 38-month combination therapy. Gara et al. [29] reported that 14 % of their patients treated with nucleotide analog therapy (10 mg/day ADV combined with 100 mg/day LAM, or 300 mg/day tenofovir monotherapy) developed persistent hypophosphatemia. Analysis of our data identified male sex, presence and/or history of HCC, and low serum phosphate level at baseline as significant determinants of hypophosphatemia. Furthermore, a decrease in eGFR by \geq 30 % relative to baseline within 2.5 years was also associated with the development of hypophosphatemia. Hepatic insufficiency is associated with impairment in 25-hydroxylation of vitamin D in the liver, which can lead to reduced synthesis of 1, 25 (OH) 2D3, with subsequent worsening of hypophosphatemia based on reduced intestinal absorption of phosphorus [31, 32]. In our study, 73 % of patients with HCC had liver cirrhosis, and the presence and/or history of HCC was a predictor of hypophosphatemia. Another mechanism of hypophosphatemia is protein and calorie malnutrition, which is a common feature of chronic liver disease. Furthermore, invasive treatment of HCC may itself cause hypophosphatemia. The present study also analyzed the relation between gender and hypophosphatemia. In a study that enrolled more than 4500 community-dwelling Italians of broadly diverse age, serum phosphorus levels were similar in males and females until the age of 45 years [33]. Interestingly, serum phosphate level increased in females aged between 45 and 54 years but fell after 55 years of age. The increase in serum phosphate level in females is probably related to menstrual status [33]. In the present study, serum phosphate level was higher in females than in males at baseline (3.51 vs. 3.18, P < 0.0001). Thus, male sex was a significant determinant of hypophosphatemia. These findings call for careful monitoring of serum phosphate level in patients treated with ADV, especially male patients, patients with HCC, and patients with renal dysfunction. Several studies described the development of Fanconi's syndrome and subsequent hypophosphatemic osteomalacia in patients treated with 10 mg/day ADV [14, 16, 17]. Fanconi's syndrome is characterized by generalized transport defect in the proximal tubules, leading to renal losses of glucose, phosphate, uric acid, amino acids, bicarbonate, and other organic compounds [34]. Severe hypophosphatemia seems to cause inadequate mineralization of bone matrix, with subsequent osteomalacia [35, 36]. The electrolyte imbalance and osteomalacia cause symptoms of muscle weakness, fatigue, ostealgia, and bone fractures [37]. Acquired renal tubular defect resulting in Fanconi's syndrome have been described in association with many exogenous agents, including valproate, aminoglycosides, tetracycline, and acyclic nucleoside phosphonates [34]. Various approaches have been used for the treatment of osteomalacia associated with Fanconi's syndrome. Clarke et al. [38] reported successful treatment of osteomalacia associated with acquired Fanconi's syndrome with calcium, phosphate and vitamin D, regardless of the underlying cause of the disease. Eight cases of Fanconi's syndrome with ADVrelated hypophosphatemic osteomalacia were reported in the past 5 years [14, 16, 17, 39–41]. Three of the 8 patients were treated with oral phosphate only; while 3 other patients received oral phosphate and vitamin D, and one patient was treated with the combination of oral phosphate, vitamin D and calcium. In all cases, treatment increased serum phosphate level and improved musculoskeletal symptoms. Similar to the eight cases reported in the literature, our 2 patients showed normalization of phosphate level and symptomatic improvement after treatment. Treatment with oral phosphate for ADV-related hypophosphatemic osteomalacia is considered effective. We also examined the clinical characteristics of the 14 patients who developed persistent hypophosphatemia. Three of the 14 patients developed ostealgia during the treatment. Patients 1 and 10 were diagnosed with acquired Fanconi's syndrome with subsequent hypophosphatemic osteomalacia. Although we could not confirm the diagnosis of Fanconi's syndrome in patient 2 because she was transferred to another hospital, she was considered to have developed Fanconi's syndrome based on the clinical course. Despite persistent hypophosphatemia, serum creatinine remained within the normal range. In addition, 6 of the 14 patients also had low eGFR (≥30 % decrease relative to baseline), and two patients with Fanconi's syndrome showed ≥40 % decrease in eGFR, relative to baseline. Based on the above features, patients can develop marked hypophosphatemia and serious complications, such as Fanconi's syndrome, following significant fall in eGFR, irrespective of the level of serum creatinine. In the three patients who developed Fanconi's syndrome, a gradual increase in serum ALP level and simultaneous fall in serum uric acid were noted more than one year before the appearance of ostealgia. Based on the above findings, we recommend reducing the dose or changing medications to other nucleotide analogues in patients who develop hypouricemia, hyper-ALPemia, hypophosphatemia, and low eGFR, to avoid the development of ADV-induced Fanconi's syndrome. In our study, the dosing interval of ADV was modified by the attending physician following increase in serum creatinine level. Seventeen (5.8 %) patients required such modification, their eGFR and serum phosphate showed significant improvement at 6 and 12 months after the modification, in agreement with previous reports [13, 42]. However, the modification in ADV dosing interval from 10 mg every day to every other day neither affected HBV-DNA level nor the antiviral effect. Therefore, the ADV dose should be modified in patients who show decrease in eGFR and/or serum phosphate. In conclusion, our results showed that even at low dose of 10 mg/day, long-term combination therapy of ADV and LAM can cause renal impairment and hypophosphatemia, and lead to Fanconi's syndrome in a subgroup of patients. ADV-based treatment tends to reduce eGFR and serum phosphate especially in elderly male patients and those with HCC. We recommend regular monitoring of serum phosphate and evaluation of eGFR, in addition to serum creatinine, in patients treated with ADV. Suspicion of Fanconi's syndrome requires early reduction of ADV dose or switching to other antiviral agents. **Acknowledgments** This study was supported in part by a Grant-in-aid from the Ministry of Health, Labor and Welfare of Japan. Conflict of interest None. #### References - 1. Lee WM, Hepatitis B. Virus infection. N Engl J Med. 1997;337:1733–45. - Dienstag JL, Hepatitis B. Virus infection. N Engl J Med. 2008;359:1486–500. - 3. Lai C-L, Chien R-N, Leung NWY, Chang TT, Guan R, Tai D-I, et al. A one-year trial of lamivudine for chronic hepatitis B. N Engl J Med. 1998;339:61–8. - Chen CH, Lee CM, Lu SN, Wang JH, Tung HD, Hung CH, et al. Comparison of clinical outcome between patients continuing and
discontinuing lamivudine therapy after biochemical breakthrough of YMDD mutants. J Hepatol. 2004;41:454–61. - Suzuki F, Suzuki Y, Tsubota A, Akuta N, Someya T, Kobayashi M, et al. Mutations of polymerase, precore and core promoter gene in hepatitis B virus during 5-year lamivudine therapy. J Hepatol. 2002;37:824–30. - Suzuki F, Tsubota A, Arase Y, Suzuki Y, Akuta N, Hosaka T, et al. Efficacy of lamivudine therapy and factors associated with emergence of presistance in chronic hepatitis B virus infection in Japan. Intervirology. 2003;46:182–9. - 7. Hashimoto Y, Suzuki F, Hirakawa M, Kawamura Y, Yatsuji H, Sezaki H, et al. Clinical and virological effects of long-term (over 5 years) lamivudine therapy. J Med Virol. 2010;82:684–91. - 8. Peters MG, Hann HH, Martin P, Heathcote EJ, Buggisch P, Rubin R, et al. Adefovir dipivoxil alone or in combination with lamivudine in patients with lamivudine-resistant chronic hepatitis B. Gastroenterology. 2004;126:91–101. - Hosaka T, Suzuki F, Suzuki Y, Saitoh S, Kobayashi M, Someya T, Sezaki H, Akuta N, Arase Y, Ikeda K, Kumada H. Factors associated with the virological response of lamivudine-resistant hepatitis B virus during combination therapy with adefovir dipivoxil plus lamivudine. J Gastroenterol. 2007;42:368–74. - Rapti I, Dimou E, Mitsoula P, Hadziyannis SJ. Adding-on versus switching-to adefovir therapy in lamivudine-resistant HBeAgnegative chronic hepatitis B. Hepatology. 2007;45:307–13. - 11. Kumada H, Okanoue T, Onji M, Moriwaki H, Izumi N, Tanaka E, et al. Guidelines for the treatment of chronic hepatitis and cirrhosis due to hepatitis B virus infection for the fiscal year 2008 in Japan. Hepatol Res. 2010;40:1–7. - Izzedine H, Hulot JS, Launay-Vacher V, Marcellini P, Hadziyannis SJ, Currie G, et al. Renal safety of adefovir dipivoxil in patients with chronic hepatitis B: two double-blind, randomized, placebo-controlled studies. Kidney Int. 2004;66:1153–8. - Ha NB, Ha NB, Garcia RT, Trinh HN, Vu AA, Nguyen HA, et al. Renal dysfunction in chronic hepatitis B patients treated with adefovir dipivoxil. Hepatology. 2009;50:727–34. - Tamori A, Enomoto M, Kobayashi S, Iwai S, Morikawa H, Sakaguchi H, et al. Add-on combination therapy with adefovir dipivoxil induces renal impairment in patients with lamivudinerefractory hepatitis B virus. J Viral Hepat. 2010;17:123–9. - Kim YJ, Cho HC, Sinn DH, Gwak GY, Choi MS, Koh KC, et al. Frequency and risk factors of renal impairment during long-term adefovir dipivoxil treatment in chronic hepatitis B patients. J Gastroenterol Hepatol. 2012;27:306–12. - Jung YK, Yeon JE, Choi JH, Kim CH, Jung ES, Kim JH, et al. Fanconi's syndrome associated with prolonged adefovir dipivoxil therapy in a hepatitis B virus patient. Gut Liver. 2010;4:389–93. - 17. Law ST, Li KK, Ho YY. Nephrotoxicity, including acquired Fanconi's syndrome, caused by adefovir dipivoxil—is there a safe dose? J Clin Pharm Ther. 2012;37:128–31. - Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G. Druginduced Fanconi's syndrome. Am J Kidney Dis. 2003;41: 292–309 - Cihlar T, Ho ES, Lin DC, Mulato AS. Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides, Nucleotides Nucleic Acids. 2001;20:641–8. - Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med. 2003; 348:808–16. - Davies DF, Shock NW. Age changes in glomerular filtration rate, effective renal plasma flow, and tubular excretory capacity in adult males. J Clin Invest. 1950;29:496–507. - Lewis WH, Alvey AS. Changes with age in the renal function in adult men. I. Clearance of urea. Am J Physiol. 1938;123:500–15. - 23. Wollom GL, Gifford RW. The kidney as a target organ in hypertension. Geriatrics. 1976;31:71–9. - Lindeman RD, Tobin JD, Shock NW. Association between blood pressure and the rate of decline in renal function with age. Kidney Int. 1984;26:861–8. - Dronavalli S, Duka I, Bakris GL. The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab. 2008;4:444–52. - Ginès P, Schrier RW. Renal failure in cirrhosis. N Engl J Med. 2009;361:1279–90. - 27. Kahn J, Lagakos S, Wulfsohn M, Cherng D, Miller M, Cherrington J, et al. Efficacy and safety of adefovir dipivoxil with - antiretroviral therapy: a randomized controlled trial. JAMA. 1999;282:2305–12. - 28. Hadziyannis SJ, Tassopoulos NC, Heathcote EJ, Chang TT, Kitis G, Rizzetto M, et al. Long-term therapy with adefovir dipivoxil for HBeAg-negative chronic hepatitis B. N Engl J Med. 2005;352:2673–81. - Gara N, Zhao X, Collins MT, Chong WH, Kleiner DE, Jake Liang T, et al. Renal tubular dysfunction during long-term adefovir or tenofovir therapy in chronic hepatitis B. Aliment Pharmacol Ther. 2012;35:1317–25. - Amanzadeh J, Jr. Reilly RF. Hypophosphatemia: an evidencebased approach to its clinical consequences and management. Nat Clin Pract Nephrol. 2006;2:136–48. - 31. Bushinsky DA, Monk RD. Electrolyte quintet: calcium. Lancet. 1998;352:306–11. - 32. Weisinger JR, Bellorín-Font E. Magnesium and phosphorus. Lancet. 1998;352:391–6. - Cirillo M, Ciacci C, De Santo NG. Age, renal tubular phosphate reabsorption, and serum phosphate levels in adults. N Engl J Med. 2008;359:864–6. - 34. Izzedine H, Launay-Vacher V, Isnard-Bagnis C, Deray G. Druginduced Fanconi's syndrome. Am J Kidney Dis. 2003;41:292–309. - 35. Kim DH, Sung DH, Min YK. Hypophosphatemic osteomalacia induced by low-dose adefovir therapy: focus on manifestations in the skeletal system and literature review. J Bone Miner Metab. 2012;14. - 36. Carpenter TO. The expanding family of hypophosphatemic syndromes. J Bone Miner Metab. 2012;30:1–9. - 37. Laing CM, Toye AM, Capasso G, Unwin RJ. Renal tubular acidosis: developments in our understanding of the molecular basis. Int J Biochem Cell Biol. 2005;37:1151–61. - Clarke BL, Wynne AG, Wilson DM, Fitzpatrick LA. Osteomalacia associated with adult Fanconi's syndrome: clinical and diagnostic features. Clin Endocrinol. 1995;43:479–90. - 39. Wong T, Girgis CM, Ngu MC, Chen RC, Emmett L, Archer KA, et al. Hypophosphatemic osteomalacia after low-dose adefovir dipivoxil therapy for hepatitis B. J Clin Endocrinol Metab. 2010;95:479–80. - Girgis CM, Wong T, Ngu MC, Emmett L, Archer KA, Chen RC, Seibel MJ. Hypophosphataemic osteomalacia in patients on adefovir dipivoxil. J Clin Gastroenterol. 2011;45:468–73. - 41. Kim DH, Sung DH, Min YK. Hypophosphatemic osteomalacia induced by low-dose adefovir therapy: focus on manifestations in the skeletal system and literature review. J Bone Miner Metab. 2012; Epub ahead of print. - 42. Ozeki I, Karino Y, Akaike J, Kimura R, Arakawa T, Nakashima T, et al. Renal dysfunction in chronic hepatitis B patients treated with adefovir dipivoxil. Kanzo. 2011;52:102–11. # ORIGINAL ARTICLE-LIVER, PANCREAS, and BILIARY TRACT # Long-term efficacy and emergence of multidrug resistance in patients with lamivudine-refractory chronic hepatitis B treated by combination therapy with adefovir plus lamivudine Fumitaka Suzuki · Tetsuya Hosaka · Yoshiyuki Suzuki · Norio Akuta · Hitomi Sezaki · Tasuku Hara · Yusuke Kawamura · Masahiro Kobayashi · Satoshi Saitoh · Yasuji Arase · Kenji Ikeda · Mariko Kobayashi · Sachiyo Watahiki · Rie Mineta · Hiromitsu Kumada Received: 25 March 2013/Accepted: 27 July 2013 © Springer Japan 2013 #### **Abstract** Background Few studies have investigated the emergence of multidrug resistance to adefovir dipivoxil (ADV) plus lamivudine (LAM) combination therapy for patients with LAM-refractory chronic hepatitis B (CHB). In this retrospective study, we investigated the long-term clinical course of these patients with or without multidrug resistance mutations. Methods We analyzed 406 Japanese patients with LAM-refractory CHB treated with combination therapy with follow-up for a median of 5.4 (0.5–9.5) years. Multidrug resistance of hepatitis B virus (HBV) DNA was analyzed using direct sequencing or cloning methods at baseline and viral breakthrough or insufficient decline during combination therapy. Results Ratio of patients with undetectable serum HBV DNA levels (<2.6 log copies/mL) during combination therapy was 63, 72, 75, 79, 82, 80 and 85 % at years 1 through 7, respectively. Substitutions associated with multidrug resistance were identified in 11 patients (2.7 %) **Electronic supplementary material** The online version of this article (doi:10.1007/s00535-013-0864-4) contains supplementary material, which is available to authorized users. F. Suzuki (☒) · T. Hosaka · Y. Suzuki · N. Akuta · H. Sezaki · T. Hara · Y. Kawamura · M. Kobayashi · S. Saitoh · Y. Arase · K. Ikeda · H. Kumada Department of Hepatology, Toranomon Hospital, 2-2-2 Toranomon, Minato-ku, Tokyo 105-8470, Japan e-mail: fumitakas@toranomon.gr.jp F. Suzuki Okinaka Memorial Institute for Medical Research, Tokyo, Japan M. Kobayashi · S. Watahiki · R. Mineta Research Institute for Hepatology, Toranomon Hospital, Tokyo, Japan at baseline, and in 12 patients (3 %) during therapy. HBV DNA levels of patients with rtA181S mutation at baseline and emergence of rtA181T + rtN236T double mutation or a wide variety of mutations during combination therapy could not be suppressed. Moreover, using ultra-deep sequencing, rtA181T/V mutations were detected at baseline in 7 of 10 patients with emergent multidrug resistance during combination therapy, although 6 of these 7 patients had very low frequency (<1 %) variants. Conclusion Long-term ADV plus LAM combination therapy is effective in LAM-refractory patients. However, HBV DNA levels of the patients with multidrug resistance at baseline or during combination therapy sometimes could not achieve complete suppression or were re-elevated after a decrease. **Keywords** Adefovir dipivoxil · Lamivudine · Hepatitis B virus · Ultra-deep sequence · Multidrug resistance #### Abbreviations | HBV | Hepatitis B virus | |-------
-------------------------------------| | IFN | Interferon | | NA | Nucleoside/nucleotide analogues | | LAM | Lamivudine | | ADV | Adefovir dipivoxil | | ETV | Entecavir | | TDF | Tenofovir disoproxil fumarate | | CHB | Chronic hepatitis B | | HBeAg | Hepatitis B e antigen | | ALT | Alanine aminotransferase | | HBsAg | Hepatitis B surface antigen | | PCR | Polymerase chain reaction | | CLEIA | Chemiluminescent enzyme immunoassay | | rt | Reverse transcriptase | Published online: 09 August 2013 VBT Viral breakthrough AST Aspartate aminotransferase CI Confidence interval Pt Patient #### Introduction Hepatitis B virus (HBV) infection is a common disease that can induce a chronic carrier state, and is associated with the risk of developing progressive disease and hepatocellular carcinoma [1]. Interferon (IFN) and several nucleoside/nucleotide analogues (NA) such as lamivudine (LAM), adefovir dipivoxil (ADV), entecavir (ETV), and tenofovir disoproxil fumarate (TDF) are currently approved for treatment of chronic hepatitis B (CHB) in most countries [2–8]. Successful treatment of CHB with clearance of hepatitis B e antigen (HBeAg), reduction in serum HBV DNA levels, and normalization of alanine aminotransferase (ALT) levels are associated with favorable long-term outcomes, independent of the antiviral drug used [9–11]. LAM is effective in suppressing HBV replication, improving transaminase levels and liver histology, and enhancing the rate of loss of HBeAg. A major problem with the long-term use of lamivudine, however, is its potential to induce viral resistance, with associated increases in HBV DNA and serum transaminases [3, 12, 13]. ADV is reportedly effective in suppressing HBV replication and is approved as a standard therapy in LAM-resistant patients in Japan [14, 15]. However, data concerning the long-term efficacy of ADV treatment in LAM-resistant CHB patients remain limited. Although both experimental and clinical studies have shown that ADV suppresses not only wild-type but also LAM-resistant strains, the potential for ADV-resistance mutation has emerged. Selection of the rtA181V/T or rtN236T mutant was associated with ADV [13, 16]. Moreover, we previously reported that the emergence of ADV-resistant mutations before and during combination therapy for a period of 2 years was rare [17]. However, ADV-resistant mutations emerging before and during combination therapy might be caused by a poor response to therapy. Moreover, long-term clinical and virological data concerning ADV- or ETV-resistant mutations in LAM-resistant CHB patients receiving long-term ADV plus LAM combination therapy are limited. The aims of this study were to evaluate the long-term efficiency of ADV plus LAM combination therapy based on virological response (VR), HBeAg clearance, and Hepatitis B surface antigen (HBsAg) clearance, and to investigate the emergence of ADV-, ETV-, or TDF- resistant (or multidrug resistant) mutations before and during combination therapy, and the clinical course of these patients. #### Patients and methods #### **Patients** A total of 406 consecutive adult Japanese patients with chronic HBV infection were treated with ADV in addition to ongoing LAM treatment from 2002 at Toranomon Hospital (Table 1). Several of these patients were included in previous reports [14, 15, 17, 18]. Enrollment in this study and the start of ADV treatment were determined by the following criteria. First, an increase in serum HBV DNA levels of ≥ 1 log copies/mL during LAM treatment compared with the nadir of initial antiviral efficacy on at least two consecutive occasions, or a serum HBV DNA level of ≥5 log copies/mL after 1 year of LAM monotherapy; and second, no history of treatment with other NAs such as ETV or TDF. Exclusion criteria were a serum creatinine level ≥1.2 mg/dL; coinfection with hepatitis C virus or HIV; and history of other liver diseases, such as autoimmune hepatitis, alcoholic liver disease, or metabolic liver disease. The study was conducted in accordance with the ethical principles of the Declaration of Helsinki and was approved by the Toranomon Hospital Ethical Table 1 Characteristics of patients at the commencement of adefovir dipivoxil plus lamivudine combination therapy | Demographic data | | |--|--------------------| | Total number | 406 | | Sex (female/male) | 86/320 | | Age, years (range) | 48 (25–78) | | Duration of treatment, years (range) | 5.4 (0.5–9.5) | | History of IFN therapy (+/-) | 157/249 | | Laboratory data | | | Aspartate aminotransferase, IU/L (range) | 54 (12–1413) | | Alanine aminotransferase, IU/L (range) | 76 (9–1563) | | Bilirubin, mg/dL (range) | 0.7 (0.2–15.5) | | Albumin, g/dL (range) | 3.9 (1.9-4.7) | | Platelets, $\times 10^3/\mu L$ (range) | 160 (28–452) | | Staging of liver histology (CH/LC) | 325/81 | | Serum HBV DNA, log copies/mL (range) | 6.7 (<2.6 to >7.6) | | HBeAg, positive/negative/unknown | 208/193/5 | | HBV genotype (A/B/C/D/F) | 14/25/364/2/1 | | rtM204 mutant (%) | 365 (90 %) | Values are expressed as the median and range in parentheses, or number and percentage in parentheses IFN interferon, HBV hepatitis B virus, CH chronic hepatitis, LC liver cirrhosis, HBeAg hepatitis B e antigen Committee (approval no. 714). Informed consent was obtained from all patients. Patients received a single daily oral administration of ADV 10 mg, in addition to ongoing LAM treatment (100 mg/day). The dosing interval of ADV was modified by the attending physician when serum creatinine level increased to >1.2 mg/dl. Liver cirrhosis was defined by the presence of stage 4 fibrosis on histopathological examination and/or clinical evidence of portal hypertension. # Blood tests and serum viral markers Routine biochemical tests were performed using standard procedures before and during therapy at least once every 3 months. Levels of HBsAg, HBeAg, and anti-HBe were determined using radioimmunoassay kits (Abbot Diagnostics, Chicago, IL, USA) or Chemiluminescent enzyme immunoassay (CLEIA; Lumipulse System, Fujirebio, Inc. Tokyo, Japan). Serum HBV DNA was quantified using the polymerase chain reaction (PCR)-based Amplicor HBV Monitor assay (Roche Diagnostics, Indianapolis, IN; lower limit of detection, 2.6 log copies/mL). # Determination of nucleotide sequences of HBV DNA DNA was extracted from 100 µL of serum. PCR reactions for detection of the reverse transcriptase (rt) region (nt 130-1161) of HBV DNA were performed in two parts. The first and second PCR reactions for detection of the first part of the rt region were performed using primers BGF1 (sense; 5'-CTGTGGAAGGCTGGCATTCT-3') and BGR2 (antisense; 5'-GGCAGGATAGCCGCATTGTG-3'), and 5'-CTTGGGATCCAGAGCTAC PreSBamH1 (sense; AGCATGG-3') and BR112 (antisense; 5'-TTCCGTCG ACATATCCCATGAAGTTAAGGGA-3'), respectively, under conditions of initial denaturation for 4 min, 35 cycles of amplification with 94 °C for 1 min, 55 °C for 2 min, 72 °C for 3 min, and a final extension at 72 °C for 7 min. The first and second PCR reactions for detection of the second part of the same region were performed using primer pairs B11F (sense; 5'-GGCCAAGTCTGTACAA CATC-3') and B12R (antisense; 5'-TGCAGAGGTG AAGCGAAGTG-3'), and B11F and B14R (antisense; 5'-GATCCAGTTGGCAGCACCC-3'), respectively, under the same conditions. The amplified PCR products were used for direct sequencing or cloning methods as previously described [19, 20]. When mutations as a mixed viral population with the wild type sequence for direct sequencing were present, PCR was performed using a cloning method. Sequences of 9-26 independent clones from the sample were determined and analyzed. Measurement of sequences in the rt region was performed at the start of ADV treatment, and on viral breakthrough (VBT) during ADV plus LAM combination therapy. VBT was defined as any increase in serum HBV-DNA by >1 log copies/mL from the nadir or redetection of serum HBV-DNA at levels tenfold the lower limit of detection of the HBV-DNA assay after having an undetectable result. Moreover, sequences for serum HBV DNA level of \geq 4 log copies/mL after 1 or 2 years of ADV plus LAM combination therapy were also measured. Measurement of LAM-, ADV-, ETV- and TDF-resistant variants using ultra-deep sequencing Ultra-deep sequencing was performed using the Ion Personal Genome Machine (PGM) Sequencer (Life Technologies), as described previously [21]. An Ion Torrent adapter-ligated library was prepared using an Ion Xpress Plus Fragment Library Kit (Life Technologies). Briefly, 100 ng of fragmented genomic DNA was ligated to the Ion Torrent adapters P1 and A. The adapter-ligated products were nick-translated and PCR-amplified for a total of eight cycles. Subsequently, the library was purified using AM-Pure beads (Beckman Coulter, Brea, CA) and the concentration was determined using the StepOne Plus Real Time PCR (Life Technologies) and Ion Library Quantitation Kit in accordance with the manufacturer's instructions. Emulsion PCR was performed using Ion OneTouch (Life Technologies) in conjunction with an Ion OneTouch 200 Template Kit v2 (Life Technologies). Enrichment for templated ion spheres particles (ISPs) was performed using the Ion OneTouch Enrichment System (Life Technologies) in accordance with the manufacturer's instructions. Templated ISPs were loaded onto an Ion 314 chip and subsequently sequenced using 130 sequencing cycles in accordance with the Ion PGM 200 Sequencing Kit user guide. Total output read length per run is over 10 M base (0.5 M-tag, 200 base read). The results were analyzed with the CLC Genomics Workbench software (CLCbio, Aarhus, Denmark). A control experiment was included to validate the error rates in ultra-deep sequencing of the viral genome. In this study, amplification products of the secondround PCR were ligated with plasmid and transformed in Escherichia coli in a cloning kit (TA Cloning; Invitrogen, Carlsbad, CA). A plasmid-derived rt sequence was determined
as the template by the control experiment. Coverage per position for aa180, aa181, aa184, aa194, aa202, aa204, aa233, aa236 and aa250 in the rt region was 63320, 63890, 67737, 49273, 57410, 57211, 40155, 34801 and 42914, respectively. Thus, using the control experiment based on the plasmid encoding rt sequence, amino acid mutations were defined as amino acid substitutions at a ratio of more than 0.25 % of total coverage. This frequency ruled out putative errors caused by the deep sequence platform used in this study. ## HBV genotype The major genotypes of HBV were determined using the enzyme-linked immunosorbent assay (ELISA, Institute of Immunology, Tokyo, Japan) or the PCR-invader assay (BML, Inc, Tokyo, Japan) according to the method described by Usuda et al. [22] or Tadokoro et al. [23]. #### Statistical analysis Differences between groups were examined for statistical significance using the χ^2 or Fisher's exact test where appropriate. Independent risk factors predicting the achievement of HBeAg seroclearance were studied using stepwise Cox regression analysis. The following 14 potential predictors of HBeAg seroclearance were assessed in this study: age, sex, pretreatment with IFN, severity of liver disease (CH or liver cirrhosis), duration from LAM to ADV, substitution of rtM204, HBV genotype, and levels of aspartate aminotransferase (AST), ALT, bilirubin, albumin, γ-glutamyl transpeptidase, platelets, and HBV DNA. Each was transformed into categorical data consisting of two simple ordinal numbers for univariate and multivariate analyses. All factors found to be at least marginally associated with HBeAg seroclearance (P < 0.10) were tested in the multivariate Cox proportional hazards model, and hazard ratios and 95 % confidence intervals (CIs) were calculated to assess the relative risk confidence. The above calculations were performed using the Windows IBM SPSS version 19.0.0 software (IBM Corp., Armonk, NY, USA). A Kaplan-Meier estimate was also performed using the SPSS software. #### Results #### Study population Clinical and virological profiles of the 406 patients at the start of ADV plus LAM combination therapy are shown in Table 1. At the start of combination therapy, 81 patients (20 %) had cirrhosis and 208 (51 %) were positive for HBeAg. Fourteen (3 %), 25 (6 %), 364 (90 %), 2 (0.5 %), and 1 (0.2 %) patients were infected with HBV genotypes A, B, C, D, and F, respectively. During the clinical course, 48 of 406 patients (12 %) showed an elevation in serum creatinine >1.2 mg/dL, and their ADV dose was accordingly reduced to 10 mg every second day. # Response to ADV plus LAM combination therapy The ratio of patients with undetectable serum HBV DNA levels (<2.6 log copies/mL) was 63 % (231/367), 72 % (254/352), 75 % (249/331), 79 % (235/297), 82 % (210/256), 80 % (137/171), and 85 % (94/110) at years 1 through 7, respectively (Fig. 1a). Among HBeAg-positive patients at baseline, undetectable rates of serum HBV DNA levels gradually increased from 1 to 7 years (42, 57, 65, 70, 76, 75, 83 % at years 1 through 7, respectively; n = 208). In contrast, ratios in HBeAg-negative patients at baseline were >80 % at all points (86, 89, 88, 90, 91, 87, 89 % at years 1 through 7, respectively; n = 193). The undetectable rates of serum HBV DNA in HBeAg-negative patients **Fig. 1** Undetectable serum HBV DNA levels (<2.6 log copies/mL) in years 1 through 7, respectively. **a** All patients. **b** HBeAg status. A *single asterisk* indicates a statistical significance of P < 0.0001 and a *double asterisk* indicates P = 0.0044, as determined at the χ^2 test. **c** Genotypes A, B and C were significantly higher than those in HBeAg-positive patients at years 1 through 5 (P < 0.0001 at years 1 through 4, and P = 0.0044 at year 5) (Fig. 1b). By genotype, serum HBV DNA levels were undetectable after 3 years in 100 % of those with genotype A (54, 82, 100, 100, 100, 100, 100 % at years 1 through 7, respectively; n=14), and in >80 % after 2 years in those with genotype B (65, 86, 85, 94, 100, 83, 80 %, at years 1 through 7, respectively; n=25). In contrast, ratios in patients with genotype C gradually increased from 1 to 7 years (63, 71, 74, 78, 80, 80, 86 %, at years 1 through 7, respectively; n=364) (Fig. 1c). Moreover, the ratio of patients with ALT normalization (\leq 30 IU/L) was 66 % (250/380), 73 % (262/358), 78 % (255/327), 77 % (226/292), 77 % (194/251), 76 % (125/165), and 77 % (81/105) at years 1 through 7, respectively. #### HBeAg clearance Eighty-four of 208 HBeAg-positive patients (40 %) achieved seroclearance of HBeAg. Cumulative HBeAg seroclearance rates from the commencement date of ADV plus LAM combination therapy were 13 % at 1 year, 24 % at 3 years, 35 % at 5 years, and 52 % at 7 years (Kaplan-Meier method; Supplementary Figure). No patients experienced the reappearance of HBeAg after seroclearance. Six factors found to be associated with the achievement of HBeAg seroclearance in univariate analysis were: AST upper limit of normal (ULN: 30 IU/L) \times 2<(P = 0.017), 1.1 < mg/dL (P = 0.020), ALT $\langle (P = 0.040), \text{ history of IFN therapy } (P = 0.068), \text{ plate-}$ lets $150 < \times 10^3 \,\mu\text{L}$ (P = 0.074), and non C genotype (P = 0.081). In multivariate analysis, independent factors predicting the achievement of HBeAg seroclearance were history of IFN therapy (P = 0.009), AST (P = 0.016), bilirubin (P = 0.030),and genotype (P = 0.042)(Table 2). #### HBsAg clearance Eight of 406 patients (1.9 %) achieved seroclearance of HBsAg (Supplementary Table). All patients were older than 40 years, and all but one was male. Three, two, and three patients were infected with HBV genotypes A, B, C, respectively; two patients were HBeAg-positive at baseline of combination therapy; and five patients had a history of IFN therapy. The duration of HBsAg seroclearance was 2.1–6.8 years. Genotypic analysis of ADV- and ETV-resistant mutants at baseline of combination therapy and clinical course Genotypic resistance to LAM, ADV, ETV or TDF was analyzed in baseline samples before the start of ADV plus LAM combination therapy. Substitutions were assessed by direct sequencing or cloning, namely those at rtL180 or rtM204 associated with LAM resistance; rtA181, rtI233, or rtN236 associated with ADV resistance; rtT184, rtS202, or rtM250 associated with ETV resistance; and rtA194 associated TDF resistance. At baseline, substitutions associated with resistance to ADV or ETV were identified in 11 patients (2.7 %) (Table 3). RtA181S/T mutations without substitution at rtM204 were identified in four patients, whereas rtA181T mutation with substitution at rtM204 on the same clones was identified in three patients. RtA181T mutation and rtM204V/I mutation, which existed together on other clones, was identified in two patients. Substitutions related with ETV resistance were identified in the remaining two patients. All but one (Pt. 11) patient was HBeAg-positive and most were younger (<40 years old) and had a high viral load at baseline of LAM therapy. In the remaining 395 patients, rtM204 mutations without substitutions associated with resistance to ADV, ETV or TDF were identified in 358 patients, whereas 37 patients had no substitutions associated with resistance to LAM, ADV, ETV or TDF. Table 2 Factors associated with HBeAg seroclearance due to ADV plus LAM combination therapy on univariate and multivariate analyses | Parameter | Univariate analysis | | Multivariate analysis | | |--|------------------------|-------|------------------------|-------| | | Hazard ratio (95 % CI) | P | Hazard ratio (95 % CI) | P | | AST (≤UNL×2/UNL×2<) | 1.717 (1.102–2.676) | 0.017 | 1.750 (1.112–2.754) | 0.016 | | Bilirubin (≤1.1/1.1<) | 1.783 (1.095–2.903) | 0.020 | 1.743 (1.056–2.876) | 0.030 | | ALT (≤UNL×3/UNL×3<) | 1.577 (1.008–2.468) | 0.040 | | | | History of IFN therapy $(-/+)$ | | 0.068 | 1.824 (1.164–2.857) | 0.009 | | Platelets ($\leq 150 \times 10^3 / 150 \times 10^3 <$) | | 0.074 | | | | Genotype (C/non C) | | 0.081 | 2.096 (1.025–4.274) | 0.042 | HBeAg hepatitis B e antigen, ADV adefovir dipivoxil, LAM lamivudine, CI confidence interval, AST aspartate aminotransferase, UNL upper limit of normal: 30 IU/L, ALT alanine aminotransferase, IFN interferon Table 3 Characteristics of patients with resistance to ADV, ETV or TDF at baseline of ADV plus LAM combination therapy | No. | Base | line of | LAM thera | ру | | Baseline of ADV plus LAM combination therapy | | | | | |-----|------|---------|-----------|-------|------------------|--|---|--|--|--| | | Age | Sex | Genotype | HBeAg | HBV DNA
level | Mutation type (rt region) | Duration from start of LAM to emergence of mutation (years) | | | | | 1 | 29 | M | С | + | 7.6< | A181S | 3.3 | | | | | 2 | 32 | M | C | + | 7.6< | A181T | 1.3 | | | | | 3 | 23 | M | C | + | 7.6 | A181T | 2 | | | | | 4 | 34 | M | C | + | nd | A181T | 5 | | | | | 5 | 35 . | M | C | + | 7.6< | A181T (17/19), L180M + M204V (2/19) | 1 | | | | | 6 | 37 | M | C | + | 6.5 | A181T (7/24), M204I (15/24),
L180M + M204V (2/24) | 1.3 | | | | | 7 | 51 | M | C | + | 7.4 | A181T + M204I | 1.3 | | | | | 8 | 38 | F | C | + | nd | A181T + M204I (7/13), M204I (6/13) | 4 | | | | | 9 | 33 | M | С | + | nd | A181T + M204I (10/21),
A181T + M204V(1/21), M204I (10/21) | 1.3 | | | | | 10 | 25 | F | D | + | nd | L180M + S202G + M204V | 5 | | | | | 11 | 31 | F | C | | 7.6< | L180M + M204V + M250L | 6 | | | | No. of clones with combined mutations in rt region/total clones are shown in parentheses ADV adefovir dipivoxil, ETV entecavir, TDF tenofovir disoproxil fumarate, LAM lamivudine, HBV hepatitis B virus, HBeAg hepatitis B e antigen, nd not done, rt reverse transcriptase, M male, F female Following ADV plus LAM combination therapy, HBV DNA
levels of four patients (Pt. 5, 6, 8, 10) were undetectable (<2.6 log copies/mL) (Fig. 2a), while those of the remaining seven were $\geq 2.6 \log \text{copies/mL}$. One patient (Pt. 7) achieved HBeAg clearance at 2 weeks, while HBeAg reappeared in a second patient (Pt. 11) at 40 weeks. Ratios of patients with undetectable levels of HBV DNA were 9 % (1/11) at 1 year, 22 % (2/9) at 2 years and 50 % (4/8) at 3 years. Three patients (Pt. 1, 2, 9) received TDF plus LAM or TDF plus ETV therapy after ADV plus LAM combination therapy due to insufficient virological response. Mutations of rtA181T + rtM204I, rtA181T + rtM204V and rtM204I in Pt. 9 changed to rtA181T + rtN236T and rtL180V + rtM204V after 3 years of combination therapy, and HBV DNA level was again thereafter elevated. Genotypic analysis of ADV- and ETV-resistant mutants during combination therapy and clinical course Genotypic resistance to ADV, ETV or TDF was analyzed during ADV plus LAM combination therapy in 395 patients without ADV- or ETV-resistant mutants at baseline. During combination therapy, substitutions associated with resistance to ADV or ETV were identified in 12 patients (3 %) (Table 4). All patients were genotype C and had a high viral load (>5.0 log copies/ml) at baseline of combination therapy. Substitutions of rtM204 were identified in all but one patient (Pt. 19) at baseline. RtA181V/S/ Fig. 2 Clinical course (HBV DNA load) of patients. a Patients with resistance associated with ADV or ETV at baseline of ADV plus LAM combination therapy. b Patients with resistance associated with ADV or ETV during ADV plus LAM combination therapy Table 4 Characteristics of patients with emergence of resistance to ADV, ETV or TDF during ADV plus LAM combination therapy | No. | Basel | ine of | ADV plus | LAM com | bination | therapy | During ADV plus LAM combination therapy | | | | |-----|-----------|--------|----------|---------|---------------------|--------------------------|---|--|--|--| | | Age Sex (| | Genotype | HBeAg | HBV
DNA
level | rtM204
mutant
type | Mutation type(rt) | Duration from start of ADV + LAM to emergence of mutations (years) | | | | 12 | 32 | М | С | + | 7.6 | M204I/
V | A181T + N236T (12/16), L180M + N236T (1/16),
A181T (1/16), L180M + A181T + M204V (1/16),
L180M + M204V + N236T (1/16) | 1 | | | | 13 | 29 | M | C | + | 7.6 | M204I/
V | A181T + M204I + M250L (13/18),
L180M + M204V + M250L (2/18), | 5 | | | | | | | | | | | L180M + T184I + M204I + M250L(1/18),
L180M + M204I + M250L(1/18),
A181T + M204I (1/18) | | | | | 14 | 58 | M | С | + | 7.6 < | M204I | L180M + T184I + M204I + M250L(16/26),
L180M + T184I + M204I(6/26), A181T(4/26), | 3.5 | | | | 15 | 49 | M | C | + | 5.1 | M204I/
V | A181V + M250L | 5 | | | | 16 | 46 | M | C | + | 7.6 | M204V | A181T + N236T | 3 | | | | 17 | 30 | F | C | + | 7.4 | M204I | A181T | 0.2 | | | | 18 | 40 | M | C | + | 6.9 | M204I | A181S | 4 | | | | 19 | 40 | M | C | + | 5.3 | M204 | A181S | 2.3 | | | | 20 | 49 | M | C | + | 7.6 | M204V | A181V | 0.1 | | | | 21 | 63 | M | C | | 5.8 | M204I | A181T(10/11), A181T + M204I(1/11) | 2 | | | | 22 | 56 | M | C | | 6.4 | M204V | A181S | 0.6 | | | | 23 | 36 | M | С | + | 7.4 | M204I | M180M + A181T(5/9),
L180M + A181T + M204I + M250I (3/9),
L180M + M204I + M250I(1/9) | 1 | | | No. of clones with combined mutations in the rt region/total clones are shown in parentheses ADV adefovir dipivoxil, ETV entecavir, TDF tenofovir disoproxil fumarate, LAM lamivudine, HBV hepatitis B virus, HBeAg hepatitis B e antigen, rt reverse transcriptase, M male, F female T mutation with or without substitution at rtM204 was identified in all patients, whereas rtT184I or rtM250I/L mutation with or without substitution at rtM204 was identified in 4 patients. Moreover, rtA181T + N236T double mutation related with ADV resistance was identified in two patients (Pt. 12 and 16). Interestingly, substitutions of rtM204 were not detected in five patients (Pt 15, 17, 18, 19, 22) when these ADV- or ETV-related mutations emerged. Following ADV plus LAM combination therapy, the ratio of patients with undetectable levels of HBV DNA was 0 % (0/12) at 1 year, 25 % (3/12) at 2 years, 27 % (3/11) at 3 years, and 20 % (2/10) at 4 years (Fig. 2b). The HBV DNA levels of five patients (Pt. 12–16) were re-elevated after a decrease, and these patients were then switched to a different treatment (TDF plus LAM or TDF plus ETV in four patients and ETV plus ADV in one). Two of these five patients (Pt. 12 and 16) had rtA181T + rtN236T double mutation-related ADV resistance, while three (Pt. 12–14) had a wide variety of mutations. In contrast, HBV DNA levels of patients who had HBeAg clearance (Pt. 17–19, 23) during ADV plus LAM combination therapy were sustained at \leq 5 Log copies/mL after 1 year, and only three patients (Pt. 19, 21, 22) showed sustained levels of \leq 2.6 Log copies/mL after 4 years. Evolution of LAM-, ADV-, ETV- and TDF-resistant variants using ultra-deep sequencing In 10 of 12 patients with emergent substitutions associated with resistance to ADV or ETV during combination therapy, LAM-, ADV-, ETV- and TDF-resistant variants were analyzed by ultra-deep sequencing at baseline (Table 5). Patients 13 and 20 could not be analyzed due to insufficient stored serum. RtA181T/V mutations were detected in all 7 patients by ultra-deep sequencing at baseline, although 6 of these 7 patients had very low frequency (<1 %) variants. Interestingly, rtA181S mutation in 3 patients could not be Table 5 Detection of resistance to ADV, ETV or TDF by ultra-deep sequencing at baseline in patients with emergence of resistance during ADV plus LAM combination therapy | No. | Baseline of Al | DV plus LAM co | mbination therap | y (ultra-deep sec | quencing) | | | | | During therapy Mutation type(rt) | |-----|----------------|----------------|------------------|-------------------|------------|------------|------------|------------|-----------------------|-----------------------------------| | | rtL180 | rtA181 | rtT184 | rtA194 | rtS202 | rtM204 | rtI233 | rtN236 | rtM250 | | | 12 | L (50.7 %) | A (96.4 %) | T (99.9 %) | A (99.9 %) | S (99.9 %) | I (59.1 %) | I (99.8 %) | N (99.9 %) | M (99.8 %) | A181T, | | | M (49 %) | T (3.5 %) | | | | V (34.5 %) | | | | N236T | | 14 | L (81.2 %) | A (99.4 %) | T (99.9 %) | A (99.7 %) | S (99.8 %) | I (99.6 %) | I (99.7 %) | N (99.8 %) | M (99.5 %) | A181T, T184I, | | | M (15.6 %) | T (0.56 %) | | | | | | | I (0.38 %) | M250L | | 15 | L (75.3 %) | A (97.5 %) | T (99.7 %) | A (99.7 %) | S (99.7 %) | I (70.6 %) | I (99.7 %) | N (99.8 %) | M (99.6 %) | A181V, | | | M (24.4 %) | S (1.5 %) | | | | V (27.2 %) | | | | M250L | | | | V (0.75 %) | | | | | | | | | | 16 | M (99.3 %) | A (99.7 %) | T (99.9 %) | A (99.7 %) | S (99.8 %) | V (99.5 %) | I (99.7 %) | N (99.8 %) | M (99.4 %) I (0.51 %) | A181T | | | L (0.26 %) | T (0.27 %) | | T (0.27 %) | | | | | | | | 17 | L (99.8 %) | A (99.7 %) | T (99.9 %) | A (99.9 %) | S (99.9 %) | I (80.3 %) | I (99.7 %) | N (99.8 %) | M (99.7 %) | A181T | | | | T (0.25 %) | | | | M (19.5 %) | | | | | | 18 | L (87.9 %) | A (98.7 %) | T (99.9 %) | A (99.4 %) | S (99.5 %) | I (98.2 %) | I (99.7 %) | N (99.8 %) | M (98.9 %) | A181S | | | M (11.9 %) | T (1.3 %) | | T (0.55 %) | | V (1.7 %) | | | I (0.97 %) | | | 19 | L (99.8 %) | A (98.8 %) | T (99.9 %) | A (99.8 %) | S (99.8 %) | M (99.5 %) | I (99.6 %) | N (99.7 %) | M (99.6 %) | A181S | | | | T (0.89 %) | | | | | | | | | | 21 | L (98.8 %) | A (98.2 %) | T (99.9 %) | A (99.8 %) | S (99.8 %) | I (72.3 %) | I (99.6 %) | N (99.7 %) | M (99.6 %) | A181T | | | M (0.96 %) | V (0.99 %) | | | | M (27.0 %) | | | | | | | | S (0.48 %) | | | | V (0.49 %) | | | | | | | | T (0.35 %) | | | | | | | | | | 22 | M (99.4 %) | A (99.8 %) | T (99.8 %) | A (99.8 %) | S (99.8 %) | V (99.8 %) | I (99.6 %) | N (99.8 %) | M (99.6 %) | A181S | | 23 | L (87.5 %) | A (99.1 %) | T (99.9 %) | A (99.9 %) | S (99.8 %) | I (99.4 %) | I (99.8 %) | N (99.8 %) | M (99.6 %) | A181T, M250I | | | M (12.3 %) | T (0.81 %) | | | | M (0.48 %) | | | I (0.31 %) | | Bold values indicate emergent substitutions during combination therapy ADV adefovir dipivoxil, ETV entecavir, TDF tenofovir disoproxil fumarate, LAM lamivudine, rt reverse transcriptase detected at baseline. In contrast, rtT184I, rtN236T or M250I/L mutations were detected in 1 of 4 patients with emergent mutations during combination therapy. #### Discussion Although ADV plus LAM combination therapy is a standard rescue treatment for patients with LAM-refractory HBV, the virological benefits of long-term therapy have not yet been fully assessed. Here, we evaluated the longterm efficacy of ADV plus LAM combination therapy in 406 LAM-refractory patients over a median follow-up period of 5.4 years. We also investigated baseline factors associated with HBeAg clearance and HBsAg clearance. We found long-term combination therapy produced a gradual virological improvement. In particular, virological response was higher in patients who were HBeAg-negative at baseline, and genotype A and B. Toyama et al. [24] recently evaluated the long-term (median 41 months, 158 patients) efficacy of add-on ADV treatment for patients with LAM-resistant HBV and reported a rate of virological response of 90.8 % at 4 years. Inoue et al. [25] reported that HBV-DNA levels were undetectable (<2.6 log copies/ mL) on long-term ADV plus LAM combination therapy (median 47 months; 28 patients, including 7 genotype B) in 56, 80, 86, and 92 % of patients at 12, 24, 36, and 48 months, respectively, whereas Aizawa et al. [26] reported undetectable levels on the same long-term regimen (median 46 months, 72 patients) in 61, 74, 81, 84, and 85 % at 12, 24, 36, 48, and 60 months, respectively, a pattern
of response that was similar to our present findings. These differences in virologic response among these Japanese studies might have been due to treatment duration, genotype, or number of patients. Nevertheless, all these long-term studies in Japanese showed a gradual increase in virological response rate for 7 years, and that combination therapy with ADV plus LAM was effective for LAMrefractory patients without multidrug-resistant HBV. The rate of HBeAg clearance at the end of follow-up in our study of 40 % was compatible with previous reports [13, 24]. The strongest predictor of HBeAg clearance on multivariate analysis was IFN history, as in a previous report [24]. Moreover, we recently reported that HBsAg clearance during NA therapy in patients with HBeAg was influenced by previous IFN therapy and HBV genotype [27]. These results suggest that previous IFN therapy might have an immunomodulatory effect on NA therapy. In addition, baseline levels of AST and bilirubin were also significantly associated with HBeAg clearance in this study. Our results agree with those of many clinical studies that have shown baseline transaminase levels to be the strongest predictor of HBeAg seroconversion in response to both IFN [11] and NA therapy [6, 28]. On the other hand, the rate of HBsAg clearance at the end of follow-up in the present study was only 1.9 %. As mentioned above, we reported that HBsAg clearance during NA therapy was influenced by previous IFN therapy and HBV genotype as well as HBsAg level at baseline or by a decrease in HBsAg level within 6 months [27]. That study [27] included patients originally treated with LAM monotherapy or ETV therapy who switched to LAM monotherapy along with ADV plus LAM combination therapy. In this regard, further study to evaluate factors affecting HBsAg clearance in ADV plus LAM combination therapy is necessary. We previously reported the emergence of ADV-resistant mutations (rtA181T, rtA181S and rtA181T + rtN236T) in 3 of 132 patients at baseline and in 2 during subsequent combination therapy for a period of 2 years [17]. Moriconi et al. [29] reported that rtA181S and rtT184S mutations, either alone or with rtM204 mutation, at baseline in combination therapy in patients with viral breakthrough during LAM monotherapy correlated negatively with virologic response. Moreover, Heo et al. [30] reported that the presence of the rtA181V/T mutation at baseline was associated with a decreased rate of virologic response at 12 months of combination therapy. In the present study, we analyzed more patients with multidrug resistance during combination therapy over a longer clinical course. Substitutions associated with resistance to ADV or ETV were identified at baseline in 11 of 406 patients (2.7 %), most of whom were HBeAg-positive, of younger age, and had a high viral load. Moreover, a virological response during combination therapy was obtained in only four patients. On this basis, substitution of rtA181 without rtM204 mutation might correlate with a poor virological response in combination therapy. In contrast, virological response rate in patients with mutations associated with ETV (Pt. 10 and 11) was 50 %. Inoue et al. [25] detected ETV-resistant mutations of rtT184S and rtS202C during ADV plus LAM combination therapy, and noted that these patients also showed an ADV resistance profile on in vitro analysis. Moreover, a previous report showed that A181S, A181S + M204I, and L180M + T184S + M204V/Imutations were associated with a poor response to ADV plus LAM combination therapy [29]. In light of these results, A181S mutation and A181T without rtM204I/V mutation at baseline might be associated with multidrug resistance. On the other hand, substitutions associated with resistance to ADV or ETV were identified in 12 of 395 patients (3 %) during combination therapy. Two patients (Pt. 12 and 16) in this group and a patient (Pt. 9) with rtA181T + M204V/I mutations at baseline developed rtA181T + rtN236T double mutation-related ADV resistance. Considering our clinical study, rtA181T + rtN236T double mutation correlated with a poor virological response. Moreover, a wide variety of mutations (Pt. 12-14) might be correlated with a poor virological response. Inoue et al. reported that 1 of 28 patients developed virologic breakthrough after combination therapy and sequence analysis identified a wide variety of L180M + A200V + M204V +mutations, including N236T, L180M + A200V + M204V, L180M + M204V, L180M + T184S + M204Vand L180M + S202C +M204V [25]. The replication capacity of each clone differed [25], and accordingly a wide variety of mutations might be associated with the development of multidrug resistance. Although rtA181S mutation emerged in three patients (Pt. 18, 19, 22), their HBV DNA level was sustained below 5 log copies/mL. This might be explained by the fact that two of these patients (Pt. 18, 19) had HBeAg clearance during combination therapy while the third (Pt. 22) was HBeAg-negative at baseline. In contrast, Lampertico et al. [31] reported that 9 of 145 (6 %) LAMresistant patients developed rtA181T/V mutation before and during combination therapy for 4 years, but that HBV DNA levels progressively declined to become undetectable in 7 (78 %). In that report, however, rtA181T and rtA181V mutations were detected as a mixed population together with the wild-type sequence rtA181 in all serum samples. In our study, in contrast, rtA181S/T/V mutations were the major population and may accordingly have influenced the poor virologic response. In any case, response to combination therapy may be influenced by amino acid substitutions other than the well-known mutations associated with LAM, ADV, or ETV resistance, and further in vivo and in vitro studies are required. Moreover, rtA181T/V mutations were detected by ultradeep sequencing at baseline in 7 of 10 patients with emergent substitutions associated with resistance to ADV or ETV during combination therapy. It was possible that these mutant viruses increased during combination therapy. However, rtA181S, rtT184I or rtN236T or M250L were not detected at baseline. These data indicate that resistant variants of a minor population increased in some cases, whereas de novo resistant variants emerged during combination therapy in others. However, the number of patients analyzed by ultra-deep sequencing in this study was small; and we did not obtain data from patients without emergent substitutions associated with resistance during combination therapy. Further studies should be performed to interpret the significance of the presence of low frequency variants detected by ultra-deep sequencing. In conclusion, this study shows that long-term ADV plus LAM combination therapy is effective for LAM-refractory patients. A history of IFN therapy, AST, bilirubin, and genotype were important factors in predicting HBeAg seroclearance. However, some patients did not achieve complete viral suppression of HBV DNA level (<2.6 Log copies/mL). We speculate that incomplete suppression might favor further selection of drug-resistant mutants, albeit that the frequency of multidrug resistance in the present study (5.7 %, 23/406) was low. Moreover, the presence of rtA181S mutation at baseline and emergence of rtA181T + rtN236T double mutation or a wide variety of mutations during combination therapy might be associated with a poor virological response. Several recent reports have indicated the effectiveness of TDF for ADV- or ETV-refractory patients [32–34]. Where indicated, HBV DNA and virological analysis should be carefully monitored. Acknowledgments This study was supported in part by an Grant-in-Aid for Scientific Research (C) (Grant Number 24590999) from the Japan Society for the Promotion of Science, and by an Grant-in-Aid from the Ministry of Health, Labor and Welfare of Japan. **Conflict of interest** The authors declare that they have no conflict of interest. #### References - Beasley RP, Hwang LW, Lin CC, Chien CS. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22,707 men in Taiwan. Lancet. 1981;2:1129–233. - Dienstag JL, Perrillo RP, Schiff ER, Bartholomew M, Vicary C, Rubin M. A preliminary trial of lamivudine for chronic hepatitis B infection. N Eng J Med. 1995;333:1657–61. - 3. Suzuki F, Suzuki Y, Tsubota A, Akuta N, Someya T, Kobayashi M, et al. Mutations of polymerase, precore and core promoter gene in hepatitis B virus during 5-year lamivudine therapy. J Hepatol. 2002;37:824–30. - Marcellin P, Chang TT, Lim SG, Tong MJ, Sievert W, Shiffman ML, et al. Adefovir dipivoxil for the treatment of hepatitis B e antigen-positive chronic hepatitis B. N Engl J Med. 2003; 348:808–16. - Chang TT, Gish RG, de Man R, Gadano A, Sollano J, Chao YC, et al. A comparison of entecavir and lamivudine for HBeAgpositive chronic hepatitis B. N Engl J Med. 2006;354:1001–10. - Ono A, Suzuki F, Kawamura Y, Sezaki H, Hosaka T, Akuta N, et al. Long-term continuous entecavir therapy in nucleos(t)idenaïve chronic hepatitis B patients. J Hepatol. 2012;57:508–14. - Lok ASF, Heathcote EJ, Hoofnagel JH. Management of hepatitis 2000-summary of a workshop. Gastroenterology. 2001;120: 1828–53. - 8. Marcellin P, Heathcote EJ, Buti M, Gane E, de Man RA, Krastev Z, et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N Engl J Med. 2008;359:2442–55. - Liaw YF, Sung JJ, Chow WC, Farrell G, Lee CZ, Yuen H, et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med. 2004;351:1521–31. - van Zonneveld M, Honkoop P, Hansen BE, Niesters HG, Darwish Murad S, de Man RA, et al. Long-term follow-up of alphainterferon treatment of patients with chronic hepatitis B. Hepatology. 2004;39:804–10. - Suzuki F, Arase Y, Suzuki Y, Akuta N, Sezaki H, Seko Y, et al. Long-term efficacy of interferon therapy in patients with chronic hepatitis B virus infection in Japan. J Gastroenterol. 2012;47:814–22. - 12. Suzuki F, Tsubota
A, Arase Y, Suzuki Y, Akuta N, Hosaka T, et al. Efficacy of lamivudine therapy and factors associated with emergence of resistance in chronic hepatitis B virus infection in Japan. Intervirology. 2003;46:182–9. - 13. Perrillo R, Hann HW, Mutimer D, Willems B, Leung N, Lee WM, et al. Adefovir dipivoxil added to ongoing lamivudine in chronic hepatitis B with YMDD mutant hepatitis B virus. Gastroenterology. 2004;126:81–90. - 14. Hosaka T, Suzuki F, Suzuki Y, Saitoh S, Kobayashi M, Someya T, et al. Factors associated with the virological response of lamivudine-resistant hepatitis B virus during combination therapy with adefovir dipivoxil plus lamivudine. J Gastroenterol. 2007;42:368–74. - Hosaka T, Suzuki F, Suzuki Y, Saitoh S, Kobayashi M, Someya T, et al. Adefovir dipivoxil for treatment of breakthrough hepatitis caused by lamivudine-resistant mutants of hepatitis B virus. Intervirology. 2004;47:362–9. - Lee YS, Suh DJ, Lim YS, Jung SW, Kim KM, Lee HC, et al. Increased risk of adefovir resistance in patients with lamivudineresistant chronic hepatitis B after 48 weeks of adefovir dipivoxil monotherapy. Hepatology. 2006;43:1385–91. - 17. Yatsuji H, Suzuki F, Sezaki H, Akuta N, Suzuki Y, Kawamura Y, et al. Low risk of adefovir resistance in lamivudine-resistant chronic hepatitis B patients treated with adefovir plus lamivudine combination therapy: two-year follow-up. J Hepatol. 2008;48:923–31. - Tanaka M, Suzuki F, Seko Y, Hara T, Kawamura Y, Sezaki H, et al. Renal dysfunction and hypophosphatemia during long-term lamivudine plus adefovir dipivoxil therapy in patients with chronic hepatitis B. J Gastroenterol. 2013;. doi:10.1007/s00535-013-0779-0. - Suzuki F, Kumada H, Nakamura H. Changes in viral loads of lamivudine-resistant mutants and evolution of HBV sequences during adefovir dipivoxil therapy. J Med Virol. 2006;78:1025–34. - Suzuki F, Akuta N, Suzuki Y, Sezaki H, Arase Y, Hosaka T, et al. Clinical and virological features of non-breakthrough and severe exacerbation due to lamivudine-resistant hepatitis B virus mutants. J Med Virol. 2006;78:341–52. - Akuta N, Suzuki F, Seko Y, Kawamura Y, Sezaki H, Suzuki Y, et al. Emergence of telaprevir-resistant variants detected by ultradeep sequencing after triple therapy in patients infected with HCV genotype 1. J Med Virol. 2013;85:1028–36. - 22. Usuda S, Okamoto H, Imawari H, Baba K, Tsuda F, Miyakawa Y, et al. Serological detection of hepatitis B virus genotypes by ELISA with monoclonal antibodies to type-specific epitopes in preS2-region product. J Virol Method. 1999;80:97–112. - Tadokoro K, Kobayashi M, Yamaguchi T, Suzuki F, Miyauchi S, Egashira T, et al. Classification of hepatitis B virus genotypes by the PCR-Invader method with genotype-specific probes. J Virol Method. 2006;138:30–9. - 24. Toyama T, Ishida H, Ishibashi H, Yatsuhashi H, Nakamuta M, Shimada M, et al. Long-term outcomes of add-on adefovir dipivoxil therapy to ongoing lamivudine in patients with lamivudine-resistant chronic hepatitis B. Hepatol Res. 2012;42:1168–74. - 25. Inoue J, Ueno Y, Wakui Y, Niitsuma H, Fukushima K, Yamagiwa Y, et al. Four-year study of lamivudine and adefovir combination therapy in lamivudine-resistant hepatitis B patients: influence of hepatitis B virus genotype and resistance mutation pattern. J Viral Hepat. 2011;18:206–15. - 26. Aizawa M, Tsubota A, Fujise K, Tatsuzawa K, Kono M, Hoshina S, et al. Clinical course and predictive factors of virological response in long-term lamivudine plus adefovir dipivoxil combination therapy for lamivudine-resistant chronic hepatitis B patients. J Med Virol. 2011;83:953–61. - 27. Hosaka T, Suzuki F, Kobayashi M, Seko Y, Kawamura Y, Sezaki H, et al. Clearance of hepatitis B surface antigen during long-term nucleot(s)ide analog treatment in chronic hepatitis B: results from a nine-year longitudinal study. J Gastroenterol. 2013;. doi:10. 1007/s00535-012-0688-7. - 28. Perrillo RP, Lai CL, Liaw YF, Dienstag JL, Schiff ER, Schalm SW, et al. Predictors of HBeAg loss after lamivudine treatment for chronic hepatitis B. Hepatology. 2002;36:186–94. - 29. Moriconi F, Colombatto P, Coco B, Ciccorossi P, Oliveri F, Flichman D, et al. Emergence of hepatitis B virus quasispecies with lower susceptibility to nucleos(t)ide analogues during lamivudine treatment. J Antimicrob Chemother. 2007;60:341–9. - Heo NY, Lim YS, Lee HC, Chung YH, Lee YS, Suh DJ. Lamivudine plus adefovir or entecavir for patients with chronic hepatitis B resistant to lamivudine and adefovir. J Hepatol. 2010;53:449–54. - Lampertico P, Viganò M, Manenti E, Iavarone M, Sablon E, Colombo M. Low resistance to adefovir combined with lamivudine: a 3-year study of 145 lamivudine-resistant hepatitis B patients. Gastroenterology. 2007;133:1445–51. - 32. van Bömmel F, de Man RA, Wedemeyer H, Deterding K, Petersen J, Buggisch P, et al. Long-term efficacy of tenofovir monotherapy for hepatitis B virus-monoinfected patients after failure of nucleoside/nucleotide analogues. Hepatology. 2010;51:73–80. - 33. Pan CQ, Hu KQ, Yu AS, Chen W, Bunchorntavakul C, Reddy KR. Response to tenofovir monotherapy in chronic hepatitis B patients with prior suboptimal response to entecavir. J Viral Hepat. 2012;19:213–9. - 34. Petersen J, Ratziu V, Buti M, Janssen HL, Brown A, Lampertico P, et al. Entecavir plus tenofovir combination as rescue therapy in pre-treated chronic hepatitis B patients: an international multicenter cohort study. J Hepatol. 2012;56:520–6. #### ORIGINAL ARTICLE—LIVER, PANCREAS, AND BILIARY TRACT # Clearance of hepatitis B surface antigen during long-term nucleot(s)ide analog treatment in chronic hepatitis B: results from a nine-year longitudinal study Tetsuya Hosaka · Fumitaka Suzuki · Masahiro Kobayashi · Yuya Seko · Yusuke Kawamura · Hitomi Sezaki · Norio Akuta · Yoshiyuki Suzuki · Satoshi Saitoh · Yasuji Arase · Kenji Ikeda · Mariko Kobayashi · Hiromitsu Kumada Received: 27 March 2012/Accepted: 12 September 2012/Published online: 12 October 2012 © Springer Japan 2012 #### Abstract Background Clearance of hepatitis B surface antigen (HBsAg) is considered the ultimate goal in chronic hepatitis B treatment. One treatment option is long-term nucleot(s)ide analog (NA) therapy. We followed a group of long-term NA therapy patients to evaluate the efficacy of this treatment in promoting clearance and longitudinal declines of HBsAg. Method The study included 791 NA therapy patients who received lamivudine as their first drug. At the baseline, 442 patients were hepatitis B e antigen (HBeAg)+ and 349 were HBeAg-. All analyses were performed after separating the HBeAg+ and HBeAg- cohorts. Cox proportional hazards models were used to determine which factors were associated with HBsAg clearance. Results HBsAg clearance was observed in 18 (4.1 %) of the HBeAg+ patients and 20 (5.7 %) of the HBeAg-patients at baseline, giving seroclearance rates of 6.4 and 6.9 %, respectively, over the nine-year study period. HBsAg clearance was influenced by several independent factors that varied according to HBeAg cohort. For HBeAg+ patients, these included previous interferon therapy, infection with hepatitis B virus (HBV) genotype A, a \geq 0.5 log IU/mL decline in HBsAg level within six months, and clearance of HBeAg at six months. For HBeAg— patients, these included infection with HBV genotype A, decline in HBsAg at six months, and a baseline HBsAg level of <730 IU/mL. Conclusion This study suggests that both direct antiviral potential and host immune response are needed to achieve HBsAg clearance by NA therapy. Viral genotype strongly influenced HBsAg clearance during NA therapy. **Keywords** Hepatitis B surface antigen \cdot Nucleot(s)ide analog \cdot Lamivudine \cdot Interferon #### Introduction Worldwide, an estimated 400 million people are infected with hepatitis B virus (HBV) persistently, and one million people die of decompensated cirrhosis and/or hepatocellular carcinoma (HCC) annually [1, 2]. Recently, oral nucleot(s)ide analogs (NAs) have been used as a mainstay therapeutic strategy against chronic hepatitis B. Five such antiviral agents—lamivudine (LAM), entecavir (ETV), telbivudine, adefovir dipivoxil (ADV), and tenofovir disoproxil fumarate—which inhibit viral replication [e.g., hepatitis B virus DNA (HBV DNA) priming, reverse transcription of negative-stranded HBV DNA, and synthesis of positive-stranded HBV DNA] have been approved; these NAs vary in both the strength and the rapidity with which they suppress HBV DNA [3-10]. Sustained viral suppression by NA therapy can improve liver fibrosis and clinical outcomes of patients [11, 12]. LAM was the first NA to be approved to treat chronic hepatitis B in Japan, followed by ADV and ETV. Responses to antiviral treatments can be evaluated by monitoring serum HBV DNA levels, hepatitis B e antigen (HBeAg) and antibody levels, and hepatitis B surface Department of Hepatology, Toranomon Hospital, 2-2 Toranomon, Minato-ku, Tokyo, Japan e-mail: hosa-p@toranomon.gr.jp M. Kobayashi Research Institute for Hepatology, Toranomon Hospital, 1-3-1, Kajigaya, Takatsu-ku, Kawasaki, Japan T. Hosaka (🖂) · F. Suzuki · M. Kobayashi · Y. Seko · Y. Kawamura · H. Sezaki · N. Akuta · Y. Suzuki · S. Saitoh · Y. Arase · K. Ikeda · H. Kumada antigen (HBsAg) and antibody levels. Serum HBsAg levels appear to reflect the amount of intrahepatic covalently closed circular DNA (cccDNA), which acts as a template for the transcription of viral genes [13–15]. Previous studies have shown that both interferon (IFN) and NA therapy result in a reduction of intrahepatic cccDNA [16, 17], suggesting that these treatments may be helpful in achieving the ultimate therapeutic goal of antiviral therapy for chronic hepatitis B (i.e., total clearance of HBsAg). Very low rates of HBsAg clearance have been reported in the past [18–22]. Recent work has shown that over a one-year period, pegylated (PEG)-IFN therapy is more successful than ETV at reducing serum HBsAg [23]; furthermore, PEG-IFN therapy
has also been reported to promote the complete clearance of HBsAg [24–27]. Several studies have detailed similar successes achieved by NA therapy but over relatively short (<5 years) treatment durations [18–20, 22, 28, 29]. The kinetics of HBsAg during long-term (>5 years) treatment remain unknown. NA therapy leads to time-dependent decreases in intrahepatic cccDNA and serum HBsAg levels if sustained viral suppression is longer term, and may therefore increase the rates of HBsAg clearance. In order to evaluate this possibility empirically, we conducted a ten-year-long study in which we followed patients who received NA therapy initiated by the administration of LAM. We evaluated the resulting clearance and longitudinal declines of HBsAg using highly sensitive assays. Our aim was to determine whether long-term NA therapy can lead to HBsAg clearance, as suggested; if so, we also wished to elucidate the factors associated with its success. Fig. 1 Schematic of study protocol. *LAM* lamivudine, *HCC* hepatocellular carcinoma, *HCV* hepatitis C virus, *ETV* entecavir, *ADV* adefovir dipivoxil, *HBsAg* hepatitis B surface antigen #### Methods # Study population Over a period of 12 years (September 1995 to September 2007), 949 consecutive patients who were chronically monoinfected with HBV (confirmed HBsAg positivity for at least six months), were treated with LAM monotherapy at the Department of Hepatology, Toranomon Hospital, Metropolitan Tokyo. The indication for antiviral therapy was abnormal ALT levels accompanying the increase in HBV DNA (over 4 log copies/mL) as a rule. However, in cases where ALT levels were normal, patients with advanced fibrosis were administered LAM. We did not treat patients without fibrosis who had low HBV DNA and normal ALT levels as a rule. We selected 791 patients for the final study after we had excluded all those who had been treated with LAM for <6 months, were co-infected with hepatitis C virus, had not provided sufficient serum samples, and/or had insufficient clinical records (Fig. 1). No patient was co-infected with human immunodeficiency virus in this cohort. Seven hundred ninety-one patients were enrolled in this cohort study. Of these 791 patients, 442 were HBeAg+ and 349 were HBeAg- at baseline. All analyses were performed after separating the HBeAg+ and HBeAg- cohorts. Written informed consent was obtained from each patient. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki and was approved a priori by the institution's human research committee. This study has been registered in the University Hospital Medical Information Network Clinical Trials Registry (UMIN CTR) as the number UMIN000007993. #### Antiviral therapy and drug resistance All 791 patients received 100 mg LAM daily as an initial therapy, but a LAM-resistant rtM204I/V mutation developed in 439 (55 %) of these patients. Over time, 334 (42 %) individuals experienced an increase in HBV DNA (≥1 log copies/mL) [e.g., virological breakthrough (VBT)] and, as a result, 299 (98.5 %) individuals were also provided with ADV treatment (10 mg) added onto LAM as a rescue therapy. The remaining patients continued to receive LAM monotherapy and were lost to follow-up before the administration of ADV because of the lack of approval for ADV administration in Japan at the time. The resistant mutation for rtM204I/V was detected in 312 of 334 patients who experienced VBT using a commercial kit (as described below). Patients who had achieved an optimal or suboptimal virological response or who wished to participate in the clinical trial of ETV for LAM-refractory patients (ClinicalTrials.gov: NCT 1037166)-152 and 17 patients, respectively—switched from LAM to ETV (0.5 mg/day). Additionally, patients in whom subsequent ADV- or ETV-resistant mutants emerged received an optimal rescue therapy with other NAs (ETV + ADV combination for ADV resistance, and LAM + ADV combination for ETV resistance). NA treatment was continued as a rule; median NA treatment duration was 75 months (25th–75th percentile, 55–102) in the HBeAg+ cohort and 92 months (67–119) in the HBeAg— cohort. Ultimately, 55 (7 %) of the 791 patients discontinued treatment; 16 of these individuals terminated treatment after achieving HBsAg seroclearance. Follow-ups were conducted for all patients, regardless of length of treatment, for as long as possible. #### Clinical data collection and follow-ups Data on patient characteristics, biochemistry, hematology, virology, histology, and previous treatments were collected and registered in our institute's database at the time of patient enrollment. Prior to beginning LAM, all patients were surveyed about the presence of a family history of HBV infection. Data on treatment dose and duration of previous IFN therapy were collected from our hospital's IFN therapy database or requested from other hospitals as necessary. Complete details on the previous treatment were lacking for 29 (9.7 %) of 297 patients who received IFN therapy before starting LAM. At least every 1–3 months, liver function and virological markers of HBV infection were measured in all patients. All serum HBsAg titers were measured from frozen serum samples collected at six months, one year, three years, five years, and once annually for 6–10 years, and then stored at $-80\,^{\circ}$ C. The day of HBsAg clearance was defined by the measurement in consecutive available serum samples before it was undetected in subsequent samples. A genotypic analysis of drug resistance was performed in cases of insufficient virological response or VBT, defined as an increase in serum HBV DNA levels ≥1 log above the nadir measured after the initial virological response. Cirrhosis was diagnosed by laparoscopy, liver biopsy, or clinical data such as imaging modalities and portal hypertension. The primary outcome for this study was HBsAg clearance. The endpoint of the follow-up was HBsAg clearance or last visit before January 2011. #### Markers of HBV infection Serum HBsAg titers were measured using ARCHITECT HBsAg QT assay kits (Abbott Laboratories, Tokyo, Japan), which have a lower limit of detection of 0.05 IU/mL and an upper limit of detection of 250 IU/mL. To expand the upper range from 250 to 125,000 IU/mL, serum samples, going off the scale, were diluted stepwise to 1:20 and 1:500 with ARCHITECT diluents as the product document described. HBeAg was determined by enzyme-linked immunosorbent assay with a commercial kit (HBeAg EIA; Institute of Immunology, Tokyo, Japan). HBV DNA was quantified using the Amplicor monitor assay (Roche Diagnostics, Tokyo, Japan), which has a dynamic range of 2.6-7.6 log copies/mL, or COBAS TaqMan HBV v.2.0 (Roche Diagnostics, Tokyo, Japan), which has a dynamic range of 2.1-9.0 log copies/mL. A commercial kit (HBV Genotype EIA; Institute of Immunology) was used to serologically determine HBV genotypes using the combination of epitopes expressed on the pre-S2 region product, which is specific to each of the seven major genotypes (A–G). YMDD mutants (rt M204I/V) were determined by polymerase chain reaction-based enzyme-linked mini-sequence assay with a commercial kit (Genome Science Laboratories, Tokyo, Japan). # Statistical analyses Categorical data were compared between groups using chisquare or Fisher's exact tests. Continuous variables with a nonparametric distribution were analyzed with Mann—Whitney U tests, while those with a parametric distribution were analyzed with Student's t tests. When appropriate, Kruskal—Wallis tests were used to conduct pairwise comparisons of specific variables. Cox regression analyses were used to assess which variables were significantly associated with HBsAg clearance. Cut-off values were provided using the area under the receiver operating characteristic curve (ROC) only after rejecting the null hypothesis for the ROC curve. All baseline factors that were found to be significantly associated with HBsAg clearance by univariate analysis