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Figure 4 Metabolism and biological effects of genotoxic and nongenotoxic carcinogens on carcinogenesis.

that may prevent the entry of cells with DNA damage into the cell
cycle prior to when DNA repair occurs and the cell divides.”® The
capacity of cancer cells to evade the cellular defense mechanism
strongly contributes to carcinogenesis.

Alterations in the ras gene have been identified in several
chemical-induced neoplasms in rodents. Mutations of the ras gene
exist in about 20% of human neoplasms in the colon, breast, lung,
and bladder.** An analysis of the ras gene isolated from the DNA of
neoplasms revealed that changes in the sequence of nucleotides
correspond to the places where carcinogens interact with DNA. Of
note, each chemical compound appears to create its own unique
fingerprint on the DNA.

The tumor suppressor genes, such as those encoding p53, p21,
and pRb, play crucial roles in cellular protection, because they
encourage the blockade of the cell cycle at the G1 phase.>® The loss
of the pRb protein function provokes an increase in the cell prolif-
eration rate and an absence of terminal differentiation. p53 can
interrupt the cell cycle at G1 and allow cells to repair DNA damage.*’

The most prominent and best-studied tumor suppressor is p53.
When DNA is damaged, p53 can induce either cell cycle arrest or
apoptosis in order to maintain the stability of the cell's genome.”®
The loss of p53 during carcinogenesis can predispose preneo-
plastic cells to accumulate additional mutations by blocking the
normal apoptotic response to genetic damage.>® The loss of p53
function also activates proto-oncogenes and inactivates other tu-
mor suppressor genes, and therefore has an integral role in
chemical carcinogenesis.?’ The biological activity of p53 protein is
largely related to its ability to bind transcriptional regulatory ele-
ments in the DNA. The search for critical genes regulated by p53 led
to the discovery of the gene encoding p21, which inhibits cyclin-
dependent kinases, thus providing a functional link between p53
and the cell cycle.’®

The mismatch repair pathway is also influenced by the p53
family. p53 and p73 induce the expression of p53R2, a gene that is
homologous to the R2 regulatory subunit of ribonucleotide reduc-
tase.’” p53R2 functions in a nonspecific manner to increase the
pool of free dNTPs when the need for repair arises. Although p53R2
and R2 are similar, they differ in their N-terminal amino acid
sequence and regulation. p53R2 is induced by p53 and p73,

whereas R2 synthesis occurs during S phase. The p53R2 and R1
complex functions as an active ribonucleotide reductase.”® p53 also
upregulates two very important proteins in the mismatch repair
pathway: human MutS homologue 2 (hMSH2) and proliferating cell
nuclear antigen (PCNA).>® Mutations of hMSH2 result in hereditary
nonpolyposis colorectal cancer, a colorectal cancer syndrome.
hMSH2 functions in mismatch recognition and binds mismatched
bases.®” PCNA, a cofactor for DNA polymerase 3 is another p53
target gene that interacts with hMSH2 to facilitate hMSH2 transfer
to mismatched bases.®!

The genes involved in carcinogenesis are classified as caretakers
and gatekeepers.”"%? This classification is based on their involve-
ment in maintaining the genomic integrity and DNA repair,
respectively.5? The caretakers are responsible for maintenance of
the genome stability. Mutations in the caretaker genes, which are
considered to be typical tumor suppressors, compromise the
genome stability, and more specifically, increase the probability of
mutation in the gatekeepers, which include both tumor suppressor
genes and oncogenes.’> Gatekeeper genes regulate neoplastic
development by inhibiting the cell growth.>® By contrast, the
inactivity of caretaker genes does not support the induction of
neoplasia, instead favoring genetic instability, which results in an
increase in mutations across all genes, including the gatekeeper(s).
Neoplasms with an inactive gatekeeper gene can progress quickly
as a cg]nsequence of its effect on genes that directly control cell
death.”

5. Proteomics in chemical carcinogenesis

Chemical carcinogenesis studies and, in consequence, biomarker
discovery research, have usually placed their focus on the initiation
part of the initiation/promotion model of carcinogenesis, which
becomes apparent when looking at the impressive number of
biomarker studies targeting genotoxic effects. However, exposure
to some chemicals has been shown to result in carcinogenesis
without involving the initiation step. The mechanism of non-
genotoxic carcinogenesis is still incompletely understood, and an
active debate continues regarding the relative contribution of
procarcinogenic endogenous mechanisms, including the
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generation of free radicals and the perturbation of epigenetic
mechanisms by chemical carcinogens. The next critical step in
carcinogenesis is the point when these altered cells start clonal
expansion. It is important to identify and validate biomarkers
indicating the start of clonal expansion. For this purpose, a prote-
omic analysis focusing on the effects of chemical carcinogens would
be useful. Two-dimensional electrophoresis with subsequent
matrix-assisted laser desorption and ionization time-of-flight mass
spectrometry for protein separation and identification can be
applied in these proteomic studies.®

Alterations of highly abundant proteins have been identified,
which, irrespective of the wide differences in study design and
technologies used, can be grossly assigned into three functional
classes: (1) proteins related to the cellular stress response; (2)
inflammation; and (3) stimulation of the immune system.®® Of
note, the observed protein alterations are not causal factors in the
development of chemically induced cancer, but rather reflect
common reactions to cellular perturbations. In order to gain deeper
insights into the process of chemical carcinogenesis, the previously
applied “shotgun” analyses have to be abandoned in favor of tar-
geted proteomic approaches focusing on the accurate identification
and quantification of selected proteins. Advanced analytical tech-
niques, such as selective reaction monitoring and multiple reaction
monitoring, may have the potential to contribute to the elucidation
of chemical carcinogenesis.

6. MicroRNA

A number of recent studies have reported the involvement of
microRNAs (miRNAs) in the regulation of cancer initiation, devel-
opment, and metastasis.? In malignant cells, miRNAs are often
dysregulated, with their expression patterns being correlated with
clinically relevant tumor characteristics.” Several studies on the
relationship between miRNAs and carcinogen exposure have also
been reported.®® These studies indicated that alterations in genes
encoding miRNA genes play an important role in chemical carci-
nogenesis. A number of genotoxic carcinogens that dysregulate
miRNA expression have been identified. The currently available
information suggests that miRNA expression is associated with
tumor initiation.5®%° The expression of many miRNAs is readily
changed in cells and target tissues after acute or chronic exposure
to genotoxic carcinogens. Many of the differentially expressed
miRNAs are involved in regulating genes that are important for
carcinogen metabolism, DNA repair, apoptosis, and other cancer-
related functions.

The progression phase of carcinogenesis is less well understood.
During this phase, there is further growth and expansion of the
tumor cells over that of normal cells. The genetic material of the
tumor is thus more fragile and prone to additional mutations. These
mutations occur in genes that regulate the growth and cell func-
tions, such as oncogenes, tumor suppressor genes, and DNA
mismatch-repair genes. These changes contribute to tumor ma-
lignancy. Because miRNAs can function as oncogenes or as tumor
suppressor genes, miRNAs have been found to have a role in the
progression of chemical-induced tumorigenesis.%® Alterations in
the miRNA expression in tumors induced by chemical carcinogens
play an important role in tumor development.®®

Therefore, the current evidence shows that miRNAs play
important roles in every stage of chemical carcinogenesis, including
initiation, promotion, and progression. Changes in the miRNA(s)
occur prior to tumor formation, and are not merely a consequence
of a transformed state. The expression of a large number of miRNAs
is readily changed in the target tissues after acute or chronic
exposure to carcinogens, but these changes are not observed in
nontarget tissues or following exposure to noncarcinogenic

T. Tanaka et al.

chemicals. Many of the miRNAs deregulated by carcinogens are
involved in regulating genes that are important for chemical
carcinogenesis.

7. Conclusion and future perspectives

Chemical carcinogenesis has multiple stages and multifactorial
processes, which are associated with genetic alterations. The
acquisition of the capacity to survive and grow independently from
other cells represents a crucial event in the process of cancer
development. Most of the morphological, biochemical, and genetic
changes should be considered to be a reflection of the adaptation of
neoplastic cells to survive. The prediction of chemical carcinoge-
nicity is of great importance for human risk assessment.

The research on chemical carcinogenesis has a rich history of
scientific accomplishment that includes the fields of cancer biology,
cancer risk assessment, public health policy, and an understanding
of lifestyle- and occupation-related causes of cancer, as well as
cancer chemoprevention. The gene—environment interactions and
interindividual variations in the molecular epidemiology of human
cancer risk are beginning to be understood based on studies of
chemical carcinogenesis, cellular and molecular biology, and
epidemiology. Based on these investigations of chemical carcino-
genesis, many biomarkers of cancer risk and detection have been
developed. These include carcinogen-DNA adducts, somatic muta-
tions, and the mutation spectrum linking carcinogen exposure and
DNA adduction with mutation.

Chemical carcinogens and viral interactions may have syner-
gistic effects on cancer development: dietary AFB; and HBV infec-
tion results in the occurrence of hepatocellular cancer. Chemical
carcinogenesis using rodent models has also played, and contin-
uous to play, an important role in the field of cancer chemopre-
vention and in our understanding of the mechanisms of
inflammation-associated cancer and the contribution of miRNAs
to cancer. However, additional studies of chemical carcinogenesis
related to stem cells and the epigenetic alterations that occur
during chemical carcinogenesis are warranted to provide a better
understanding of carcinogenesis and to gain an insight into better
strategies to prevent, detect, and treat cancer.
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Abstract

inhibits NAFLD/NASH-related liver tumorigenesis.

NAFLD/NASH.

NAFLD/NASH-related liver tumorigenesis.

Purpose: Non-alcoholic fatty liver disease (NAFLD) ranges from simple steatosis to non-alcoholic steatohepatitis
(NASH). NASH, which is accompanied by increased oxidative stress and inflammation in the liver, is associated with
hepatic carcinogenesis. Green tea catechins (GTCs) possess anti-oxidant, anti-inflammatory, and cancer-preventive
properties. In this study, we investigated whether (-)-epigallocatechin-3-gallate (EGCG), a major component of GTCs,

Methods: Male 8-week-old Sprague—-Dawley (SD) rats were administered a single intraperitoneal injection of a
hepatic carcinogen diethylnitrosamine (DEN, 30 mg/kg body weight) and then fed a high-fat diet (HFD) for 7 weeks.
The rats were also provided tap water containing 0.01% or 0.1% EGCG during the experiment.

Results: At sacrifice, the livers of SD rats treated with DEN and HFD exhibited marked development of glutathione
S-transferase placental form (GST-P)-positive foci, a hepatic preneoplastic lesion, and this was associated with
hepatic steatosis, oxidative stress and inflammation, and hepatocyte proliferation. EGCG administration, however,
inhibited the development of GST-P-positive foci by decreasing hepatic triglyceride content, reducing hepatic
fibrosis, lowering oxidative stress, attenuating inflammation, and inhibiting excessive hepatocyte proliferation in
DEN- and HFD-treated SD rats. These findings suggest that the experimental model of SD rats treated with HFD
and DEN, in which histopathological and pathophysiological characteristics of NASH and the development of
hepatic premalignant lesions were observed, might facilitate the evaluation of liver tumorigenesis associated with

Conclusions: Administering EGCG, a GTC, might serve as an effective chemoprevention modality for

Keywords: Non-alcoholic steatohepatitis; Liver tumorigenesis; Oxidative stress; Inflammation; EGCG

Background

Non-alcoholic fatty liver disease (NAFLD), which is con-
sidered a hepatic manifestation of the metabolic syn-
drome, is currently one of the most common chronic liver
diseases worldwide. NAFLD is classified into simple
steatosis and non-alcoholic steatohepatitis (NASH), the
latter being a severe condition of inflamed fatty liver
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that can, in time, lead to hepatic fibrosis, cirrhosis, he-
patocellular carcinoma (HCC) development, and result
in increased mortality (Chiang et al,, 2011; Cusi, 2012;
Siegel and Zhu, 2009). Steatohepatitis has been indi-
cated by epidemiological studies to be a significant risk
factor for developing HCC, at an annual HCC incidence
of 2%-3% in patients with NASH (Adams et al., 2005;
Ascha et al., 2010). In 1998, Day and James proposed a
“two-hit theory” to explain NAFLD/NASH pathogenesis:
the first hit, hepatic steatosis, increases the sensitivity of
the liver to proinflammatory insults, while the second hit
involves oxidative stress (Day and James, 1998). Oxidative

© 2013 Sumi et al, licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http//creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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stress, which is associated with HCC development (Suzuki
et al, 2013), is substantially higher in NASH patients than
in NAFLD patients and normal control subjects (Sanyal
et al,, 2001). Moreover, tumor necrosis factor (TNF)-a and
interleukin (IL)-6, both of which are major proinflam-
matory cytokines, play a critical role in obesity-related
steatohepatitis and subsequent liver tumorigenesis (Park
et al., 2010).

Several animal models that mimic the pathophysiological
mechanisms associated with NAFLD/NASH-related liver
carcinogenesis have been developed recently (Hebbard
and George, 2011; Schattenberg and Galle, 2010; Kochi
et al.,, 2013). For instance, db/db mice, which exhibit
obesity, diabetes, dyslipidemia, and severe steatosis, are
susceptible to liver tumorigenesis induced by a hepatic
carcinogen diethylnitrosamine (DEN), and thus are re-
garded as useful animal models for investigating patho-
biology of NAFLD/NASH-related liver carcinogenesis
and for screening the chemopreventive effects of vari-
ous compounds either synthetic or natural on NAFLD/
NASH-related liver carcinogenesis (Iwasa et al., 2010;
Shimizu et al. 2011a, 2011b, 2011c). Recently, Wang
et al. (Wang et al. 2009) reported that NASH induced
by a high-fat diet (HFD) promoted DEN-initiated early
hepatocarcinogenesis in Sprague—Dawley (SD) rats and
that this was associated with increased oxidative stress
and inflammation. This animal model is also useful for
investigating the efficacy of certain types of synthetic
compounds and/or phytochemicals in preventing NASH-
promoted liver carcinogenesis (Wang et al., 2010).

The prevalence of NAFLD/NASH has risen recently in
parallel with the dramatic increase in obesity and its re-
lated metabolic abnormalities, especially diabetes mellitus
(Chiang et al,, 2011; Cusi, 2012; Siegel and Zhu, 2009), in-
dicating an urgent requirement for developing an effective
strategy to treat NAFLD/NASH and, consequently, to pre-
vent NAFLD/NASH-related liver carcinogenesis. A recent
randomized trial (Sanyal et al., 2010) has shown that treat-
ment with vitamin E, an antioxidant, reduces steatosis
and lobular inflammation in the liver of NASH patients.
Reducing oxidative stress and inhibiting the inflammation
induced by obesity and steatosis are also effective in pre-
venting obesity- and diabetes-related hepatotumorigenesis
(Shimizu et al. 2013, 2012). These reports suggest that
targeting oxidative stress and chronic inflammation is

Table 1 Body and organ weights of the experimental rats

Page 2 of 10

an optimal strategy for preventing NAFLD/NASH-related
liver carcinogenesis.

Green tea catechins (GTCs) might be one of the most
promising candidate compounds for preventing NAFLD/
NASH-related liver carcinogenesis because they are con-
sidered to protect against metabolic disorders such as
NAFLD (Masterjohn and Bruno, 2012; Thielecke and
Boschmann, 2009) and also display cancer chemopre-
ventive properties in various tissues, including the liver
(Shimizu et al. 2011b; Kochi et al, 2013; Yang et al,
2009). In this study, we developed a novel rat model of
NAFLD/NASH-related carcinogenesis and investigated
the potential capacity of (-)-epigallocatechin-3-gallate
(EGCQG), a major component of GTCs, to inhibit the
occurrence of HFD- and DEN-induced glutathione S-
transferase placental form (GST-P)-positive foci, an indi-
cator of preneoplastic HCC lesions in rats (Tsuda et al,
2003; Ando et al., 2007).

Results

General observations

At the end of the experimental period, the rats in the 3
groups exhibited no significant differences with respect
to the mean body, liver, and kidney weights (Table 1).
Histopathological examination revealed that administering
EGCG produced no detectable toxic effects on critical
organs including the liver, kidney, and spleen (data not
shown).

Effects of EGCG on hepatic steatosis and serum ALT levels
in rats

At sacrifice, macrovesicular steatosis with ballooned hepa-
tocytes, Mallory-Denk bodies, and foci of inflammatory
cells, which are a recognized feature of NASH (Kleiner
et al,, 2005), were observed in the livers of rats in all groups,
indicating that the histopathological characteristics that de-
velop in this animal model reproduce those of NASH.
However, these pathological effects were alleviated by the
administration of 0.01% and 0.1% EGCG (Figure la and
1b). In particular the total NAFLD activity score (NAS)
consisting of the steatosis, inflammation, and ballooning
scores, was significantly lower in 0.1% EGCG-treated rats
than in EGCG-untreated control rats (Figure 1lc, P <0.05).
Similar results were obtained following measurement of
intrahepatic lipid content: the levels of liver triglycerides in

Group No. EGCG No. of rats I?ody Relative organ weight (g/100 g body weight)
weight (g) Liver Kidneys

1 - 7 5127 +37.8° 38+05 0604

2 0.01% 4955 +290 39+06 07+03

3 0.1% 6 501.6+443 35+02 06+03

®Mean + SD.
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Figure 1 Hepatic histopathology, intrahepatic levels of triglycerides, and serum levels of ALT. (a) and (b) H&E staining of liver sections
from the experimental rats. (a) Representative photomicrographs of liver sections of rats treated DEN/HFD with or without EGCG. Bars, 100 pm.
(b) An enlarged photo of the liver section from a rat treated DEN/HFD without EGCG (an enclosed area with square in Figure 1a). Note ballooned
hepatocytes (indicated by the white arrow), Mallory-Denk bodies (indicated by the black arrow), and focus of inflammatory cells (circled by dotted
line). Bars, 50 pm. (c) The NAS was determined from histopathological analysis. (d) Hepatic lipids were extracted from frozen liver samples of rats

in the 3 groups, and the triglyceride (TG) levels were measured. (e) Blood samples were collected at sacrifice and the serum levels of alanine
aminotransferase (ALT) were determined. The values are expressed as mean =+ SD. *P < 0.05. Ctrl, control group.

the DEN- and HFD-treated SD rats were significantly de-
creased when they received 0.01% and 0.1% EGCG instead
of water (Figure 1d, P<0.05). The serum alanine amino-
transferase (ALT) levels were also significantly decreased
with EGCG treatment at both concentrations relative to
the levels in the water-treated group (Figure le, P <0.05),
indicating that EGCG protected against hepatic steatosis
and subsequent hepatocyte injury induced by DEN and
HFD.

Effects of EGCG on liver fibrosis in rats

Examination of Azan-stained liver sections revealed that
DEN- and HFD-treated SD rats developed perisinusoidal
fibrosis, but that EGCG administration reduced liver fi-
brosis in the animals (Figure 2a). The liver fibrosis score
was also significantly decreased by EGCG administration
(Figure 2b). Furthermore, EGCG treatment significantly
lowered (relative to control) the hepatic levels of TIMP-1
and TIMP-2 mRNA in the DEN- and HFD-treated SD
rats (Figure 2¢, P < 0.05).

Effects of EGCG on the development of hepatic
preneoplastic lesions in rats

At the end of the experiment, GST-P-positive foci were
detected in the livers of the rats, all of which had received
DEN/HFD (Figure 3a). However, compared with rats in
the control group that were not treated with EGCG, rats
treated with EGCG showed a significant reduction in the
number of GST-P-positive foci: 86% and 87% reduction

relative to control following treatment with 0.01% and
0.1% EGCG, respectively (Figure 3b, P < 0.01).

Effects of EGCG on oxidative stress in rats

Oxidative stress plays a critical role in the NAFLD-to-
NASH progression and HCC development (Chiang et al.,
2011; Cusi, 2012; Siegel and Zhu, 2009). Therefore, we
examined the levels of oxidative stress and antioxidant
biomarkers in the experimental rats. Rats administrated
with 0.1% EGCG had significantly reduced levels of
urinary 8-OHdG, a marker of DNA damage induced by
oxidative stress, compared with EGCG-untreated con-
trol rats (Figure 4a, P <0.01). The serum d-ROM level,
which reflects serum hydroperoxide levels, was also de-
creased relative to control in rats treated with 0.01%
and 0.1% EGCG (Figure 4b, P<0.01). Moreover, the
antioxidant enzyme (catalase and GPx-1) levels were
significantly increased in the livers of rats that received
EGCG treatment (Figure 4c, P < 0.05). These results indi-
cate that drinking EGCG attenuated both systemic and
hepatic oxidative stress in our rat model of NAFLD/
NASH-related liver tumorigenesis.

Effects of EGCG on hepatic expression of TNF-q, IL-6, and
IL-18 mRNA in rats

Chronic inflammation is implicated in the progression of
NASH and subsequent liver carcinogenesis (Chiang et al,,
2011; Cusi, 2012; Siegel and Zhu, 2009; Park et al., 2010).
Therefore, the mRNA expression levels of 3 inflammatory
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Figure 2 Liver fibrosis and hepatic expression levels of TIMP-1 and TIMP-2 mRNA. (a) Representative photomicrographs of Azan staining of
liver tissues to show fibrosis. Bars, 50 um. Note reduction of liver fibrosis (blue) by the treatment with EGCG. (b) Liver fibrosis evaluation was
based on the NAS system. (c) After total RNA was isolated from the livers of the rats, the levels of TIMP-1 and TIMP-2 mRNA were measured using
specific primers and quantitative real-time RT-PCR. The values are expressed as mean = SD. * P < 0.05.
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mediators, TNF-a, IL-6, and IL-1B, were measured in the
livers of DEN- and HFD-treated SD rats. As shown in
Figure 5, quantitative real-time RT-PCR analysis revealed
that rats that received 0.1% EGCG exhibited significantly
lower hepatic levels of TNF-a (P <0.05), IL-6 (P <0.01),
and IL-1P (P < 0.05) mRNA than control rats that received
only water, and the hepatic levels of IL-6 mRNA were also
decreased by the administration of a low dose (0.01%) of
EGCG (P <0.01).

Effects of EGCG on hepatocyte proliferation and hepatic
expression of cyclin D1 mRNA in rats

The PCNA-labeling index of non-lesional hepatocytes in
DEN- and HFD-treated SD rats was determined based
on the findings of immunohistochemical examination of
sections (Figure 6a). The mean PCNA-labeling indices
measured for rats administered 0.01% and 0.1% EGCG
were significantly lower than that for EGCG-untreated
control rats (Figure 6b, P < 0.01). Furthermore, the levels
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Figure 3 The development of GST-P-positive foci in the livers. (a) Representative photomicrographs of GST-P-positive foci. Note a large
GST-P focus in a rat treated with DEN/HFD. Bars, 50 pm. (b) The average numbers of GST-P-positive foci formed in the livers of the rats in the 3
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of cyclin D1 mRNA in liver were also markedly de-
creased in EGCG-treated rats relative to that in control
rats (Figure 6¢, P<0.05), indicating that EGCG signifi-
cantly inhibited hepatocyte proliferation in DEN- and
HFD-treated SD rats.

Discussion

An increase in the prevalence of NAFLD/NASH, which
can progress to HCC, is a major healthcare problem
worldwide (Chiang et al, 2011; Cusi, 2012; Siegel and
Zhu, 2009). Therefore, developing an effective strategy
for preventing NAFLD/NASH-related liver tumorigenesis
is critical for improving the prognosis of patients with
these diseases. The results of this study clearly indicate
that EGCG, a GTC, effectively prevents the development
of hepatic preneoplastic lesions, which manifest as GST-

P-positive foci, in our rat model of NAFLD/NASH-related
liver tumorigenesis. The rodent model used in this study,
which was modified from a model described previously
(Wang et al, 2009), reflects the pathological alterations
implicated in NAFLD/NASH and NAFLD/NASH-related
liver tumorigenesis, including the induction of oxidative
stress and chronic inflammation (Chiang et al,, 2011; Cusi,
2012; Siegel and Zhu, 2009; Park et al.,, 2010). Therefore,
we consider the present model to be an appropriate and a
useful animal model for analyzing the mechanisms of
NAFLD/NASH-related liver tumorigenesis and for evalu-
ating the efficacy of specific chemopreventive agents that
can suppress such tumorigenesis.

Among the numerous pathophysiological conditions as-
sociated with NAFLD/NASH, oxidative stress is regarded
as one of the key mechanisms for the development of
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Figure 5 Hepatic expression of TNF-q, IL-6, and IL-1B mRNA. Total RNA was isolated from the livers of rats in the 3 groups and the
expression levels of TNF-q, IL-6, and IL-13 mRNA were determined using specific primers and quantitative real-time RT-PCR. The values are
expressed as mean +SD. # P <0.01, *P <0.05.
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Figure 6 Hepatocyte proliferation and hepatic expression of cyclin D1 mRNA. (a) Immunohistochemical labeling for PCNA in the livers of
the experimental rats. Bars, 100 pm. (b) The PCNA-labeling index in non-lesional hepatocytes was determined by counting the hepatocytes with
PCNA-positive nuclei to calculate their percentage in the hepatocyte population. (¢) The cyclin D1 mRNA levels in the liver of the experimental
rats were determined using specific primers and quantitative real-time RT-PCR. The values are expressed as mean + SD. # P <0.01, *P <0.05.
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HCC. In the progression of NAFLD to NASH, an increase
in oxidative stress, which is defined as the overproduction
of reactive oxygen species combined with inadequate anti-
oxidative defense mechanisms, produces DNA damage
and gene mutations associated with liver carcinogenesis
(Chiang et al., 2011; Cusi, 2012; Siegel and Zhu, 2009; Park
et al,, 2010). Conversely, treatment with antioxidants such
as vitamin E can reduce hepatic steatosis, lobular inflam-
mation, and serum ALT levels, as shown by a clinical trial
conducted in NASH patients (Sanyal et al., 2010). Admin-
istering pentoxifylline, which is known to decrease oxida-
tive stress and inhibit TNF-a expression, also improved
the histological features of NASH in a recent randomized
placebo-controlled trial (Zein et al, 2011). In this study,
treatment with EGCG lowered the levels of oxidative
stress-associated markers such as urinary 8-OHdG and
serum d-ROM, whereas elevated the mRNA levels of
two antioxidant enzymes, catalase and GPx-1, in the
liver of DEN- and HFD-treated SD rats. These findings
suggest that EGCG suppressed NAFLD/NASH-related
liver tumorigenesis at least partly by reducing systemic
and hepatic oxidative stress. Our results are consistent
with those of previous studies showing that GTCs can
protect against both oxidative stress and the progression
of NAFLD to NASH (Park et al., 2011; Ueno et al., 2009;
Kuzu et al., 2008).

Besides oxidative stress, chronic inflammation is critic-
ally involved in NAFLD/NASH-related liver tumorigenesis
(Chiang et al., 2011; Cusi 2012; Siegel and Zhu, 2009;
Park et al,, 2010). Among the proinflammatory cytokines

related to the progression of NASH, TNF-a and IL-6 play
a pivotal role in hepatocyte injury and inflammation,
which increase HCC risk (Park et al.,, 2010). Therefore,
targeting TNF-a and IL-6 might be an effective method
to suppress NAFLD/NASH-related liver tumorigenesis.
GTCs are widely recognized to exert cancer-preventive
effects partly by inhibiting the expression of TNF-a and
IL-6 (Shimizu et al. 2011b; Kochi et al., 2013; Shirakami
et al. 2008), indicating that the suppression of inflam-
mation is one of the key mechanisms by which GTCs
prevent cancer development. In this study, we found
that mRNAs encoding TNF-a, IL-6, and IL-1p were
expressed at significantly lower levels in the livers of
EGCG-treated rats compared to that in EGCG-untreated
rats. Therefore, in agreement with previous reports
(Shimizu et al. 2011b; Kochi et al., 2013; Shirakami et al.
2008), the results of this study suggest that EGCG con-
sumption suppressed the development of GST-P-positive
foci in DEN- and HFD-treated SD rats by attenuating
chronic inflammation.

In addition to reducing oxidative stress and chronic
inflammation, both of which are secondary manifesta-
tions of NASH, administering EGCG improved hepatic
steatosis, a primary manifestation of NASH (Day and
James, 1998), decreased serum ALT levels, ameliorated
liver fibrosis, and inhibited excessive hepatocyte prolif-
eration in this study. GTCs have been demonstrated to
attenuate hepatic fat accumulation in several laboratory
animal studies (Kuzu et al., 2008; Kochi et al., 2013;
Shimizu et al. 2011b; Park et al., 2011; Ueno et al., 2009);
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these reports combined with the findings of this study are
of interest because hepatic steatosis per se can induce
hepatocyte proliferation and hepatic hyperplasia, both
of which initiate the hepatic neoplastic process by in-
creasing hepatocyte proliferative activity (Yang et al,
2001). Moreover, hepatic steatosis is critically related to
liver fibrosis, which is a strong risk factor for the develop-
ment of HCC (Powell et al., 2005). Therefore, suppression
of hepatic steatosis and fibrosis by EGCG treatment might
help to inhibit the progression of NAFLD/NASH-related
liver tumorigenesis at an early stage.

Because GST-P-positive foci are generally accepted to
be precursors or preneoplastic lesions of HCC in rats
(Tsuda et al., 2003; Ando et al,, 2007), the rodent model
used in this study appears to be well suited for screening
reagents that can prevent NAFLD/NASH-related liver
tumorigenesis. However, the current study has one limita-
tion that hepatocellular neoplasms, including HCC, did
not develop within the experimental period. Because the
duration of the experiment (7 weeks) might have been
insufficient for the development of hepatic neoplasms,
future studies should be conducted using longer-term
experiments to confirm that HFD- and DEN-treated SD
rats develop hepatocellular neoplasms.

Finally, we emphasize again that targeting metabolic
abnormalities, especially oxidative stress and chronic
inflammation, might be one of the most practical
approaches for treating NAFLD/NASH and preventing
NAFLD/NASH-related liver carcinogenesis (Shimizu
et al. 2013, 2012). We consider GTCs including EGCG
to be potentially effective and key candidates for this
purpose, because these agents can target metabolic ab-
normalities and thus prevent relevant tumorigenesis,
as shown by the results of this study and those from
previous reports (Shimizu et al. 2011b; Kochi et al,,
2013; Shimizu et al. 2008b; Thielecke and Boschmann,
2009; Grove and Lambert, 2010). Recent clinical trials
have also demonstrated that GTC supplementation po-
tently prevents the development of both colorectal aden-
omas and prostate cancers without causing adverse effects
(Shimizu et al. 2008a; Bettuzzi et al., 2006). These benefi-
cial effects of GTCs reported in clinical trials strongly en-
courage the clinical usage of GTCs for treating NAFLD/
NASH patients to prevent the metabolic abnormalities,
such as steatosis, hyperlipidemia, and hyperinsulinemia, as
well as liver carcinogenesis.

Conclusions

In conclusion, administering EGCG effectively suppresses
the early stage of hepatocarcinogenesis in our rat model
of NAFLD/NASH by attenuating oxidative stress and
chronic inflammation. Application of GTCs represents
a potential new strategy for preventing the development
of hepatic neoplasms in NAFLD/NASH patients.
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Methods

Animals and chemicals

Male 7-week-old SD rats were obtained from Japan SLC,
Inc. (Shizuoka, Japan) and humanely maintained at Gifu
University Life Science Research Center in accordance
with the Institutional Animal Care Guidelines. DEN was
purchased from Sigma-Aldrich Co. LLC. (St. Louis, MO,
USA). HFD-60 (HFD, 506.2 kcal/100 g) with 62.2% of the
calories derived from fat was purchased from Oriental
Yeast (Tokyo, Japan) (Table 2). EGCG was obtained from
Mitsui Norin Co. Ltd. (Tokyo, Japan).

Experimental procedure

The present study was approved by the Experimental
Animal Research Committee of Gifu University. After
1-week-acclimatization with regular chow, all rats (n=19)
received a single intraperitoneal injection of DEN (30 mg/kg
body weight) and were then randomly divided into 3
groups. Following DEN injection, the rats in Groups
2 and 3 (n=6 in both groups) were provided tap water
containing 0.01% or 0.1% EGCG, respectively, whereas
the rats in Group 1 (n=7) were provided tap water
throughout the experiment, which lasted 7 weeks. All
rats were fed a pelleted HFD throughout the experiment
after DEN injection. At the end of the experiment, the
15-week-old rats were sacrificed by CO, asphyxiation and
the development of GST-P-positive foci was evaluated. The
concentration of EGCG used (0.1%), which was established
based on the findings of previous chemopreventive studies

Table 2 Composition and calories of the experimental
diet HFD-60

Ingredients (g/kg diet)
Casein 256.0
Corn starch 160.0
Sucrose 550
Dextrose 60.0
Cellulose 66.1
Soybean oil 200
Lard 3300
Vitamin mixture 350
Mineral mixture 100
Calcium carbonate 18
L-cysteine 36
Choline bitartrate 25

Energy (kcal/kg)

5062
(%)
Protein 182
Fat 62.2
Carbohydrate 196
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(Shimizu et al. 2011b; Kochi et al,, 2013; Shirakami et al.,
2008; 2009), was, in terms of units per body weight,
within the physiological range measured in humans
after daily intake of GTCs (Wang et al.,, 1991). Previously,
GST-P-positive foci were markedly induced by DEN
injection in HFD fed rats, but not in rats fed a normal diet
(Wang et al. 2009), therefore we did not use a control
group that was fed normal chow diet after DEN injection
in the present study.

Histopathological examination and immunohistochemical

analyses for GST-P and proliferating cell nuclear

antigen (PCNA)

Maximum sagittal sections of 3 liver sublobes (central, lat-
eral, and right-anterior) were used for histopathological
examination. Formalin-fixed and paraffin-embedded livers
were stained with hematoxylin & eosin (H&E) for con-
ventional histopathology or with Azan stain to detect
liver fibrosis. The histological features of the livers were
evaluated using the NAFLD activity score (NAS) system
(Kleiner et al., 2005), and the development of liver fibro-
sis was determined as described previously (Kleiner
et al,, 2005). Immunohistochemistry for GST-P (Ando
et al,, 2007) and PCNA (Iwasa et al., 2010) was performed
using primary antibodies against GST-P (MBL Co. Ltd,,
Nagoya, Japan) and PCNA (Santa Cruz Biotechnology,
Inc., Santa Cruz, CA, USA), respectively. The number of
GST-P-positive foci, which was set as 3 or more positive
cells (Kochi et al., 2013), was assessed per unit area (per
cm?). In the PCNA-immunostained sections, cells with
intensely stained nuclei were considered to be positive
for PCNA, and the indices (% PCNA-positive) were
determined by counting at least 500 hepatocytes in each
section (total of 3000 hepatocytes per rat) (Iwasa et al.,
2010).

RNA extraction and quantitative real-time RT-PCR analysis
Total RNA was isolated from the livers of the rats by
using RNeasy Mini kit (QIAGEN, Venlo, Netherlands)
with on-column DNase I-digestion (Terakura et al., 2012).
From 0.2 pg of total RNA, cDNAs were amplified using
High-Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Santa Clara, CA, USA) and an automated
thermal cycler (Bio-Rad Laboratories, Hercules, CA,
USA). Quantitative real-time reverse transcription-PCR
(RT-PCR) analysis was performed using specific primers
that amplify the TNF-«, IL-1f, IL-6, tissue inhibitor of
metalloproteinases (TIMP)-1, TIMP-2, glutathione perox-
idase (GPx)-1, catalase, cyclin D1, and glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) genes. The sequences
of these primers, which were obtained using Primer-
BLAST (http://www.ncbinlm.nih.gov/tools/primer-blast/),
are shown in Table 3. Each sample was analyzed on
a LightCycler Nano (Roche Diagnostics, Mannheim,
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Table 3 Primer sequences

Target gene Direction Primer sequences (5-3')
Catalase Forward GCGAATGGAGAGGCAGTGTAC
Reverse GAGTGACGTTGTCTTCATTAGCACTG
Cyclin D1 Forward TTCGTGGCCTCTAAGATGAAGG
Reverse TGAGCTTGTTCACCAGAAGCAG
Gapdh Forward AGTGCCAGCCTCGTCTCATAG
Reverse CCTTGACTGTGCCGTTGAACT
Gpx-1 Forward GCTCACCCGCTCTTTACCTT
Reverse GATGTCGATGGTGCGAAAGC
I-1B Forward AGGCTTCCITGTGCAAGTGT
Reverse TCCTGGGGAAGGCATTAGGA
-6 Forward CACTTCACAAGTCGGAGGCT
Reverse AGCACACTAGGTTTGCCGAG
Timp-1 Forward ACAGCTTTCTGCAACTCGGA
Reverse AGTTTGCAAGGGATGGCTGA
Timp-2 Forward TGGGAACGTGCATTTTGCAG
Reverse AAACACTGGTTGGAGGGCAA
Tnf-a Forward CCAGACCCTCACACTCAGATCA
Reverse TCCGCTTGGTGGTTTGCTA

Germany) with FastStart Essential DNA Green Master
(Roche Diagnostics). GAPDH amplified in parallel served
as the internal control.

Clinical chemistry

At sacrifice, the serum levels of ALT were measured
using a standard clinical automatic analyzer (Type 7180;
Hitachi, Tokyo, Japan).

Hepatic lipid analysis

Total lipids were extracted from approximately 200 mg
of liver tissue (frozen at sacrifice) for each rat, and the
triglyceride levels were measured using the triglyceride
E-test kit (Wako, Osaka, Japan) (Iwasa et al., 2010).

Oxidative stress analysis

Urinary . 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels
were determined using an ELISA kit (NIKKEN SEIL,
Shizuoka, Japan). Serum levels of hydroperoxide, one of
the markers for oxidative stress, were determined using
the derivatives of reactive oxygen metabolites (d-ROM)
test (FREE Carpe Diem; Diacron s.rl, Grosseto, Italy)
(Kochi et al., 2013).

Statistical analysis

All data are expressed as mean + SD, and one-way analysis
of variance (ANOVA) was used for comparisons between
groups. If ANOVA indicated significant differences, the
Tukey-Kramer test for multiple comparisons was per-
formed to compare the mean values among the groups.
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The differences were considered significant when the
two-sided P value was less than 0.05. All analyses were
conducted by the GraphPad InStat software, Version
3.05 (GraphPad Software; San Diego, CA, USA).
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ALT: Alanine aminotransferase; ANOVA: Analysis of variance; Ctrl: Control;
DEN: Diethylnitrosamine; d-ROM: Derivatives of reactive oxygen metabolites;
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dehydrogenase; GPx: Glutathione peroxidase; GST-P: Glutathione S-
transferase placental form; GTC: Green tea catechin; HCC: Hepatocellular
carcinoma; HFD: High-fat diet; IL: Interleukin; NAFLD: Non-alcoholic fatty liver
disease; NAS: NAFLD activity score; NASH: Non-alcoholic steatohepatitis;
8-OHdG: 8-hydroxy-2'-deoxyguanosine; RT-PCR: Reverse transcription-PCR;
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metalloproteinase; TNF: Tumor necrosis factor.
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Abstract

Background/Purpose: Acyclic retinoid (ACR) is a promising chemopreventive agent for hepatocellular carcinoma (HCC) that
selectively inhibits the growth of HCC cells (JHH7) but not normal hepatic cells (Hc). To better understand the molecular
basis of the selective anti-cancer effect of ACR, we performed nuclear magnetic resonance (NMR)-based and capillary
electrophoresis time-of-flight mass spectrometry (CE-TOFMS)-based metabolome analyses in JHH7 and Hc cells after
treatment with ACR.

Methodology/Principal Findings: NMR-based metabolomics revealed a distinct metabolomic profile of JHH7 cells at 18 h
after ACR treatment but not at 4 h after ACR treatment. CE-TOFMS analysis identified 88 principal metabolites in JHH7 and
Hc cells after 24 h of treatment with ethanol (EtOH) or ACR. The abundance of 71 of these metabolites was significantly
different between EtOH-treated control JHH7 and Hc cells, and 49 of these metabolites were significantly down-regulated in
the ACR-treated JHH7 cells compared to the EtOH-treated JHH7 cells. Of particular interest, the increase in adenosine-5'-
triphosphate (ATP), the main cellular energy source, that was observed in the EtOH-treated control JHH7 cells was almost
completely suppressed in the ACR-treated JHH7 cells; treatment with ACR restored ATP to the basal levels observed in both
EtOH-control and ACR-treated Hc cells (0.72-fold compared to the EtOH control-treated JHH7 cells). Moreover, real-time PCR
analyses revealed that ACR significantly increased the expression of pyruvate dehydrogenase kinases 4 (PDK4), a key
regulator of ATP production, in JHH7 cells but not in Hc cells (3.06-fold and 1.20-fold compared to the EtOH control,
respectively).

Conclusions/Significance: The results of the present study suggest that ACR may suppress the enhanced energy
metabolism of JHH7 cells but not Hc cells; this occurs at least in part via the cancer-selective enhancement of PDK4
expression. The cancer-selective metabolic pathways identified in this study will be important targets of the anti-cancer
activity of ACR.
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undergoing phase II/III clinical trials (JapicCTI-121828) in Japan
and is expected to become the first chemopreventive agent.
Another important characteristic of ACR is that it selectively
suppresses the growth of HCC cells (JHH7 and others) but not
normal hepatic cells (Hc) [5,6]. Although the mechanism
underlying this effect is not fully understood, previous basic and
clinical studies by our group and others have suggested that both
non-genomic and genomic signaling pathways may be responsible
for the cancer-selectivity of ACR [5,7,8,9,10,11,12]. A typical
example is the prevention by ACR of the aberrant hyper-

Introduction

Hepatocellular carcinoma (HCC) represents approximately
85% of all primary liver cancers and is one of the most common
malignancies worldwide, especially in Eastern Asia [1]. The
prognosis of HCC remains very poor; this poor prognosis is due in
part to its high rate of recurrence after initial treatment, which
reaches approximately 70% within 5 years [2]. Acyclic retinoid
(ACR), a synthetic retinoid with a vitamin A-like structure,
prevents the recurrence and development of HCC in patients after

the surgical removal of primary tumors [3,4]. ACR is currently
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that occurs during carcinogenesis in HCC [12] and the subsequent
induction of apoptosis in HCC cells by the restoration of the
expression of RXRoa downstream genes such as p2l1 [11],
transglutaminase 2 (TG2) [5] and more. However, to the best of
our knowledge, no information is available regarding the effect of
ACR on the metabolism of HCC cells.

Recently, the approach of targeting cancer metabolism to
develop and improve cancer therapeutics has received a great deal
of attention [13]. A distinguishing feature of cancer is that the
metabolic pathways of cancer cells are adapted to support rapid
and uncontrolled cell proliferation. One of the best-known
alterations in cancer cell metabolism is a switch from mitochon-
drial oxidative phosphorylation to cytoplasmic glycolysis; this
switch is known as the Warburg effect [14]. It is possible that
targeting cellular metabolism may suppress cancer. In fact, several
metabolism-targeting therapies have been already proven to be
effective in the treatment of diverse human tumors [13,15].

Although chronic hepatitis B virus (HBV) or hepatitis C virus
(HCV) infections are believed to account for approximately 80%
of HCC [16], a growing body of evidence indicates that metabolic
syndrome is also a risk factor for the development of HCC [17].
Indeed, it is extremely difficult to find a single essential target for
cancer therapeutics, due to the remarkable heterogeneity and
adaptability of cancer cells. It is likely that further investigations
into the effect of ACR on cancer cell metabolism will improve our
understanding of the molecular pathways underlying the cancer-
selective growth suppressive effect of ACR and benefit the
development of more effective cancer drugs and therapies against
HCC. To achieve this, both nuclear magnetic resonance (NMR)-
based and capillary electrophoresis time-of-flight mass spectrom-
etry (CE-TOFMS)-based metabolome analyses were performed in
JHH7 and Hc cells after treatment with ACR.

Materials and Methods

Materials

ACR (NIK-333) was supplied by Kowa Co. Ltd. (Tokyo,
Japan). All-trans-retinoic acid (AtRA) was purchased from Sigma-
Aldrich (St Louis, MO, USA). Ethanol (EtOH) was obtained from
Wako Industries (Osaka, Japan), and used as the primary solvent
for all reagents. EtOH solutions were further diluted into cell
culture media for treatments. The final concentration of EtOH in
media used as a control was 0.05% (vol/vol).

Cell culture

The JHH7 HCC cell line was kindly supplied by Dr. Matsuura
(Jikei University School of Medicine, Tokyo, Japan) [18]. The
normal human hepatocyte cell line (Hc) was purchased from Cell
Systems (Kirkland, WA, USA). Both cell lines were maintained in
Dulbecco’s Modified Eagle Medium (DMEM; Wako Industries)
containing 10% fetal bovine serum (FBS, Mediatech, Herndon,
VA, USA), 100 U/ml penicillin/streptomycin and 2 mmol/L L-
glutamine (Mediatech, Herndon, VA, USA) and grown at 37°C in
a humidified 5% COy; incubator. For chemical treatment, the cells
were cultured in serum-free media containing EtOH or ACR at
the appropriate concentrations.

NMR-based metabolomics

For NMR analyses, cells (approximately 1x107 cells) treated
with EtOH control or 10 pM ACR control for 4 h or 18 h were
harvested by scraping as previously described [19]. The one-
dimensional (1D) "H spectra were measured at 500 MHz on a
Varian Unity INOVA-500 spectrometer. All NMR spectra were
processed using the MestReNova program (Version 5.3.0,
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MestRec, Santiago de Compostela, Spain). Metabolites were
identified using publicly accessible databases, including BioMa-
gRes data bank (http://www.bmrb.wisc.edu), the Metabolomics
Database of Linkoping (http://www.mdlimvliu.se), and the
Human Metabolome Data Bank (http://www.hmdb.ca). Detailed
NMR methods have been described previously [19,20].

CE-TOFMS analyses

JHH?7 and Hc cells (approximately 5x10° cells) treated with
EtOH control or 10 pM ACR for 24 h were washed twice with a
5% mannitol solution, and then 1,300 pL of a methanol solution
containing 10 pM internal standards was added. Metabolome
extraction was then performed as previously described [21]. The
metabolic profiles of the cells were then measured using a CE-
TOFMS-based metabolomics technique, which is a novel strategy
for analyzing and differentially displaying metabolic profiles [21].
CE-TOFMS was carried out using an Agilent CE Capillary
Electrophoresis System equipped with an Agilent 6210 Time-of-
Flight mass spectrometer, Agilent 1100 isocratic HPLC pump,
Agilent G1603A CE-MS adapter kit, and Agilent G1607A CE-
ESI-MS sprayer kit (Agilent Technologies, Waldbronn, Germany).

Data analysis for CE-TOFMS and metabolite identification

The raw data obtained by CE-TOFMS were analyzed using
KEIO MasterHands software exactly as previously described
[22,23]. Briefly, the injected volume for CE and the sensitivity of
MS were corrected using internal standards, and then all the
annotated metabolites were further corrected to the same
chemicals in a standard mixture to overcome different ionization
patterns. The peaks were identified based on the matched mass-to-
charge ratio (m/z) values and normalized migration times of the
corresponding standard compounds.

Real-time RT-PCR

For PCR analyses, RNA was isolated from each cell culture
treated with EtOH, AtRA or ACR for 4 h using an RNeasy Kit
(Qiagen, Valencia, CA, USA), and the amount and purity of the
isolated RNA were evaluated using 2 NanoDrop spectrophotom-
cter (NanoDrop products, Wilmington, DE, USA). cDNA was
then synthesized using a PrimeScript RT Master Mix Kit
(TaKaRa Bio, Otsu, Japan). Oligonucleotide primers were
designed using OligoPerfect Designer software (Invitrogen,
Carlsbad, CA, USA; http://www.tools.invitrogen.com) and syn-
thesized by Invitrogen. The sequences of the primers and the full
gene names are summarized in Table S1. PCR reactions were
performed using a the Thermal Cycler Dice™ Real Time System
(TP8000; Takara Bio) with SsoAdvanced™ SYBR® Green
Supermix (Bio-Rad Laboratories, Hercules, CA, USA).

Western blot analysis

JHH7 and Hc cells treated with EtOH, AtRA and ACR for
24 h were lysed using RIPA buffer. After boiling at 97°C for
10 min, the protein samples were resolved by sample buffer for
sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis,
run on a 10% gel and transferred to a polyvinylidene difluoride
membrane (Bio-Rad Laboratories). The membranes were blocked
with 5% nonfat dry milk in Tris-buffered saline (TBS) and 0.1%
Tween and then probed with primary antibodies against pyruvate
dehydrogenase kinase 4 (PDK4; sc-14492; 1:1,000 dilution, Santa
Cruz Biotechnology, CA, USA), pyruvate dehydrogenase (lipoa-
mide) alpha 1 (PDHAI; s¢-377092; 1:1,000 dilution, Santa Cruz
Biotechnology), phospho-PDHAL (ab92696; 1:1,000 dilution,
Abcam) or Lamin Bl (ab16048; 1:5,000 dilution, Santa Cruz
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Figure 1. Metabolites in the principle metabolic pathways of EtOH- or ACR-treated JHH7 and Hc cells detected by CE-TOFMS. The
relative quantities of the detected metabolites are represented as bar graphs (from left to right: EtOH-treated JHH7, ACR-treated JHH7, EtOH-treated

Hc, and ACR-treated Hc). N.D., not detected.
doi:10.1371/journal.pone.0082860.g001

Biotechnology). The blots were then incubated with horseradish
peroxidase-conjugated anti-goat, anti-mouse or anti-rabbit sec-
ondary antibodies and detected using the Amersham ECL
PlusTM Western Blotting Detection System (GE Healthcare
UK, Buckingham, England). Immunoreactive bands were quan-
tified using Image] densitometry software (National Institutes of
Health, Bethesda, MD), and normalized; the density of the
corresponding band in the EtOH control was set to 1.0.

RNA interference

An siRNA targeting human PDK4 (sc-39030) and a control
siRNA (sc-37007) were purchased from Santa Cruz Biotechnol-
ogy. JHH?7 cells were plated in either 96-well plates (1 X 10* cells/
well) for cell proliferation analysis and RNA isolation or 60-mm
dishes (3.5x10° cells/dish) for ATP assays 1 day prior to
transfection. The cells were then transfected with 50 nM or
100 nM siRNAs using Lipofectamine 2000 (Life Technologies,
Grand Island, NY, USA).

ATP assay

The cellular levels of ATP were measured using a firefly
bioluminescence assay kit (AMERIC-ATP kit, Wako Industries)
according to the manufacturer’s instructions. The luciferase
activity was measured using a plate reader (ARVO MX, Perkin
Elmer Inc., MA, USA).

EtOH ACR EtOH ACR

Cell viability assay

The number of viable cells was determined using the Cell
Counting Kit-8 (Dojindo Molecular Technologies, Tokyo, Japan)
as previously described [5].

Network generation and pathway analyses

The Ingenuity Pathways Analysis (IPA) program (Ingenuity
Systems, Mountain View, CA, USA; http://www.ingenuity.com)
was used to identify networks and canonical pathways as
previously described [24]. The generated biological networks
were ranked by score, which is the likelihood that a set of genes is
found in the networks due to random chance as measured by a
Fisher’s exact test. The resulting canonical pathways were ranked
by P values, which were calculated using a Fisher’s exact test by
comparing the number of user-specified genes of interest that
participate in a given function or pathway, relative to the total
number of occurrences of these genes in all the functional/
pathway annotations stored in the Ingenuity Pathways Knowledge
Base [25].

GEO data mining

The normalized PDK4 expression from a clinical data set,
which contains transcriptome profiling of 268 HCC tumor, 243
adjacent non-tumor, 40 cirrhotic and 6 healthy liver samples, was
downloaded from the Gene Expression Omnibus (www.ncbi.nlm.
nih.gov/geo, accession no. GSE25097).
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Figure 2. A comparison of the metabolic profile of EtOH- or ACR-treated JHH7 and Hc cells determined by CE-TOFMS. PCA scoreplot
(A) and heat map (B from metabolic data of JHH7 and Hc cells treated with EtOH and ACR (n=3). Venn-diagrams (Q) showing the number of

metabolites that were significantly deregulated between the two groups.
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Figure 3. Network generation using Ingenuity Pathway Analysis. The “Increased Levels of Albumin, Amino Acid Metabolism, Molecular
Transport” network was associated with metabolites that were significantly different between JHH7 and Hc cells (A) and the metabolites that were
differentially regulated by ACR in JHH7 cells (8). Up-regulated metabolites are indicated in red, down-regulated metabolites indicated in green, and
metabolites that were not annotated in this study but are part of this network are indicated in white. Direct relationships are drawn with solid arrows,

and indirect relationships are drawn with dashed arrows.
doi:10.1371/journal.pone.0082860.g003

Statistical and multivariate analyses

All the experiments in this study were performed independently
two or more times to ensure the reproducibility of the results.
Quantitative data were expressed as the means = SEMs. The
statistical significance of differences between values was assessed
using a two-tailed Student’s #test or a Mann-Whitney U test.
Values of P<0.05 were considered to indicate statistical signifi-
cance. Unsupervised principal component analysis (PCA) was run
using SIMCA-P+ software (Version 12.0, Umetrics, Umea,
Sweden).

Results

The effect of ACR on the metabolism of JHH7 cells
detected using "H-NMR

First, NMR-based metabolomics was performed to investigate
the effect of ACR treatment on the metabolism of JHH7 cells. As
shown in Figure S1, PCA analysis of the NMR spectra indicated
that treatment with ACR for 4 h had a very minor effect on the
metabolism of JHH7 cells, while obvious changes were observed
after 18 h of ACR treatment compared to the EtOH control.

Differences between the metabolic profiles of JHH7 and
Hc cells treated with EtOH and ACR detected using CE-
TOFMS

To further investigate the cancer-selective effect of ACR, the
metabolic profiles of JHH7 and Hc cells treated with EtOH and
ACR for 24 h was measured using CE-TOFMS analysis. A total
of 229 peaks (109 cationic and 120 anionic) were detected in either
JHH7 or Hc cells; from these 229 peaks, 88 principal metabolites
were quantified (Table S2). The metabolic pathways of all the
detected metabolites are illustrated in Figure 1. These metabolites
are associated with glycolysis/gluconegenesis, the pentose phos-
phate pathway, the tricarboxylic acid cycle, the urea cycle,
pyrimidine metabolism, nicotinate and nicotinamide metabolism
and amino acid metabolism. The result of the comparison of the

metabolic profiles of the cells is provided in Figure 2. PCA analysis
revealed a very clear distinction between the abundance of
intracellular metabolites of JHH7 and Hc cells with and without
ACR treatment (Figure 2A), while the first component (PC1)
indicated that 67% of the total variance is due to the difference
between JHH7 and He cells. PC2 (11.2%) indicated that the ACR-
treated JHH?7 cells have a metabolic profile that is similar to that of
the EtOH-treated Hc cells. Furthermore, heatmap analyasis
indicated that the metabolic pattern of JHH7 cells was almost
completely opposite that of the He cells; a similar difference was
observed between the ACR-treated and EtOH-treated JHH7 cells
(Figure 2B). Finally, the cellular content of 71 metabolites in JHH7
and Hc cells was significantly different with P values less than 0.05
and fold changes greater than 1.2; 58 metabolites were signifi-
cantly down-regulated by ACR in JHH7 cells compared to the
EtOH control. Forty-nine common metabolites were shared
between the two groups (Figure 2C).

Network generation and pathway analyses

Next, the list of the significantly different metabolites was
mmported into the IPA platform to investigate possible biological
interactions. The biological functions of the top five IPA-generated
networks and top five canonical metabolic pathways are summa-
rized in Tables 1 and 2, respectively, and shown in Figure 3.
Interestingly, IPA analysis indicated that the most highly
populated biological network (“Increased Levels of Albumin,
Amino Acid Metabolism, Molecular Transport”) and the top two
canonical metabolic pathways (“tRINA Charging” and “Purine
Nucleotides De Novo Biosynthesis II””) that were associated with
the ACR-regulated metabolites by in JHH?7 cells were the same as
the networks that were associated with metabolic differences
between JHH7 and Hc cells.

Table 1. Top five associated network functions generated by IPA.

Top function

S

ACR vs.
EtOH-treated JHH7

Cellular Growth and Proliferation, Organismal Development, Cellular Compromise

gan Deve|

Score

hydrate Metab

‘Fkééﬁé cal Scavenging, Small Molec

Cellular Growth and Proliferation, Organismal Development, Small Molecule Biochemistry
. ; e L

Post-Translational Modification, Cellular Assembly and Organization, Developmental Disorder

Sp

doi:10.1371/journal.pone.0082860.t001

PLOS ONE | www.plosone.org

December 2013 | Volume 8 | Issue 12 | e82860

— 1956 —



Table 2. Top canonical pathways identified by IPA.

Metabolomics of Acyclic Retinoid in HCC

Top canonical pathway

P-Value

EtOH-treated JHH7 vs

Purine Nucleotides De Novo Biosynthesis i

e Novo Biosynthes

1.30E-24

Superpathway of Citrulline Metabolism

9.93E-19

ACR vs. EtOH-treated JHH7

5.72E-14

doi:10.1371/journal.pone.0082860.t002

ACR inhibits the increase in adenosine-5'-triphosphate
(ATP) production in JHH7 cells

A comparison of the biosynthetic metabolites (nucleotides,
amino acids and lipids) in the EtOH- or ACR-treated JHH7 and
Hc cells determined by CE-TOFMS is summarized in Table 3. Of
particular interest, the changes in the concentrations of adenosine
nucleotides are shown in Figure 4. Notably, ATP levels were 1.6-
fold higher in the EtOH-treated JHH7 cells than in the EtOH-
treated Hec cells; ACR suppressed this increase, nearly to the basal
levels observed in He cells (0.72-fold and P=0.00015 compared to
the EtOH-treated JHH7 cells). In contrast, only a very minor
effect of ACR was observed on the levels of adenosine diphosphate
(ADP) and adenosine monophosphate (AMP) in JHH7 cells (0.84-
and 0.82-fold compared to the EtOH control, respectively).

ACR enhances PDK4 expression in JHH7 cells, but not in
Hc cells

To further understand the cancer-selective inhibitory effect of
ACR on ATP production, a set of genes that is known to be
important in the regulation of energy metabolism in cancer cells
was sclected based on previous reports [26,27,28,29], and the
effect of ACR on the expression of these genes was measured using
real-time PCR (Figure 5A). Of particular interest, we found that
ACR significantly enhanced the expression of PDK4, an
important regulator of ATP levels [30], in JHH7 cells but not in
He cells (3.06-fold; P=10.0033 and 1.20-fold; P=0.062, respec-
tively; Figure 5B). Further western blot analysis revealed a nearly
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2-fold increase in PDK4 protein levels after ACR treatment, but
ACR did not affect the phosphorylation of PDHAI in JHH7 cells
(Figure 5C).

Functional analysis of PDK4 in JHH7 cells

Furthermore, loss-of-function experiments were performed to
confirm the role of PDK4 in the effect of ACR on cellular ATP
levels and the proliferation of JHH7 cells. As shown in Figure 6A,
treatment with an siRINA targeting PDK4 (siPDK4) caused a dose-
dependent downregulation of PDK4 mRNA expression (0.57-fold
and 0.41-fold compared to siControl-treated cells with 50 nM and
100 nM siPDK4, respectively). Interestingly, ACR weakly but
significantly inhibited cellular ATP levels in siControl-treated
JHH7 cells (0.88-fold and P=0.042 compared with EtOH). In
contrast, no significant effect was observed in siPDK4-treated
JHH7 cells (1.07-fold and P=0.42 compared with EtOH;
Figure 6B). However, PDK4 knockdown did not rescue the
inhibitory effect of ACR on the proliferation of JHH7 cells
(Figure 6C).

Clinical expression levels of PDK4

The mining of microarray data from a human HCC data set
revealed that PDK4 mRNA is significantly down-regulated in liver
tumors compared to adjacent non-tumor liver tissues (0.66-fold,
P=3.11E-85; Figure 7A). Finally, a PDK4-dependent regulatory
network that involves RXR and peroxisome proliferator-activated
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Figure 4. Levels of adenosine nucleotides in EtOH or ACR-treated JHH7 and Hc cells determined by CE-TOFMS. ATP (A), ADP (B and

AMP (Q) levels.
doi:10.1371/journal.pone.0082860.g004
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