Table 4B. (B) Comparison of HBeAg-negative patients with or without virological rebound by univariate analysis. | Virological rebound | No | Yes | P-values | |--|-------------------|------------------|----------| | Number | 56 | 22 | | | Age (years) | 54 <u>+</u> 11 | 54 <u>+</u> 10 | N.S. | | Gender (male) | 40 | 12 | N.S. | | HBV DNA (log IU/mL) | 5.9 <u>+</u> 1.4 | 5.9 <u>+</u> 1.0 | N.S. | | ALT (IU/L) | 163 <u>+</u> 179 | 137 <u>+</u> 163 | N.S. | | US: Cirrhosis (+) | 30 | 11 | N.S. | | Periods to undetectable HBV DNA (months) | 7.3 <u>+</u> 14.8 | 3.1 <u>+</u> 2.1 | N.S. | Data are expressed as mean ± SD. *P*-values, *P*-values between patients with or without virological rebound groups; HBeAg, hepatitis B e antigen; ALT, alanine aminotransferase; US, ultrasound findings; *N.S.*, no statistically significant difference. **Table 4C.** (C) Factor associated with virological rebound among HBeAg-positive patients treated with LAM by multivariate analysis. | Factor | Category | Odds ratio | 95% CI | P-value | |--------------------|----------|------------|---------------|---------| | Age ≤ 44.5 (years) | (+/-) | 0.222 | 0.0547-0.9023 | 0.0354 | #### **DISCUSSION** To date, there is not much data regarding virological rebound after achieving HBV DNA negativity in the use of ETV or LAM. A recent report supported the merit of the change from LAM to ETV [14]. This study concluded that prior optimal viral suppression with ETV did not confer any significant advantage for patients who switched to LAM. The present study revealed that ETV could suppress HBV replication after achieving HBV DNA negativity, although additional longer follow-up studies will be needed. On the other hand, LAM could not suppress HBV replication even after achieving HBV DNA negativity (Figure 1), although most cases with virological rebound were observed within 2 years of the start of LAM medication. We could not check the emergence of YMDD motif mutations [19] in all of the cases because the present study was performed as part of regular clinical practice. Of 2 of the HBeAg-positive patients at baseline with virological rebound, one showed YVDD motif (50%). In 4 of the HBeAg-negative patients at baseline with virological rebound, one YVDD motif (25%) and three YIDD motifs (75%) were seen. Virological rebound may not mean the emergence of NA-resistance mutations [12]. We do not know the reason why virological rebound was attained independently of age in HBeAg-positive patients treated with LAM. HBeAg to anti-HBe antibody seroconversions were found in 20 and 11 patients with and without virological rebound, that is, the HBeAg to anti-HBe antibody seroconversion rates were similar in the two groups (data not shown), although the number of study patients seemed small in the present study. Further studies might be needed. In any event, it might be important to consider the LAM-to-ETV switch in HBeAg-positive patients treated with LAM, although some of our patients in the LAM group remained HBV-negative throughout the observation period. In the present study, 95.3% (122 of 128), 82.3% (14 of 17) and 89.2% (25 of 28) had an adherence rate >90% [16] in ETV-treated, LAM-treated with virological rebound and LAM-treated patients without virological rebound, respectively. These results supported our previous study that viral breakthrough associated with poor adherence could be a more important issue in the treatment with especially stronger NAs, such as ETV [12,16], although we cannot ensure durable HBV negativity after NAs are discontinued. We and others reported that HBeAg could impair both innate and adaptive immune responses to promote chronic HBV infection [16,20,21]. Of interest, the virological rebound with the use of LAM seemed unrelated to the HBeAg status, suggesting that it was dependent on resistant mutation. Recently, other effective antiviral therapies such as peginterferon [22,23] and tenofovir [24,25] were reported to be useful for the control of HBV infection. These drugs might also be candidates for treating virological rebound. Fung et al. [14] reported that prior optimal viral suppression with ETV did not confer any significant advantage for patients who switched to LAM. Our results also supported the previous studies that ETV was much more efficient than LAM [26-29]. In conclusion, ETV could inhibit HBV replication if HBV DNA negativity had been achieved. In contrast, LAM could not inhibit HBV replication even if HBV negativity was achieved in the early phase. Attention should be paid to these features in clinical practice. #### ACKNOWLEDGEMENTS We thank all our colleagues at the liver units of our hospitals who cared for the patients described herein. #### CONFLICT OF INTEREST Dr. Tatsuo Kanda reports receiving lecture fees from Chugai Pharmaceutical, MSD, and Ajinomoto, and Prof. Osamu Yokosuka received grant support from Chugai Pharmaceutical, Bayer, MSD, Daiichi-Sankyo, Mitsubishi Tanabe Pharma, and Bristol-Myers Squibb. #### ABBREVIATIONS ALT: alanine aminotransferase; ETV: Entecavir; HBeAg: Hepatitis B e antigen; HBsAg: Hepatitis B surface antigen; HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; LAM: lamivudine; NA: nucleos(t)ide analogue. #### REFERENCES - Dandri M, Locarnini S. New insight in the pathobiology of hepatitis B virus infection. Gut. 2012; 61: i6-i17. - Di Bisceglie AM. Hepatitis B and hepatocellular carcinoma. Hepatology. 2009; 49 (5 Suppl): S56-S60. - Beasley RP, Hwang LY, Lin CC, et al. Hepatocellular carcinoma and hepatitis B virus. A prospective study of 22707 men in Taiwan. Lancet. 1981; 2: 1129-1133. - Lavanchy D. Viral hepatitis: global goals for vaccination. J Clin Virol. 2012; 55:296-302. - Imamura T, Yokosuka O, Kurihara T, et al. Distribution of hepatitis B virus genotypes and mutations in the core promoter and precore regions in acute form of liver disease in patients from Chiba, Japan. Gut. 2003; 52: 1630-1637. - Kanda T, Shinozaki M, Kamezaki H, et al. Efficacy of lamivudine or entecavir on acute exacerbation of chronic hepatitis B. Int J Med Sci. 2012; 9: 27-32 - Yang HI, Lu SN, Liaw YF, et al. Hepatitis B e antigen and the risk of hepatocellular carcinoma. N Engl J Med. 2002; 347: 168-174. - Harris RA, Chen G, Lin WY, et al. Spontaneous clearance of high-titer serum HBV DNA and risk of hepatocellular carcinoma in a Chinese population. Cancer Causes Control. 2003; 14: 995-1000. - Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. JAMA. 2006; 295-65-73 - 10. Iloeje UH, Yang HI, Su J, et al. Predicting cirrhosis risk based on the level of circulating hepatitis B viral load. Gastroenterology. 2006; 130: 678-686. - 11. Liaw YF, Kao JH, Piratvisuth T, et al. Asian-Pacific consensus statement on the management of chronic hepatitis B: a 2012 update. Hepatol Int. 2012; 6: 531-561. - Kamezaki H, Kanda T, Wu S, et al. Emergence of entecavir-resistant mutations in nucleos(t)ide-naïve Japanese patients infected with hepatitis B virus: virological breakthrough is also dependent on adherence to medication. Scand J Gastroenterol. 2011; 46: 1111-1117. - Yuen MF, Seto WK, Chow DH, et al. Long-term lamivudine therapy reduces the risk of long-term complications of chronic hepatitis B infection even in patients without advanced disease. Antivir Ther. 2007; 12: 1295-1303 - Fung J, Lai CL, Yuen J, et al. Randomized trial of lamivudine versus entecavir in Entecavir-treated patients with undetectable hepatitis B virus DNA: outcome at 2 years. Hepatology. 2011; 53: 1148-1153. - Tenney DJ, Rose RE, Baldick CJ, et al. Long-term monitoring shows hepatitis B virus resistance to entecavir in nucleoside-naïve patients is rare through 5 years of therapy. Hepatology. 2009; 49: 1503-1514. - Kamezaki H, Kanda T, Makoto A, et al. Adherence to medication is a more important contributor to viral breakthrough in chronic hepatitis B patients treated with entecavir than in those with lamivudine. Int J Med Sci. 2013; 10: 567-574. - Wu S, Kanda T, Imazeki F, et al. Hepatitis B virus e antigen downregulates cytokine production in human hepatoma cell lines. Viral Immunol. 2010: 23: 467-476. - Usuda S, Okamoto H, Iwanari H, et al. Serological detection of hepatitis B virus genotypes by ELISA with monoclonal antibodies to type-specific epitopes in the preS2-region product. J Virol Methods. 1999; 80: 97-112. - Seta T, Yokosuka O, Imazeki F, et al. Emergence of YMDD motief mutations of hepatitis B virus during lamivudine treatment of immunocompetent type B hepatitis patients. J Med Virol. 2000; 60: 8-16. - Chen M, Sallberg M, Hughes J, et al. Immune tolerance split between hepatitis B virus precore and core proteins. J Virol. 2005; 79: 3016-3027. - Wu S, Kanda T, Imazeki F, et al. Hepatitis B virus e antigen physically associates with receptor-interacting serine/threonine protein kinase 2 and requires IL-6 gene expression. J Infect Dis. 2012; 206: 415-420. - Marcellin P, Lau GK, Bonino F, et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med. 2004; 351: 1206-1217. - Lau GK, Piratvisuth T, Luo KX, et al. Peginterferon Alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med. 2005; 352: 2682-2695. - Schildgen O, Sirma H, Funk A, et al. Variant of hepatitis B virus with primary resistance to adefovir. N Engl J Med. 2006; 354: 1807-1812. - Marcellin P, Heathcote EJ, Buti M, et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N Engl J Med. 2008; 359: 2442-2455. - Chang TT, Gish RG, de Man R, et al. A comparison of Entecavir and lamivudine for HBeAg-positive chronic hepatitis B. N Engl J Med. 2006; 354: 1001-1010. - Lai CC, Shouval D, Lok AS, et al. Entecavir versus lamivudine for patients with HBeAg-negative chronic hepatitis B. N Engl J Med. 2006; 354:
1011-1020 - Veenstra DL, Sullivan SD, Clarke L, et al. Cost effectiveness of Entecavir versus lamivudine with adefovir salvage in HBe-positive chronic hepatitis B. Pharmacoeconomics. 2007; 25: 963-977. - Lacey L, Chien RN, Chuang WL, et al. Economic evaluation of chronic hepatitis B treatments in Taiwan. J Gastroenterol Hepatol. 2008; 23: 571-579. ### International Journal of Medical Sciences 2013; 10(5):567-574. doi: 10.7150/ijms.5795 Research Paper # Adherence to Medication Is a More Important Contributor to Viral Breakthrough in Chronic Hepatitis B Patients Treated with Entecavir Than in Those with Lamivudine Hidehiro Kamezaki¹*, Tatsuo Kanda¹* [™], Makoto Arai¹, Shuang Wu¹, Shingo Nakamoto¹, Tetsuhiro Chiba¹, Hitoshi Maruyama¹, Keiichi Fujiwara¹, Fumihiko Kanai¹, Fumio Imazeki¹, Fumio Nomura², Osamu Yokosuka¹ - 1. Departments of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan; - 2. Departments of Molecular Diagnosis, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. ☑ Corresponding author: Tatsuo Kanda, M.D., Ph.D., Associate Professor, Department of Gastroenterology and Nephrology, Chiba University, Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan. Tel.: +81-43-226-2083, Fax: +81-43-226-2088; E-mail: kandat-cib@umin.ac.ip. © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2013.01.02; Accepted: 2013.03.13; Published: 2013.03.15 #### **Abstract** Viral breakthrough is related to poor adherence to medication in some chronic hepatitis B patients treated with nucleos(t)ide analogues (NAs). Our study aimed to examine how adherence to medication is associated with viral breakthrough in patients treated with NAs. A total of 203 patients (135 ETV and 68 LAM) were analyzed in this retrospective analysis. Physical examination, serum liver enzyme tests, and hepatitis B virus marker tests were performed at least every 3 months. We reviewed medical records and performed medical interviews regarding to patients' adherence to medication. Adherence rates <90% were defined as poor adherence in the present study. Cumulative viral breakthrough rates were lower in the ETV-treated patients than in the LAM-treated patients (P<0.001). Seven ETV-treated (5.1%) and 6 LAM-treated patients (8.8%) revealed poor adherence to medication (P=0.48). Among ETV-treated patients, 4 (3.1%) of 128 patients without poor adherence experienced viral breakthrough and 3 (42.8%) of 7 patients with poor adherence experienced viral breakthrough (P<0.001). Only 3 of 38 (7.8%) LAM-treated patients with viral breakthrough had poor adherence, a lower rate than the ETV-treated patients (P=0.039). Nucleoside analogue resistance mutations were observed in 50.0% of ETV- and 94.1% of LAM-treated patients with viral breakthrough (P=0.047). Viral breakthrough associated with poor adherence could be a more important issue in the treatment with especially stronger NAs, such as ETV. Key words: Adherence, Entecavir, Lamivudine, Hepatitis B, Viral Breakthrough. #### INTRODUCTION Two billion people have been exposed to hepatitis B virus (HBV), and 350-400 million people remain chronically infected worldwide. In Japan, the prevalence of HBV carriers is estimated at \sim 1% of the pop- ^{*} Hidehiro Kamezaki and Tatsuo Kanda contributed equally. ulation, but HBV is a major health issue because it causes acute hepatitis, chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC) [1, 2]. Lamivudine (LAM) is a reverse-transcriptase inhibitor of HBV DNA polymerase that possesses excellent profile of safety and tolerability and causes inhibition of viral replication. LAM was the first nucleos(t)ide analogue (NA) to be approved for antiviral treatment of hepatitis B patients [3, 4]. Entecavir (ETV), a deoxyguanosine analogue, is a potent and selective inhibitor of HBV replication. The in vitro potency of ETV is 100- to 1,000-fold greater than that of LAM, and it has a selectivity index (concentration of drug required to reduce viable cell number by 50% [CC₅₀] / concentration of drug required to reduce viral replication by 50% [EC₅₀]) of approximately 8,000 [5, 6]. LAM (until 2005) and ETV (from 2006) have been used as first-line NAs for most patients with chronic hepatitis B in Japan. Most patients with chronic hepatitis B have been undergoing treatment for longer durations, and prolonged treatment is associated with increasing rates of viral breakthrough [7]. It has been reported that not all cases are associated with resistance mutations [8, 9]. We have also reported that some cases of viral breakthrough during ETV treatment were related to poor adherence to medication [10]. Adherence rates are usually lower in patients with long-term treatment regimens, such as for hypertension, than in patients with short-term regimens, such as for gastric ulcers [11]. It has been reported that 74.8% of patients with hypertension were determined to have an adherence rate ≥80% [12], and that 55.3% of patients with chronic hepatitis B had an adherence rate >90% [8]. In the present study, we aimed to investigate whether drug adherence is related to viral breakthrough in chronic hepatitis B patients treated with LAM or ETV. We also investigated the pattern of poor adherence and suggested how adherence to medication could be improved. #### MATERIALS AND METHODS #### **Patients** Two hundred seventy-five NA-treated naïve patients (185 ETV- and 90 LAM-treated patients), who were admitted to Chiba University Hospital between April 2000 and September 2011, were enrolled (Figure 1). Some of these patients had already been included in a previous report [10]. Between November 2011 and April 2012, doctors performed medical interviews of those patients to determine their adherence to medication. Seventy-two patients (50 ETV- and 22 LAM-treated patients) were excluded from this retrospective analysis, because their adherence to medication could not be confirmed. One hundred thirty-five patients were administered 0.5 mg of ETV daily and 68 patients were administered 100 mg of LAM daily (Table 1). In all patients, serum hepatitis B surface antigen (HBsAg) and HBV DNA were positive. All patients had negative results for hepatitis C virus or human immunodeficiency virus antibodies. Physical examinations, serum liver enzyme tests, and HBV marker tests were performed at least every 3 months. The study was carried out in accordance with the Helsinki Declaration, and was approved by the Ethics Committee of Chiba University, Graduate School of Medicine (No. 977). Figure 1. Patients, adherence rates, and the prevalence of viral breakthrough in this study. ETV, entecavir; LAM, lamivudine. **Table 1.** Baseline characteristics of patients. | | ETV | LAM | P-values | | |--|--------------------|--------------------|----------|--| | Number of cases | 135 | 68 | | | | Age (years) | 51.7 <u>+</u> 11.7 | 45.5 <u>+</u> 12.1 | <0.001 | | | Gender (male/female) | 83/52 | 49/19 | 0.135 | | | HBeAg (+/-) | 64/71 | 45/23 | 0.011 | | | Genotype (A/B/C/unknown) | 0/11/78/46 | 1/6/57/4 | 0.427 | | | HBV DNA (log IU/mL) (≤5.0/> 5.0/unknown) | 27/108/0 | 3/55/10 | 0.009 | | | ALT (IU/L) | 161 <u>+</u> 195 | 353 <u>+</u> 394 | <0.001 | | | Platelets (×10 ⁴ /mm³) | 16.3 <u>+</u> 5.9 | 16.9 <u>+</u> 7.0 | 0.556 | | | APRI | 2.49 <u>+</u> 4.19 | 6.52 <u>+</u> 6.98 | <0.001 | | | Follow-up period (months) | 26.9 <u>+</u> 21.6 | 49.0 <u>+</u> 39.7 | <0.001 | | ETV, entecavir; LAM, lamivudine; HBeAg, hepatitis B e antigen; N.D., not determined; HBV DNA, hepatitis B virus deoxyribonucleic acid; ALT, alanine aminotransferase; APRI, aspartate aminotransferase platelet ratio index. Continuous variables are expressed as mean ± standard deviation. #### **Blood** examinations Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, and platelet counts were reviewed in the present study. We also calculated the aspartate aminotransferase platelet ratio index [APRI: AST (IU/L)/ 35/platelet count ($10^3/\mu$ L) x 100], which is significantly correlated with the staging of liver fibrosis, with a higher correlation coefficient than platelet count or AST level alone [13]. #### **Detection of HBV markers** HBsAg, hepatitis B e antigen (HBeAg) and anti-HBe antibody were determined by ELISA (Abbott, Chicago, IL, USA) or CLEIA (Fujirebio, Tokyo, Japan)[14]. HBV genotype was determined by ELISA (Institute of Immunology, Tokyo, Japan) [15]. HBV DNA was measured by Roche Amplicor PCR assay (detection limits: 2.6 log IU/mL; Roche Diagnostics, Tokyo, Japan). #### Follow-up period The follow-up period ended when the NA was switched to another NA or another NA was added, or it was discontinued for various reasons. #### **Definition of adherence to medication** To obtain information regarding adherence to medication, we reviewed medical records. We also interviewed patients about their adherence to medication. We expressed the rate of adherence to medication as a percentage calculated by the number of days of taking a pill divided by the follow-up period (days). Adherence rates <90% were defined as poor adherence in the present study. #### Definition of viral breakthrough Viral breakthrough was defined as an increase of $\geq 1 \log IU/mL$ in serum HBV DNA level from nadir. #### Sequence analysis of HBV DNA The YMDD motif was analyzed by PCR-ELMA in sera of patients who had experienced viral breakthrough, as reported by Kobavashi et al [16]. HBV polymerase/reverse transcriptase (RT) substitutions were also analyzed in sera of ETV-treated patients who had experienced viral
breakthrough. Briefly, HBV DNA was extracted from 100 µL of sera using SepaGene (Sanko Junyaku, Tokyo, Japan). Nested PCR was performed using LA Taq polymerase (Takara Bio, Otsu, Shiga, Japan) under the following conditions: 5-min denaturation at 94°C, 35 cycles with denaturation at 94°C for 40 s, annealing at 58°C for 1 min, and extension at 68°C for 1.5 min [2]. An 862 base-pair fragment (nt 242-1103) containing the polymerase RT domain was amplified on the PCR Thermal Cycler Dice Model TP600 (Takara Bio). The primers for the first PCR were 5'-CAG AGT CTA GAC TCG TGG-3' (sense, nt 242-258) and 5'-GGC AAA GTG AAAGCC-3' (antisense, 1103-1086). The PCR product was sequenced using the primers: 5'-TGG CTC AGT TTA CTAGTG CC -3' (nt 668-687) and 5'-GGC ACT AGT AAA CTGAGC CA-3' (nt 687-668), and these primers were also used for the second PCR. To prepare the sequence template, PCR products were treated with ExoSAP-ITR (Affymetrix, Inc., Santa Clara, CA, USA), and then sequenced using the BigDye(R) Terminator v3.1 Cycle Sequencing Kit (Life Technologies, Tokyo, Japan). Sequences were performed with Applied Biosystems 3730xl (Life Technologies) [17]. #### Statistical analysis Statistical analyses were performed using SAS 9.3 Software (SAS Institute, Cary, NC, USA). Continuous variables were expressed as mean \pm standard deviation and were compared by Student's t-test or Welch's t-test. Categorical variables were compared by chi-square test or Fisher's exact probability test. The Kaplan-Meier method was used to calculate viral breakthrough rates. Baseline was taken as the date when the first dose of LAM or ETV was taken. Statistical significance was considered at a P-value < 0.05. #### **RESULTS** #### **Baseline characteristics of patients** Baseline characteristics of patients are shown in Table 1. In ETV-treated patients, the age was higher, the prevalence of HBeAg-negative patients was higher, HBV DNA was lower, ALT levels were lower, and APRI was lower (ie., liver fibrosis was milder) than in LAM-treated patients. HBV genotype C was dominant in both groups. The follow-up period in ETV-treated patients was shorter than that in LAM-treated patients, based on the fact that ETV was a newer drug and many ETV-treated patients had started treatment more recently. #### Adherence to medication, and viral breakthrough between ETV- and LAM-treated patients Most patients presented good adherence to medication in the present study. Seven ETV-treated (5.1%) and 6 LAM-treated patients (8.8%) had poor adherence (Figure 1). The number of patients with poor adherence was not significantly different between the ETV- and LAM-treated groups (P=0.48). The characteristics of the 13 patients with poor adherence are shown in Table 2. Cumulative viral breakthrough rates were lower in the ETV-treated patients than in the LAM-treated patients (P<0.001) (Figure 2). # Viral breakthrough in HBeAg-positive and -negative patients Among the LAM-treated patients, cumulative viral breakthrough rates in HBeAg-positive patients at baseline (n=45; 25.0% at 1 year, 55.1% at 3 years, and 67.0% at 5 years) were similar to those in HBeAg-negative patients at baseline (n=23; 9.5% at 1 year, 38.2% at 3 years, and 44.4% at 5 years; P=0.16). Among the ETV-treated patients, cumulative viral breakthrough rates in HBeAg-positive patients at baseline (n=64; 2.2% at 1 year, 18.1% at 3 years, and 18.1% at 5 years) were also similar to those in HBeAg-negative patients at baseline (n=71; 1.6% at 1 year, 1.6% at 3 years, and 1.6% at 5 years; P=0.050). Among the LAM-treated patients who were HBeAg-positive at baseline, cumulative viral breakthrough rates in patients who converted to HBeAg-seronegative were lower than those in patients who maintained HBeAg seropositivity (*P*<0.001) (Figure 3). All LAM-treated patients who did not become HBeAg-seronegative experienced viral breakthrough. Among the ETV-treated patients who were positive for HBeAg at baseline, conversion to HBeAg seronegativity did not affect the rate of viral breakthrough (*data not shown*). There were no differences in HBV viral loads at study entry between HBeAg-positive patients with and without viral breakthrough. There were also no differences in HBV viral loads between HBeAg-negative patients with and without viral breakthrough. Figure 2. Cumulative viral breakthrough rates. ETV, entecavir; LAM, lamivudine. Table 2. Patients with poor adherence to medication. | Case | Drug | Adher-
ence
rate (%) | Age
(years) | Gen
der | Gen-
otype | HBe
Ag | HBV
DNA
(log
IU/m
L) | ALT
(IU/L) | APRI | HBeAg-
seroneg-
ative | HBV
DNA
nega-
tivity | V
T | Duration
of
treatment
before VT
(months) | Resis-
sis-
tance
muta-
tions | Treatment
after VT | Clinical
out-
come | |------|------|----------------------------|----------------|------------|---------------|-----------|----------------------------------|---------------|-------|-----------------------------|-------------------------------|--------|--|---|-----------------------|--------------------------| | 1 | ETV | 50 | 55 | F | В | - | 3.8 | 16 | 0.33 | N.A. | + | + | 6 | - | ETV | good | | 2 | ETV | <i>7</i> 5 | 49 | M | C | + | 7.3 | 107 | 1.60 | + | + | + | 28 | + | LAM+ADV | good | | 3 | ETV | 85 | 38 | M | С | + | 6.9 | 59 | 2.80 | - | + | + | 29 | N.D. | ETV | good | | 4 | ETV | 80 | 39 | M | С | + | 5.8 | 51 | 0.63 | + | + | - | N.A. | N.A. | ETV | good | | 5 | ETV | 85 | 37 | F | С | + | 6.9 | 160 | 2.25 | + | + | - | N.A. | N.A. | ETV | good | | 6 | ETV | 85 | 66 | M | N.D. | + | 7.7 | 68 | 0.95 | - | - | - | N.A. | N.A. | ETV | good | | 7 | ETV | 85 | 38 | M | С | + | 6.5 | 478 | 7.94 | - | + | - | N.A. | N.A. | ETV | good | | 8 | LAM | 50 | 47 | F | С | + | 6.5 | 455 | 2.54 | + | + | + | 45 | - | LAM | good | | 9 | LAM | 80 | 36 | M | C | + | 7.0 | 110 | 4.25 | + | + | + | 41 | + | LAM+ADV | good | | 10 | LAM | 85 | 23 | M | С | + | >7.6 | 161 | 3.53 | - | + | + | 11 | - | cessation | flare | | 11 | LAM | 85 | 32 | M | С | + | >7.6 | 343 | 1.30 | + | + | - | N.A. | N.A. | LAM | good | | 12 | LAM | 85 | 54 | F | С | - | 4.1 | 196 | 2.68 | N.A. | + | - | N.A. | N.A. | LAM | good | | 13 | LAM | 85 | 36 | M | С | + | 6.7 | 1576 | 15.78 | + | + | - | N.A. | N.A. | LAM | good | Cases 2 and 3 had already been included in a previous report.[10] HBeAg, hepatitis B e antigen; HBV DNA, hepatitis B virus deoxyribonucleic acid, ALT, alanine aminotransferase; APRI, aspartate aminotransferase platelet ratio index; VT, viral breakthrough; ETV, entecavir; LAM, lamivudine; ADV, adefovir; F, female; M, male; N.D., not determined; N.A., not available; HBeAg-seronegative, conversion to HBeAg-seronegative after administration of a nucleoside analogue; HBV DNA negativity, achieving HBV DNA negativity after administration of a nucleoside analogue; flare, fluctuating ALT after treatment after VT. **Figure 3.** Cumulative viral breakthrough rates in lamivudine (LAM)-treated patients with HBe antigen (HBeAg)-positive at baseline. (-), maintaining HBeAg seropositivity; (+), conversion to HBeAg-seronegative. # Viral breakthrough in patients who achieved, and did not achieve HBV DNA negativity Among the LAM-treated patients, cumulative viral breakthrough rates in patients who did not achieve HBV DNA negativity were higher than in those who achieved HBV DNA negativity (*P*<0.001) (Figure 4). All patients who did not achieve HBV DNA negativity experienced viral breakthrough. In contrast, among the ETV-treated patients, cumulative viral breakthrough rates in patients who did not achieve HBV DNA negativity were similar to the rates in those who achieved HBV DNA negativity (*data not shown*). # Correlation between adherence to medication and viral breakthrough We also compared viral breakthrough rates according to adherence to medication. Among 62 LAM-treated patients who did not have poor adherence, 35 patients (56.4%) experienced viral breakthrough (Figure 5). Among 6 LAM-treated patients with poor adherence, 3 patients (50.0%) experienced viral breakthrough. In LAM treatment, poor adherence did not contribute to viral breakthrough (P=0.89). However, among 128 ETV-treated patients who did not have poor adherence, 4 patients (3.1%) experienced viral breakthrough. ETV-treated patients with poor adherence, 3 patients (42.8%) experienced viral breakthrough. In the treatment with ETV, poor adherence contributed to viral breakthrough (P<0.001). #### Resistance mutations Resistance mutations were analyzed in some pa- tients who experienced viral breakthrough. They were analyzed in 34 LAM-treated patients and 4 ETV-treated patients (Table 3). Thirty-two LAM-resistant patients had 10 YVDD, 17 YIDD, and 5 YV/IDD motifs, and 2 ETV-resistant patients had two YVDD motifs. Resistance mutations were not observed in 2 LAM-treated patients (5.8%) and 2 ETV-treated patients (50.0%) (P=0.047). Table 3. Patients with viral breakthrough. | | ETV | | LAM | | |-------------------------|------|------|------|------| | Adherence rate | ≥90% | <90% | ≥90% | <90% | | Resistance mutation (+) | 1 | 1 | 31 | 1 | | L180M | 1 | 1 | N.D. | N.D. | | T184A | 1 | 0 | N.D. | N.D. | | S202G | 0 | 1 | N.D. | N.D. | | M204V | 1 | 1 | 9 | 1 | | M204I | 0 | 0 | 17 | 0 | | M204V/I | 0 | 0 | 5 | 0 | | M250V | 0 | 0 | N.D. | N.D. | | Resistance mutation (-) | 1 | 1 | 0 | 2 | ETV, entecavir; LAM, lamivudine; N.D., not determined. Numbers of amino acid positions were according to Refs. 2 and 10. | | HBV DNA Negativity | Baseline | 12 | 24 | 36 | 48 | 60 | |-----------|--------------------|----------|----|----|----|----|----| | Number of | (-) | 12 | 4 | 1 | 0 | 0 | 0 | | Patients | (+) | 47 | 39 | 30 | 23 | 19 | 18 | **Figure 4.** Cumulative viral breakthrough rates in lamivudine (LAM)-treated patients who achieved HBV DNA negativity and those who did not.
(-), maintaining HBV DNA positivity; (+), achieving HBV DNA negativity. HBV DNA negativity was unknown in 9 patients because of lack of data. Figure 5. Association between adherence to medication and viral breakthrough. #### DISCUSSION The current study found that ETV-treated patients were not likely to acquire any resistance mutations and experience an ALT flare. Therefore, patients with poor liver residual function, such as liver cirrhosis, were likely to be administered ETV rather than LAM. Unexpectedly, HBsAg loss was observed in 3 of 28 LAM-treated patients without viral breakthrough (10.7%) and in 3 of 118 ETV-treated patients without viral breakthrough (2.5%). Long-term treatment with these drugs might result in HBsAg loss, although several reports have stated that one-year treatment with peg-interferon led to more HBsAg loss than these drugs [18-25]. In the current study, adherence to medication of most patients was excellent. The reasons for this might be as follows: (1) Our setting was a University Hospital, and this may have strengthened their will to succeeded with the treatment; (2) some patients with poor adherence might have been excluded because they did not see a doctor during the interview period; and (3) the rate of adherence to medication was based on patient self-assessment. A previous report showed that adherence might be underestimated by the Medication Event Monitoring System, a system that automatically records whenever a drug bottle is opened, and might be overestimated by pill counting and at interviews [26]. We classified the adherence rate as good at 90% or more, and as poor at less than 90%. However, we could not prove any significant influence of this classification on viral breakthrough as well as resistance mutation. In the 13 patients with poor adherence (Table 2), we examined the reasons for their failure to take the pills. All 13 patients displayed some carelessness about taking pills. Two ETV-treated patients did not see a doctor and could not take pills continuously for a certain period of time, which particularly appeared to affect their viral breakthrough. In LAM-treated patients, conversion of HBeAg to seronegative and achieving HBV DNA negativity was one of the important factors for successful treatment (Figures 3 & 4). In contrast, among ETV-treated patients, maintaining HBeAg seropositivity or HBV DNA positivity was not associated with viral breakthrough in the present study. Because of the stronger effect of ETV, it has been reported that long-term ETV treatment leads to a viral response in the vast majority of patients with detectable HBV DNA after 48 weeks [27]. Moreover, in the current study, poor adherence to medication was a major factor of viral breakthrough in the ETV-treated patients, but not in the LAM-treated patients. Ha et al. [9] also reported that medication non-adherence is likely to be a more important contributor to treatment failure than antiviral resistance, especially with new anti-HBV agents such as ETV and tenofovir. In LAM-treated or ETV-treated patients, viral breakthrough without resistance mutations might occur to some degree because of poor adherence to medication. In the present study, in LAM-treated patients, emergence of viral breakthrough with resistance mutations was common. Therefore, viral breakthrough due to poor adherence to LAM might not be important, compared with ETV-treated patients. However, in ETV-treated patients, viral breakthrough with resistance mutations was rare, and therefore, viral breakthrough due to poor adherence to ETV might be important. In conclusion, viral breakthrough associated with poor adherence could be an important issue in the treatment with strong nucleoside analogues, such as ETV. #### **ABBREVIATIONS** ALT: alanine aminotransferase ETV: entecavir HBeAg: hepatitis B e antigen HBsAg: hepatitis B surface antigen HBV: hepatitis B virus HCC: hepatocellular carcinoma NA: nucleos(t)ide analogue LAM: lamivudine #### **ACKNOWLEDGEMENTS** We are all thankful to our colleagues at the liver unit of our hospitals who cared for the patients described herein. #### **Funding** This work was supported by grants for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology, Japan (TK and SN), grants from the Ministry of Health, Labour and Welfare of Japan (TK and OY), and a grant from Chiba University Young Research-Oriented Faculty Member Development Program in Bioscience Areas (TK). #### **Contributors** HK, TK, FI, and OY designed the study. HK, TK, MA, TC, HM, KF, FK, FI, FN and OY saw patients and conducted the interview. HK, TK, WS, and SN analyzed the data. HK and TK drafted the paper and all authors approved the paper. #### **COMPETING INTERESTS** Dr. Tatsuo Kanda reports receiving lecture fees from Chugai Pharmaceutical, MSD, and Ajinomoto, and Prof. Osamu Yokosuka reports receiving grant support from Chugai Pharmaceutical, Bayer, MSD, Daiichi-Sankyo, Mitsubishi Tanabe Pharma, and Bristol-Myers Squibb. #### References - 1. Lok AS, McMahon BJ. Chronic hepatitis B. Hepatology. 2007; 45: 507-539. - Wu S, Fukai K, Imazeki F, et al. Initial virological response and viral mutation with adefovir dipivoxil added to ongoing Lamivudine therapy in Lamivudine-resistant chronic hepatitis B. Dig Dis Sci. 2011; 56: 1207-1214 - Dienstag JL, Perrillo RP, Schiff ER, et al. A preliminary trial of lamivudine for chronic hepatitis B infection. N Engl J Med. 1995; 333: 1657-1661. - Lai CL, Chien RN, Leung NW, et al. A one-year trial of lamivudine for chronic hepatitis B. Asia Hepatitis Lamivudine Study Group. N Engl J Med. 1998;339:61-8. - Innaimo SF, Seifer M, Bisacchi GS, et al. Identification of BMS-200475 as a potent and selective inhibitor of hepatitis B virus. Antimicrob Agents Chemother. 1997; 41: 1444-1448. - Ono SK, Kato N, Shiratori Y, et al. The polymerase L528M mutation cooperates with nucleotide binding-site mutations, increasing hepatitis B virus replication and drug resistance. J Clin Invest. 2001; 107: 449-455. - Hashimoto Y, Suzuki F, Hirakawa M, et al. Clinical and virological effects of long-term (over 5 years) lamivudine therapy. J Med Virol. 2010; 824: 684-691. - 8. Chotiyaputta W, Peterson C, Ditah FA, et al. Persistence and adherence to nucleos(t)ide analogue treatment for chronic hepatitis B. J Hepatol. 2011; 54: 12-8. - Ha NB, Ha NB, Garcia RT, et al. Medication nonadherence with long-term management of patients with hepatitis B e antigen-negative chronic hepatitis B. Dig Dis Sci. 2011; 56: 2423-31. - chronic hepatitis B. Dig Dis Sci. 2011; 56: 2423-31. 10. Kamezaki H, Kanda T, Wu S, et al. Emergence of entecavir-resistant mutations in nucleos(t)ide-naive Japanese patients infected with hepatitis B virus: virological breakthrough is also dependent on adherence to medication Scand Costroenterol 2011; 46: 1111-1117 - medication. Scand J Gastroenterol. 2011; 46: 1111-1117. 11. Haynes RB, McDonald HP, Garg AX. Helping patients follow prescribed treatment: clinical applications. JAMA. 2002; 288: 2880-2883. - treatment: clinical applications. JAMA. 2002; 288: 2880-2883. 12. Bramley TJ, Gerbino PP, Nightengale BS, et al. Relationship of blood pressure control to adherence with antihypertensive monotherapy in 13 managed care organizations. J Manag Care Pharm. 2006; 12: 239-245. - Ishibashi H, Maruyama H, Takahashi M, et al. Assessment of hepatic fibrosis by analysis of the dynamic behaviour of microbubbles during contrast ultrasonography. Liver Int 2010; 30: 1355-1363. - Wu S, Kanda T, Imazeki F, et al. Hepatitis B virus e antigen downregulates cytokine production in human hepatoma cell lines. Viral Immunol. 2010; 23: 467-476. - Usuda S, Okamoto H, Iwanari H, et al. Serological detection of hepatitis B virus genotypes by ELISA with monoclonal antibodies to type-specific epitopes in the preS2-region product. J Virol Methods. 1999; 80: 97-112. - Kobayashi S, Shimada K, Suzuki H, et al. Development of a new method for detecting a mutation in the gene encoding hepatitis B virus reverse transcriptase active site (YMDD motif). Hepatol Res. 2000; 17: 31-42. - Kanda T, Jeong SH, Imazeki F, et al. Analysis of 5' nontranslated region of hepatitis A viral RNA genotype I from South Korea: comparison with disease severities. PLoS One. 2010; 5: e15139. - Lau GK, Piratvisuth T, Luo KX, et al. Peginterferon alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N Engl J Med. 2005; 352: 2682-2695. - Chan HL, Leung NW, Hui AY, et al. A randomized, controlled trial of combination therapy for chronic hepatitis B: comparing pegylated interferon-α2b and lamivudine with lamivudine alone. Ann Intern Med. 2005; 142: 240-250. - Liaw YF, Jia JD, Chan HL, et al. Shorter durations and lower doses of peginterferon alfa-2a are associated with inferior hepatitis B e antigen seroconversion rates in hepatitis B virus genotypes B or C. Hepatology. 2011; 54: 1591-1599. - 21. Buster EH, Flink HJ, et al. Sustained HBeAg and HBsAg loss after long-term follow-up of HBeAg-positive patients treated with peginter-feron α -2b. Gastroenterology. 2008; 135: 459-467. - Wong VW, Wong GL, Yan KK, et al. Durability of peginterferon alfa-2b treatment at 5 years in patients with hepatitis B e antigen-positive chronic hepatitis B. Hepatology. 2010; 51: 1945-1953. Marcellin P, Lau GK, Bonino F, et al. Peginterferon alfa-2a alone, - Marcellin P, Lau GK, Bonino F, et al. Peginterferon alfa-2a alone, lamivudine alone, and the two in combination in patients with HBeAg-negative chronic hepatitis B. N Engl J Med. 2004; 351: 1206-1217. - Papadopoulous VP, Chrysagis DN, Protopapas AN, et al. Peginterferon alfa-2b as monotherapy or in combination with lamibudine in patients with HBeAg-negative chronic hepatitis B: a randomised study. Med Sci Monit. 2009; 15: CR56-CR61. - Marcellin P, Bonino F, Lau GK, et al. Sustained response of hepatitis B e antigen-negative patients 3 years after treatment with
peginterferon alpha-2a. Gastroenterology. 2009; 136: 2169-2179. - Liu H, Golin CE, Miller LG, et al. A comparison study of multiple measures of adherence to HIV protease inhibitors. Ann Intern Med. 2001; 134: 968-977. - Zoutendijk R, Reijnders JG, Brown A, et al. Entecavir treatment for chronic hepatitis B: adaptation is not needed for the majority of naïve patients with a partial virological response. Hepatology. 2011; 54: 443-451. J.S.H.C Hepatology Research 2013 #### doi: 10.1111/hepr.12238 #### **Original Article** # Novel hepatitis B virus strain developing due to recombination between genotypes H and B strains isolated from a Japanese patient Yoshihito Uchida, Jun-ichi Kouyama, Kayoko Naiki, Kayoko Sugawara, Mie Inao, Nobuaki Nakayama and Satoshi Mochida Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, Moroyamacho, Japan Aim: In Japan, genotypes B and C are the predominant genotypes isolated from patients with chronic hepatitis B, while genotype A predominates in patients with acute hepatitis B. Globalization, however, appears to have changed the distribution of the hepatitis B virus (HBV) genotypes. Thus, the viral characteristics of HBV genotypes other than genotypes A, B and C were examined. Methods: Screening of genotypes was performed by enzyme immunoassay and/or polymerase chain reaction INVADER method in 222 patients with HBV. The full-length nucleotide sequences of unusual strains were compared to those in the database, followed by construction of a phylogenetic tree Results: Unusual HBV strains were isolated from two patients: a 27-year-old Japanese bisexual man with acute hepatitis B with HIV co-infection and a 52-year-old Japanese man with chronic hepatitis B. The former strain was classified as genotype H, showing an overall identity of 99.8% to the Thailand strain (EU498228), while the nucleotide sequence of the latter strain showed similarity to the genotype B strains isolated in Malaysia (JQ027316) and Indonesia (JQ429079) between DR2 and DR1 in the X region, with identities of 96.9%. However, this strain was classified as genotype H by full-length sequence analysis, and the sequence between nt2023 and nt2262 showed no similarity to that in any previously reported strains. Conclusion: HBV strains showing recombination between genotype B and H strains were found even in chronic hepatitis patients in Japan. Globalization may yield HBV strains of possible novel genotypes containing novel nucleotide sequences in the precore/core region. **Key words:** genotype, globalization, hepatitis B virus, nucleotide sequence, recombination #### INTRODUCTION HEPATITIS B VIRUS (HBV) infection is a global health problem with an estimated 400 million people worldwide showing persistent infection. These patients are at a serious risk of developing the complication of liver cirrhosis and hepatocellular carcinoma (HCC), and approximately 1 million deaths per year are attributed to cirrhosis and HCC caused by HBV infection. In Japan, more than 30 000 people die of HCC each year,⁴ and in 15% of these cases, the etiology has been shown to be HBV infection.⁵ On the other hand, patients with persistent HBV infection serve as a source of HBV transmission to the healthy population, resulting in the occurrence of acute liver diseases with fatal outcomes. According to a nationwide survey of fulminant hepatitis and late-onset hepatic failure in Japan, acute liver failure is caused by HBV infection, either transient infection or acute exacerbation of persistent infection, in approximately 40% of cases.⁶⁻⁸ Hepatitis B virus is a double-stranded DNA virus belonging to the *Hepadnaviridae* family; the genome is composed of approximately 3200 nucleotides organized into four open reading frames (ORF) for the P, C, S and X genes.⁹ According to the results of full-length nucleotide sequence analysis of the entire genome, HBV has been classified into at least eight genotypes, A–H, Correspondence: Dr Satoshi Mochida, Department of Gastroenterology and Hepatology, Faculty of Medicine, Saitama Medical University, 38 Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan. Email: smochida@saitama-med.ac.jp Received 7 August 2013; revision 4 September 2013; accepted 4 September 2013. showing nucleotide differences of more than 8% from each other.10 The frequency of each genotype among isolates from patients with HBV infection differs depending on the geographic area of the world;11 genotype A HBV strains prevail in Africa, Europe and India, while genotype B and C strains are frequent in Asia, and genotype E strains in sub-Saharan Africa. On the other hand, genotype D strains are distributed all over the world, and genotype F and H strains are found exclusively in Central and South America. It has been demonstrated that the clinical features of patients with HBV infection, including their responses to antiviral therapies, differ depending on the genotype of the viral strain causing the infection, 12 suggesting that identification of the HBV genotype causing the infection, in addition to determination of the serum HBV DNA levels and mutation profile of the viral genome is crucial to establish the therapeutic strategy in patients with both acute and chronic liver diseases caused by HBV. However, it has been reported recently that globalization of the world may have altered the geographic distribution of HBV genotypes, including in Asian countries. In Japan, genotypes B1/Bj and C2 strains are the predominantly isolated strains from patients with both acute and chronic liver diseases caused by HBV infection; the distribution of the HBV genotypes has been reported to differ depending on the geographic areas even within Japan; genotype B strains are found more frequently in Okinawa islands and northeastern areas of Honshu island, while genotype C strains are more prevalent in other areas of Japan.¹³ It has been suggested that such a distribution pattern may be upset in the near future, because genotype A strains have begun to be isolated more frequently from patients with acute liver diseases caused by HBV infection in Japan, especially in metropolitan cities such as Tokyo, Osaka and Nagoya,14,15 and this genotype strain is known to produce persistent infection even in elderly patients contracting the infection. 16 Furthermore, the occurrence of recombination among different genotypes may also influence the geographic distribution patterns. HBV strains resulting from genome recombinations among genotype A, C and G strains have been found in Laos and Vietnam, and been tentatively proposed as "genotype I" strains.17,18 Moreover, a HBV strain positioned between the human and ape genotypes on the phylogenetic tree has been isolated from a Japanese patient with HCC who had previously lived in Borneo.¹⁹ Thus, we screened the genotypes of the HBV strains isolated from patients with acute and chronic liver diseases caused by HBV, and the full-length nucleotide sequences of the strains other than genotype A, B and C strains found in the screening examination were analyzed and compared with those in the database. In the present paper, we report on the viral characteristics of such unusual strains detected in Japanese patients with HBV infection. #### **METHODS** #### Patients and experimental designs THE SUBJECTS WERE 222 Japanese patients with L acute or chronic hepatitis seen first between May 2011 and December 2012 at the outpatient clinic of Saitama Medical University Hospital. All the patients tested positive for serum hepatitis B surface antigen (HBsAg), and the HBV genotypes were screened by enzyme immunoassay (EIA)^{20,21} or the polymerase chain reaction (PCR)-INVADER method.²² The full-length nucleotide sequence was analyzed when genotypes other than A, B or C were identified from the patients. The screening examinations for the HBV genotypes were done under the assurance of national health insurance coverage. Written informed consent was obtained from each of the patients prior to the analysis of the fulllength nucleotide sequences of the isolated HBV strains. The characteristics of the viral genotypes other than A, B or C identified through the screening examination were analyzed after obtaining the approval of the institutional review board of Saitama Medical University Hospital. ## DNA extraction and direct nucleotide sequencing of the HBV strains Nucleic acids were extracted from 200 μ L of serum samples QIAamp MinElute Virus Spin Kits (Qiagen, Tokyo, Japan). The virus DNA was eluted in RNase-free water at a volume of 100 μ L and maintained at $-20\,^{\circ}$ C until use. To obtain a full-length nucleotide sequence of HBV DNA, a long-distance nested PCR was performed to amplify two overlapping fragments according to the methods of Takahashi *et al.*²³ using oligonucleotide primers shown in Table S1. A fragment with a length of 3040 bases (WA2) corresponding to oligonucleotides from 1908–1780 nt of a standard genotype C HBV isolate was amplified using two primer sets, external WA-L (1859–1882 nt) and WA-R (1805–1828 nt) primers and internal WA2-L (1887–1908 nt) and WA2-R (1780–1801 nt) primers, and PrimeSTAR GXL DNA Polymerase (TaKaRa, Shiga, Japan) with the primer annealing at 60°C for 35 cycles in the first PCR and 30 cycles in the second PCR. A fragment with a length of approximately 378 bases (gN2) corresponding to the residue from 1702-2081 nt was amplified similarly using two primer sets, external gN1-L (1606-1625 nt) and gN1-FR/gN1-HR (2160-2179 nt) primers and internal gN2-L/gN2-HL (1683-1702 nt) and gN2-FR/gN2-HR (2081-2100 nt) primers, and TaKaRa Ex Taq Hot Start Version (TaKaRa) with the primer annealing at 55°C for 35 cycles in the first PCR and 30 cycles in the second PCR. PCR conditions for PrimeSTAR GXL DNA Polymerase and PrimeSTAR GXL DNA Polymerase were specified according to the protocol of the manufacturer. Both WA2 and gN2 fragments were purified using the
QIAquick PCR Purification Kit (Qiagen) and sequenced using the BigDye Teminator version 3.1 Cycle Sequence Kit (Applied Biosystems, Foster City, CA, USA) using the internal primers shown in Table S1, according to the protocol of the manufacturer. The nucleotide sequences of the amplified products were directly sequenced with a 3130 Genetic Analyzer (Applied Biosystems), and the obtained data for nucleotide sequences were connected using ATGC version 7 (GENETYX, Tokyo, Japan). #### Whole-genome cloning of HBV strains To obtain a whole-genome clone of HBV strains, an additional PCR and In-Fusion reactions were performed. The WA2 and gN2 fragments were amplified using Prime STAR MAX DNA Polymerase (TaKaRa) and primer sets, WA2-Sap I-L (1943-1960 nt) and WA2-Sap I-R (1689-1708 nt) primers and gN2-Sap I-L (1704-1723 nt) and gN2-Sap I-R (1940-1957 nt) primers, respectively (Table S1), with the primer annealing at 55°C for 35 cycles. T-Vector pMD20 (TaKaRa) was amplified using a primer set, pMD20-Sap I-L (1705-1708 nt) and pMD20-Sap I-R (1704-1707 nt) primers, at conditions similar to that in amplification of both fragments. All PCR conditions were specified according to the protocol of the manufacturer. Both fragments and the vector were purified using the QIAquick PCR Purification Kit (Qiagen). WA2-Sap I fragment (100 ng), 50 ng of gN2-Sap I fragment and 100 ng of T-Vector pMD20-Sap I were mixed in a tube with In-Fusion HD Enzyme Premix (Clontech, Mountain View, CA, USA) at a total volume of 10 uL. The reaction mixture was incubated at 50°C for 15 min, and then transferred to ice. Reaction mixture (2.5 µL) was transformed into Stellar Competent Cell (Clontech) followed by mini-prepping and was subjected to nucleotide sequencing. Both conditions for In-Fusion reaction and transformation were specified according to the protocol of the manufacturer. #### SimPlot analysis and construction of the phylogenetic tree The complete full-genome sequences of the isolated HBV strains were compared with those of the 35 reference sequences retrieved from the DNA Data Bank of Japan (DDBJ)/European Molecular Biology Laboratory (EMBL)/GenBank database. The full-genome sequences of the following HBV strains shown in the database (represented by their accession numbers) were used in the SimPlot analysis, followed by construction of the phylogenetic tree: genotype A, AB076678, AF090838 and M57663; genotype B, AB010291, AB033554, AF121249, D00329 and D50521; genotype C, AB049609, AB049610, AB112063, AB112066, AB112471 and AB115417; genotype D, AB033559, AB126581 and Z35716; genotype E, AB091255, AB106564 and X75657; genotype F, AB166850, AY090459 and X69798; genotype G, AB056513, AB064310 and AF160501; genotype H, AB179747, AY090454, AY090457 and AY090460; genotype I, EU833891, GU357844, JF899337 and JF899338; and genotype J, AB486012. The nucleotide sequences were multiple-aligned using GENETYX for Windows version 11 software (GENETYX) and the genotype was specified using Kimura's twoparameter method.24 A phylogenetic tree was constructed by the neighbor-joining method.25 To confirm the reliability of the phylogenetic tree analysis, bootstrap resampling and resampling were carried out 1000 times. The subtypes of the strains used for the comparison were obtained from published articles.26,27 Moreover, the recombination of the HBV genomes among strains of different genotypes was examined by the SimPlot program (available at http://sray.med.som .jhmi.edu/SCRoftware/) and boot scanning analysis. 25,28 #### **RESULTS** #### Genotypes of HBV strains obtained from patients with acute and chronic liver diseases THE HBV STRAINS isolated from the 222 patients ■ were classified according to the screening examinations carried out by EIA and/or the PCR-INVADER method as follows: genotype A, 21 (9.4%) strains; genotype B, 66 (29.7%) strains; and genotype C, 112 (50.5%) strains. The HBV genotype was indeterminate in 21 patients (9.4%) due to the low titers of serum HBsAg and/or HBV DNA. When the total subject population was stratified further, genotypes A, B, C and the indeterminate genotype were found in 15 (50.0%), three (10.0%), 11 (36.7%) and zero (0%) of the 30 patients with acute liver diseases, and six (3.1%), 63 (32.8%), 101 (52.6%) and 21 (11.0%) of the 192 patients with chronic liver diseases, respectively. In contrast, one each of the patients (1.0%) with acute (case 1) and chronic (case 2) liver diseases had a HBV genotype other than A, B or C. The demographic and clinical features of the two patients were as follows. A 27-year-old bisexual man (case 1) working in the adult entertainment industry was diagnosed as having acute hepatitis caused by HBV, and the genotype of the infecting HBV strain was identified as genotype H by the PCR-INVADER method. He received highly active antiretroviral therapy because of co-infection with HIV, and the serum HBV DNA titers decreased to less than the detectable level, with positivity for serum anti-HBs antibody developing 25 months later. A 57-year-old man (case 2) was diagnosed as having chronic hepatitis caused by HBV, and the infecting HBV strain was classified as genotype F by the PCR-INVADER method, despite the genotype being classified as indeterminate by the EIA method. His deceased father had lived in Brazil in his youth and his elder brother had been diagnosed as being a HBV carrier at another hospital. He received oral entecavir at a daily dose of Figure 1 A phylogenetic tree constructed based on the full-length sequence of hepatitis B virus (HBV) strains isolated from case 1 and case 2 in comparison with that of 35 reference strains. The bootstrap values are indicated at each tree root and the genotypes are on the right. The horizontal bar provides a genetic distance. 0.5 mg, and the serum HBV titers decreased from 5.3 log copies/mL to a level less than 2.1 log copies/mL by 3 months of treatment. #### Full-length nucleotide sequences of the isolated HBV strains that were different from genotypes A, B and C The nucleotide sequences of the HBV strains isolated from cases 1 and 2 were analyzed. A phylogenetic tree constructed based on the full-length sequence of HBV genome led to classification of the HBV strain isolated from case 1 as genotype H, showing an overall identity of 99.8% (3210/3215 bp) to the Thailand strain of genotype H (EU498228) (Figs 1,2). A similar analysis using a phylogenetic tree led to classification of the HBV strain isolated from case 2 as genotype H (Figs 1,3) despite it being classified as indeterminate and genotype F by EIA and PCR-INVADER assay, respectively. The full-length nucleotide sequence analysis showed an overall identity of 97.1% (3125/3218 bp) to genotype H strain isolated from a patient in Mexico (AB375164). The nucleotide sequence of the HBV strains isolated from case 2 was further analyzed depending on the ORF, because the identity of the full-length nucleotide sequences to that of previously reported strains was less in case 2 than that in case 1. Consequently, the nucleotide sequence between DR2 (1590-1600 nt) and DR1 (1824-1834 nt) in the X region showed a similarity to that of the corresponding region of a genotype B strain isolated in Malaysia (JQ027316) and Indonesia (JQ429079), with identities of 98.4% (241/245 bp) and 98.0% (240/245 bp) (Fig. 4a). Moreover, analysis of the nucleotide sequence between 2023 and 2262 nt in the precore/core regions revealed that several different clones existed as quasispecies among HBV strains isolated from case 2, and two major clones, C2-1 and C2-2, were separated following cloning and sequencing of whole-genome nucleotides. Both C2-1 and C2-2 clones Figure 2 Nucleotide similarity comparison of a full-length sequence of hepatitis B virus (HBV) strains isolated from case 1 in reference to previously reported HBV genotypes A-J. The parameters used for the analysis are shown at the bottom of the figure (200-bp window size, 20-bp step size and gap-stripped alignments). 6 Y. Uchida et al. Hepatology Research 2013 Figure 3 Nucleotide similarity comparison of the full-length sequence of the hepatitis B virus (HBV) strain isolated from case 2 in reference to previously reported HBV genotypes A–J. The parameters used for the analysis are shown at the bottom of the figure (200-bp window size, 20-bp step size, 100 bootstrap replicates, gap-stripped alignments and neighbor-joining algorithm). were classified as genotype H according to full-length nucleotide sequence analysis, with an identity of 96.4% to 95.8% to each other, and as genotype B based on analysis of the nucleotide sequence between DR2 and DR1, with an identity of 96.9% to 95.8%, respectively. However, the nucleotide sequence between 2023 and 2262 nt in the precore/core regions showed no similarity to that of any previously reported HBV strains. In these regions, the C2-1 and C2-2 clones showed nucleotide sequences with an identity of 98.6% to each other, and the nucleotide divergences in comparison to strains of genotypes A-J ranged 9.6-30.0% in the C2-1 clone and 8.1-28.5% in the C2-2 clone (Table 1). A phylogenetic tree constructed based on these regions revealed that both strains may be classified into the novel cluster of HBV (Fig. 4b). Also, the amino acid sequence divergences from previously reported HBV strains ranged from 18.1% to 27.9% in the C2-1 clone and 17.1% to 26.9% in the C2-2 clone. The nucleotide sequence data reported in the present study will appear in the DDBJ/EMBL/GenBank databases under accession number AB818694 for case 1, AB819065 for the C2-1 and AB819066 for the C2-2 strain. #### **DISCUSSION** In the Present paper, the genotypes of the HBV strains isolated from 222 patients with acute and chronic hepatitis B were evaluated by EIA and/or PCR-INVADER assay, and HBV genotype A strains, commonly isolated in Africa, Europe and India, were found in 9.4% of the patients; genotype A strains were isolated from 50.0% of patients with acute
liver diseases and 3.1% of patients with chronic liver diseases. These values were almost in line with those reported from other institutions in Japan. ¹¹⁻¹³ HBV genotype A strains are known to be frequently isolated from patients with Figure 4 A phylogenetic tree constructed based on the sequence of the hepatitis B virus (HBV) strain isolated from case 2 in comparison with that of 35 reference strains. The bootstrap values are indicated at each tree root and the genotypes are on the right. The horizontal bar provides a genetic distance. The regions included in the analysis were: (a) nucleotide sequence between DR2 (1590 nt) and DR1 (1834 nt) in the X region, (b) between 2023 and 2262 nt in the precore/core region. acute liver diseases caused by HBV, especially in urban areas as compared to the countryside,29 suggesting that globalization and diversification of the sex industry may change the distribution pattern of the HBV genotypes in Japan, including in Saitama Prefecture, the area around our institution. To our surprise, HBV genotype H strains, which are mainly prevalent in Central America, were isolated from two patients, one each with chronic and acute liver diseases. The HBV strain isolated from the patient with acute liver disease (case 1) showed a nucleotide sequence with 99.8% identity to the Thailand strain (EU498228), which has recently been reported to be isolated from Japan as well as Central America.30 Considering that case 1 was a bisexual male with HIV co-infection contracted as a result of sexual activities with a number of unspecified Japanese partners, the HBV strain isolated from this patient may be resident in Japanese persons engaging in unusual sexual activities. On the other hand, HBV genotype A strains, especially the genotype A2/Ae strain, have been isolated increasingly frequently from patients with HBV and HIV co-infection.31 These observations prompted us to postulate that HBV genotype H strains as well as genotype A Figure 4 Continued strains seem to spread among Japanese persons with unusual sexual habits. Previously, Tanaka *et al.* reported a HIV-infected patient in whom co-infection of both HBV genotype H and G strains was observed.³² In case 1, however, co-infection of HBV genotype G strain was not detected. It is noteworthy that HBV genotype H strains were isolated even from a Japanese patient with chronic liver disease (case 2), which showed recombination with a genotype B strain. The recombination breakpoint was estimated at positions 1590 and 1834 nt, located between DR2 and DR1 in the X region (Fig. 5): the nucleotide sequence in the X region of this strain showed an identity of 97.2% to that of genotype B strains in Malaysia (JQ027316) and Indonesia (JQ429079) despite the full-length nucleotide sequence showing 97.1% identity to a genotype H strain isolated from Mexico (AB375164). In the present study, nucleotide sequences were analyzed using two fragments (WA2 and gN2), suggesting that the possible recombination points exist in the overlapping regions of both fragments. However, the possibility that both genotypes B and H HBV strains existed as quasispecies in case 2 was neglected, because the sequences of the overlapping regions (1702–1780 and 1908–2081 nt) showed 100% identity between WA2 and gN2 fragments. It is well known that a HBV genotype B2/Ba strain, widely prevalent in Asian countries, shows nucleotide sequences identical to genotype C strains in the precore/core region due to the inter-genotype recombination Pable 1 Percentages of differences in the nucleotide and amino acid sequences of hepatitis B virus (HBV) strains isolated from case 2 (C2-1 and C2-2) and representative strains of genotypes A–J HBV | | | | | Percent | ages of differen | Percentages of differences to representative HBV strains of genotypes | tative HBV stra | ins of genotype | Sa | | | |------|------------|-----------|-----------|-----------|------------------|---|-----------------|-----------------|-------------|-----------|-------| | | | A (3) | B (5) | C (6) | D (3) | E (3) | F(3) | G (3) | H (4) | I (4) | J (1) | | C1-1 | Nucleotide | 25.9–30.0 | 25.6–28.6 | 24.4–26.9 | 26.9–29.6 | 28.5–29.8 | 17.6–17.9 | 26.2–26.7 | 9.6-13.0 | 24.8–26.5 | 26.1 | | | Amino Acid | 18.6-25.7 | 21.3-25.1 | 23.8-27.9 | 22.8-25.5 | 24.2-25.7 | 18.1-18.2 | 22.8-24.2 | 18.1 - 19.4 | 22.7-27.3 | 24.6 | | C2-2 | Nucleotide | 24.4-28.5 | 24.1-27.1 | 22.9-25.4 | 25.4 - 28.1 | 27.0-28.3 | 16.1 - 16.4 | 24.7-25.2 | 8.1-11.5 | 23.3-25.0 | 24.6 | | | Amino Acid | 17.6-24.7 | 20.3-24.1 | 22.8-26.9 | 21.8-24.5 | 23.3-24.7 | 17.1–17.2 | 21.8–23.3 | 17.1–18.4 | 21.7–26.3 | 23.6 | | | W | | | | | | | | | | | Values in parenthesis indicate the number of HBV strains between B and C strains. 33 Also, HBV strains developing as a consequence of the inter-genotype recombination between A and D, A and E, A and C, C and D, and C and G have been reported from Africa, Vietnam, Tibet and Thailand.34-37 Moreover, recombination among HBV strains of the same genotype, the so-called intragenotype recombination, has been proposed to occur especially in HBV genotype A, D, F and H strains.38 However, HBV genotype H strains showing recombination with other genotype strains have not ever been reported. Considering the fact that the father of case 2 had lived in Brazil in his youth, the sequences of genotype H in case 2 strains might have originated in Brazilian strains. In Brazil, genotypes A and D HBV strains are predominantly distributed with frequencies of 49.5% and 24.3%, respectively, while genotype B HBV strains are only 2.9%.39 Thus, the recombination event with the genotype B HBV strain might have developed following the emigration of his father to Japan. To clarify the area and era in which the recombination developed, the fulllength nucleotide sequence of the HBV strain isolated from the elder brother of case 2 needs to be evaluated, but, unfortunately, the brother, receiving medical examination at another institution, rejected further viral genome analysis. Although the mechanisms involved in the development of inter-genotype and intra-genotype recombination of the HBV genomes remains unclear, several observations reported in previous publications prompted us to postulate the "non-random pathway"; DR1 (1830 nt) in the X gene, a possible origin of viral replication, is considered to be a hot spot that may be responsible for recombination of HBV genomes among different strains. 40,41 Hino et al. reported, based on in vitro recombination assay, that HBV DNA fragments containing the region spanning DR1 increased the recombination events reproducibly in the presence of extracts from actively dividing HCC cells.40 Also, Pineau et al. revealed that the integration sites of covalently closed circular HBV DNA were usually located in the nucleotide sequence between 1600 and 2000 nt, when the HBV genomes chromosomally integrated in the host genomes were evaluated in human HCC tissues. 41 These in vitro and in vivo observations were consistent with the results obtained from the analysis of the HBV strains isolated from case 2, showing that the genome of the HBV genotype B strains were integrated in that of the HBV genotype H strain between DR2 and DR1. Hepatitis B virus strains isolated from case 2 were classified as quasispecies in accordance with the nucleotide sequence between 2023 and 2262 nt in the precore/ Figure 5 Hepatitis B virus (HBV) genome and the open reading frame. (a) The sequence region (shaded in red) includes the recombination breakpoint at position 1590 and 1834 nt, located between DR2 and DR1 in X region. (b) Nucleotide alignments over the sequences spanning 1501–1900 nt in case 1, C2-1, C2-2 and reference strains of HBV genotype H (accession no. EU498228) and B (JQ027316). Dashed lines at 1590 and 1834 nt represent the recombination breakpoint. core regions. Thus, the nucleotide sequences were analyzed following cloning of the HBV genome, and two major clones, C2-1 and C2-2, were isolated. Neither clone showed any similarity to any of the previously reported strains in the precore/core regions, and a phylogenetic tree constructed based on these regions revealed that these strains may be classified into the novel cluster of HBV; sequence divergences of nucleotides in the range of 8.1–30.0% and of amino acid in the range of 17.1–27.9% as compared to previously reported genotype A–J strains. The possibility that intergenotype recombination of the HBV genome between H and B strains may provoke mutation of the nucleotide sequence in the precore/core regions leading to development of a possible novel genotype HBV strain needs to be evaluated in the future. In conclusion, HBV genotype H strains, which are prevalent in Central American countries, were isolated from Japanese patients with chronic as well as acute liver diseases. HBV strains isolated from the chronic liver disease patient showed recombination of the genome between genotype H and B strains, and no similarity was found in the nucleotide sequences of the precore/core regions in comparison with those of the previously reported HBV strains. Thus, globalization may promote development of a possible novel genotype of HBV through recombination between Central American and East Asian strains.