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Figure 6 Effects of the combination of ACR and LY294002 on the cellular expression levels of RARB, p21<'"?, and cyclin D1 in HLF cells.
(A) The expression levels of RARB mRNA (left panel) and protein (right panel) were examined by quantitative real-time RT-PCR analysis and western
blot analysis, respectively, using cells treated with the test drugs for 24 hours. (B) Quantitative real-time RT-PCR analysis to examine the expression
levels of p21°"" and cyclin D1 mRNAs were performed using cells treated with the test drugs for 24 hours. The expression level of each mRNA was
normalized to the level of B-actin mRNA. Values represent the means + SD of triplicate analyses. * P < 0.05.

findings suggest that the combination of ACR and
LY294002 cooperatively inhibit the phosphorylation of
RXRa through dephosphorylation of ERK and Akt, which
leads to the synergistic inhibition of growth and the
induction of apoptosis in HCC cells. The results of the
present research, together with those of previous studies
[17,25,28-30], suggest that dephosphorylation of RXRa
might be a key mechanism for ACR-based combination
chemoprevention in HCC cells.

Phosphorylated RXRa loses its ability to form heterodimers
with RARP and this is associated with resistance to
retinoids [7]. Therefore, restoration of the function of
RXRa by inhibiting its phosphorylation is critical to regu-
late the expression of retinoid target genes [4-9]. In com-
parison to treatment with ACR alone or LY294002 alone,
combined treatment with these agents significantly in-
creased the transcriptional activity of the RXRE reporter
in the present study. This combination also significantly
altered the expression levels of ACR target genes, such
as RARB, p21“"%, and cyclin D1 mRNA [13,2527,34].
Particularly, the induction of RARP by the combination of
ACR and LY294002 might play a crucial role in inhibiting
the growth of HCC cells because RARP, which is a recep-
tor for ACR [36], can exert tumor-suppressive effects in

cancer cells and thus be considered as a tumor suppressor
gene [37].

In this study, the phosphorylation of Akt is inhibited by
ACR alone in HLF cells. This finding seems to be of interest
because Akt phosphorylation plays a critical role in cell
survival, prevention of apoptosis, and progression of cell
cycle in various types of tumors, including HCC [21,22].
The precise mechanism by which ACR inhibits the
phosphorylation of Akt protein has not been determined.
However, we assume that the dephosphorylation of this
protein by ACR might be explained by, at least in part, its
ability to inhibit growth factor-dependent RTK activity,
because Akt is potently phosphorylated by the activation of
RTKs [8,9,14,15,18-20]. For instance, ACR inhibits the
growth of HCC cells and prevents chemically induced liver
tumorigenesis by targeting the transforming growth factor-
a/epidermal growth factor receptor (EGFR) axis, which
belongs to RTKs [14,15]. Moreover, a recent study showed
that retinol inhibited PI3K activity by decreasing the inter-
action between PI3K and phosphatidylinositol and this was
associated with suppression of cell growth in colon cancer
cells [38]. These studies suggest that the PI3K/Akt signaling
pathway might be a critical target for retinoids to exert their
anti-cancer and chemopreventive properties.

- 167 —



Baba et al. BMC Cancer 2013, 13:465
http://www.biomedcentral.com/1471-2407/13/465

Page 9 of 11

orsioni {28400z ]

‘ (P )
/ﬁﬂ; ~.
\ NRs RXROL | s ———

RXRa
i Responsive Element l I Responsive Element I

<

Regulation of
Target Gene Expression

]

l Induction of Apoptosis }

Al B

NRs

Accumulationof
Phosphorylated RXRe
Hepatocarcinogenesis

Figure 7 A hypothetical schematic representation of the effects of the combination of ACR and LY294002 on growth inhibition in HCC
cells. When ACR binds to and activates RXRa, it forms homo- and/or heterodimers with other nuclear receptors (NRs), including RARs. This results
in the activation of the transcriptional activity of the responsive element, thus controlling the expression of the target genes, such as RARB,
p219"" and cyclin D1, which induce apoptosis and inhibit the growth of HCC cells (A). In HCC cells, the MAPK/ERK and PI3K/Akt pathways, both
of which are located downstream of Ras, are highly activated and phosphorylate the RXRa protein. The accumulation of phosphorylated RXRa
protein, which impairs dimer formation and the subsequent transactivation functions of this receptor, cause a deviation from normal cell
proliferation and differentiation, thereby playing a critical role in liver carcinogenesis (B). ACR and LY294002 inhibit RXRa phosphorylation by
inhibiting ERK and Akt phosphorylation, resulting in restoration of receptor function and activation of the transcriptional activity of the responsive

{ Growth Inhibition |

element (C). For additional details, see the Discussion section.

In the current study, the combination of ACR and
LY294002 significantly inhibited the growth of HLE, Huh7,
and Hep3B HCC cells, whereas the growth of HepG2 cells,
the other HCC cell line, was not suppressed by this com-
bination. This might be associated with the phosphorylation
status of ERK and Akt proteins because the expression
levels of p-ERK and p-Akt proteins were increased in HLE,
Huh7, and Hep3B cells compared with HepG2 cells [29].
These results, on the other hand, suggest that HCC cells
that overexpress p-ERK and p-Akt proteins might be more
sensitive targets for combination therapy using ACR and
PI3K inhibitors.

Finally, it should be emphasized that combination
therapy and prevention are advantageous because, in
addition to providing the potential for synergistic effects,
they may reduce the opportunity for the development of
drug resistance by cancer cells. Several preclinical studies
have shown that cancer cells harboring activated Ras
mutations appear to be resistant to treatment with PI3K
inhibitor alone [23,39]. However, the use of a combination
of the PI3K/Akt inhibitor and a MAPK inhibitor signifi-
cantly exerted anti-cancer effects in Kars G12D-driven or

EGFR-mutant lung tumors [23,24]. These studies suggest
that effective treatment with PI3K inhibitors require con-
comitant therapies that target RTK/Ras/MAPK signaling
and, therefore, ACR, which can inhibit this signaling
pathway [8,9,14,15,40], might be a preferable partner for
PI3K inhibitors.

In conclusion, the present study indicates that the
combination of ACR and LY294002, which can inhibit
the phosphorylation of RXRa, causes a synergistic induc-
tion of apoptosis and inhibition of cell growth in human
HCC cells. The results of our study suggest that this
combination might hold promise as a clinical modality
for the prevention and treatment of HCC, due to their
synergistic effects. In particular, our finding that the
combination regimen using 1 pM ACR plus 5 uM
LY294002 synergistically inhibits the growth of HCC
cells seems to be clinically relevant because this concen-
tration (1 pM) is approximately the same as the plasma
concentration of ACR (which ranged from 1 to 5 pM) in
a clinical trial that demonstrated the chemopreventive
effects of this agent in the recurrence of secondary HCC
[10,11].
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Abstract Obesity and related metabolic abnormalities, in-
cluding a state of chronic inflammation, increase the risk of
hepatocellular carcinoma (HCC). Adipose tissue constitu-
tively expresses the proinflammatory cytokine tumor necro-
sis factor-o¢ (TNF-) and interleukin-6 (IL-6), which are
important tumor promoters in inflammation-related carcino-
genesis. Dysregulation of TNF-« and IL-6 is associated
with the development of steatosis and inflammation within
the liver. These cytokines also lie at the core of the associ-
ation between obesity and insulin resistance, which is a key
factor in the development of obesity-related HCC. Here we
present a detailed review of the relationship between meta-
bolic abnormalities and the development of HCC, focusing
on the role played by inflammation. Drawing from our basic
and clinical research, the present report also reviews evi-
dence that targeting metabolic abnormalities, such as atten-
uvation of chronic inflammation and improvement of insulin
resistance by either pharmaceutical or nutritional interven-
tion, may be an effective strategy in preventing the devel-
opment of HCC in obese individuals.
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Introduction

Obesity, a condition resulting from an excess of adipose
tissue, is currently a serious health problem throughout the
world, with approximately 1.6 billion overweight and 500
million obese adults [1]. Numerous health disorders compli-
cate obesity, including cardiovascular disease, hypertension,
insulin resistance, diabetes mellitus, and hyperlipidemia,
which are collectively known as “metabolic syndrome.” Non-
alcoholic fatty liver disease (NAFLD), which is known to be a
hepatic manifestation of metabolic syndrome, is also the most
common form of chronic liver disease in developed countries
[2, 3]. In addition, recently, obesity and its related metabolic
abnormalities, especially diabetes mellitus, have been recog-
nized as major risk factors for the development of certain
types of human malignancies, including hepatocellular carci-
noma (HCC) [4-16]. A prospective study of a population of
more than 900,000 American adults showed that a higher
body mass index (BMI) is significantly associated with higher
rates of death from cancer, including HCC [17].

Mounting evidence obtained from experimental and epi-
demiological studies indicates that several pathophysiolog-
ical mechanisms link obesity and liver carcinogenesis,
including the emergence of insulin resistance, alterations
in the insulin-like growth factor-1 (IGF-1)/IGF-1 receptor
(IGF-1R) axis, a state of chronic inflammation, induction of
oxidative stress, and the occurrence of adipokine imbalance
[4-8]. Insulin resistance leads to an increased expression of
proinflammatory cytokine tumor necrosis factor-o¢ (TNF-cx)
and interleukin-6 (IL-6), central mediators of chronic in-
flammatory diseases, and their dysregulation is associated
with the development of steatosis and inflammation within
the liver [4—8]. Therefore, among obesity-related pathophys-
iological conditions that cooperatively enhance the develop-
ment of HCC, insulin resistance and the subsequent
inflammatory cascade are thought to play a critical role in
the development of HCC [4-8]. On the other hand, studies
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of these conditions also suggest that such pathophysiologi-
cal disorders might be critical targets for inhibiting obesity-
related carcinogenesis [18]. For instance, experimental stud-
ies have revealed that improvement of chronic inflammation
by inhibiting the expression of TNF-« and IL-6 plays a
significant role in the prevention of obesity-related colorec-
tal tumorigenesis [19-21].

The present review aims to summarize multiple path-
ogenic mechanisms by which obesity and related meta-
bolic disorders influence the development of HCC,
focusing on the emergence of insulin resistance and
the subsequent inflammatory cascade. This article also
aims to review the possibility that nutritional or phar-

maceutical approaches targeting pathophysiological con- ‘

ditions caused by obesity might be effective in
preventing obesity-related liver carcinogenesis.

Obesity, diabetes mellitus, and HCC

HCC, which is the dominant form of primary liver carcino-
ma worldwide, is one of the most frequently occurring
cancers in the world, accounting for 750,000 annual cases;
approximately the same number of individuals (700,000)
die from this malignancy each year [22]. Although HCC
development is frequently associated with chronic inflam-
mation and subsequent cirrhosis of the liver induced by a
persistent infection with hepatitis B virus (HBV) or hepatitis
C virus (HCV), recent epidemiological and clinical studies
have revealed that obesity and diabetes mellitus are major
risk factors for the development of HCC [6-9, 12-16, 23].
In particular, a recent meta-analysis concluded that the sum-
mary relative risk of HCC was 117 % for overweight sub-
jects (BMI 25-30 kg/m?) and 189 % for the obese
individuals (BMI >30 kg/m?) [14]. Obesity represents an
independent HCC risk factor in patients with alcoholic and
cryptogenic cirrhosis [15]. The association between HCC
development and diabetes, which is characterized by hyper-
glycemia, insulin resistance, and hyperinsulinemia, has also
been ascertained by repeated meta-analyses [10, 11]. In one
population-based study, diabetes increased the risk of HCC
by threefold [23]. Insulin resistance has also been shown to
raise the risk for recurrence of HCC after curative radio-
frequency ablation in HCV-positive patients [13].

The relationship between HCV infection and metabolic
syndrome is clinically relevant because insulin resistance
and subsequent diabetes and severe steatosis frequently
occur in HCV-infected patients [24, 25]. Furthermore, there
are synergistic effects between metabolic disorders (obesity
and diabetes) and other HCC risk factors such as hepatitis
virus infection and alcohol consumption [23, 26-29]. A
long-term (14 years) follow-up study in Taiwan has shown
that the combined presence of HCV and diabetes is

@_ Springer

associated with a 37-fold increase in the rate of HCC devel-
opment [23]. Moreover, HCC risk is increased by more than
100-fold in HBV or HCV carriers with both obesity and
diabetes [23]. A recent prospective study showed that insu-
lin resistance itself is associated with HCC in HCV-positive
cirthosis and is a strong predictor of liver-related death or
transplantation [30]. Therefore, viral hepatitis patients with
metabolic disorders would seem to be at high risk for the
development of HCC and thus should be closely monitored
for this malignancy.

NAFLD, nonalcoholic steatohepatitis, and HCC

NAFLD is the major hepatic manifestation of obesity
and its related metabolic disorders, particularly diabetes
mellitus and dyslipidemia, and has become one of the
most common liver disorders in developed countries [2,
3, 31, 32]. The accumulation of fat caused by excess
energy intake can result in liver dysfunction as the liver
synthesizes more triglycerides but fails to export them.
Triglyceride deposition in hepatocytes leads to hepatic
steatosis. The overlap between the prevalence of
NAFLD and diabetes is equally substantial [32]. On
the other hand, NAFLD is commonly associated with
insulin resistance and hyperinsulinemia even in the non-
obese [33], indicating that insulin resistance might be a
key factor in the development of NAFLD. In addition,
NAFLD that has not yet progressed to nonalcoholic
steatohepatitis (NASH) can induce hepatocyte prolifera-
tion and hepatic hyperplasia, both of which initiate the
hepatic neoplastic process in obesity [34].

While most patients with NAFLD remain asymptom-
atic, 20 % progress to develop chronic hepatic inflam-
mation or NASH, which in turn can lead to liver
fibrosis, portal hypertension, cirrhosis, HCC develop-
ment, and increased mortality [2, 3, 31, 32, 35]. A
subsequent study of natural history in NAFLD indicates
that steatohepatitis is a risk for the development of
cirrhosis and HCC [36]. The exact prevalence of HCC
in NASH remains unknown; however, some prospective
studies found at least 2 to 3 % yearly cumulative
incidence of HCC in patients with NASH [37, 38]. In
1998, Day and James proposed a “two-hit theory” to
explain NAFLD/NASH pathogenesis [39]. The first hit,
the flux of free fatty acids into the liver and subsequent
hepatic steatosis, plays a role in lipotoxicity-induced
mitochondrial abnormalities that sensitize the liver to
additional proinflammatory insults, the second hit. These
hits include enhanced lipid peroxidation and increased
generation of reactive oxygen species. Insulin resistance
is also regarded as a critical factor in the etiology of
NASH [39, 40].
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Potential pathophysiological mechanisms linking obesity
and HCC development

Figure 1 shows several pathophysiological mechanisms
linking obesity and its related metabolic abnormalities to
liver carcinogenesis. Substantial evidence has shown that
insulin resistance, among various obesity-related metabolic
disorders, significantly contributes to the development of
HCC. Insulin, which is a key regulator of glhucose metabo-
lism itself, and the signal transduction network it regulates
play important roles in oncogenesis [41, 42]. Insulin induces
HCC cells to proliferate and resist apoptosis [43, 44], sug-
gesting that hyperinsulinemia directly contributes to the
growth of HCC cells. In addition, insulin resistance
increases the biological activity of IGF-1, an important
endocrine and paracrine regulator of tissue growth and
metabolism. Numerous pieces of evidence indicate that the
IGF-1/IGF-1R axis plays an important role in the carcino-
genesis of many cancer types, including HCC [41, 42].
Insulin receptor and IGF-1R are receptor tyrosine kinases,
and the binding of insulin and IGF-1 to their respective
receptors on tumors and precancerous cells activates the
phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which
is responsible for cellular processes like growth, prolifera-
tion, and survival [41, 42]. IGF-1R activity is also required
for oncogenic transformation by a number of oncogenes,

including RAS, and can promote tumor formation in vivo
41, 45]. Activation of the IGF/IGF-1R axis is critically
involved in the growth of HCC cells and in liver carcino-
genesis [46—48]. For HCC, IGF-1R activation is observed in
a subgroup of tumor cells but not in adjacent cirrhotic tissue
[48]. We have recently reported that insulin resistance and
the activation of IGF/IGF-1R axis are involved in liver
carcinogen N-diethylnitrosamine (DEN)-induced liver tu-
morigenesis in obese and diabetic C57BL/KsJ-db/db (db/
db) mice [49, 50].

An adipokine imbalance caused by excess production of
storage lipids may also be related to obesity-associated liver
carcinogenesis. For instance, higher levels of serum leptin,
which regulates energy homeostasis and is elevated in obese
individuals [51], increase the risk of HCC recurrence after
curative treatment [52]. Leptin stimulates the growth of
HCC cells by upregulating cyclin D1 expression [53]. Treat-
ment with leptin also increases the proliferation of HCC-
derived cells by activating several signaling pathways: sig-
nal transducer and activator of transcription-3 (Stat3), AKT,
and extracellular signal-regulated kinase (ERK) [54]. In
animal models, leptin has been shown to promote angiogen-
esis and thus could facilitate the progression of NASH to
HCC [55]. In addition, lack of adiponectin, the other mem-
ber of the adipokine group that is significantly reduced in
obese individuals [56], enhances the progression of hepatic
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Fig. 1 Proposed mechanisms linking obesity and its related metabolic abnormalities to the development of HCC
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steatosis and tumor formation in a mouse model of NASH
[57]. However, this adipokine alleviates hepatic steatosis
[58]. In vitro and in vivo studies show that adiponectin
exerts antitumor effects in HCC cells [59]. Moreover, the
induction of adiponectin plays a role in the suppression of
chemically induced liver tumorigenesis in obese mice [60].
These findings suggest that obesity and its related metabolic
abnormalities, such as sustained insulin resistance, activa-
tion of the IGF-1/IGF-1R axis, and adipokine imbalance,
play an important role in the development of HCC and thus
might be promising targets in the prevention of obesity-
related liver tumorigenesis.

Obesity-induced insulin resistance and chronic
inflammation

There is substantial evidence that obesity is associated with
chronic low-grade systemic inflammation, which contrib-
utes to metabolic disorders and the progression from hepatic
steatosis to NASH and subsequent HCC development [4-8].
Hypertrophic adipocytes, which are associated with the
deposition and accumulation of excess lipids, secrete free
fatty acids (FFAs); in addition, together with various im-
mune cells, they release various proinflammatory cytokines,
including TNF-« and IL-6 [4-8]. In particular, macrophage
infiltration into white adipose tissue, which is accompanied
by TNF-« and IL-6 production, is an early contributing
event for the development of chronic low-grade systemic
inflammation [61, 62]. In 1993, Hotamisligil et al. demon-
strated that adipocytes constitutively express TNF-a and
neutralization of TNF-« by soluble TNF-a receptor
decreases insulin resistance in obese mice [63]. This sug-
gests that TNF-« lies at the core of the association between
obesity and insulin resistance. TNF-a enhances obesity-
related systemic insulin resistance by inhibiting the tyrosine
phosphorylation of insulin receptor [64]. On the other hand,
the loss of TNF-« and its receptor improves insulin sensi-
tivity in obese mice [65]. TNF-x contributes to obesity-
induced IL-6 production, which causes hepatic inflamma-
tion and activates ERK and Stat3 [66]. TNF-« and IL-6
expressions in the liver are strongly induced in response to a
high-fat diet, but inhibition of TNF-« signaling or ablation
of IL-6 prevents hepatosteatosis [66]. Type 2 diabetes is an
inflammatory condition, as evidenced by the elevated con-
centrations of IL-6, which induces cellular insulin resistance
in hepatocytes, observed in these patients [67—69]. The
concentration of IL-6 together with IL-1f3, which is another
inflammatory cytokine that induces insulin resistance in
liver-derived cells, is a more predictive risk factor for type
2 diabetes in humans than either cytokine alone [70, 71].
TNF-a and IL-6 increase the levels of leptin, whereas leptin
influences inflammatory responses, possibly by triggering
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the release of TNF-« and IL-6 [72, 73]. Hepatic steatosis
has negative effects on liver function, which might be me-
diated by inflammation because the expression of TNF-«,
IL-6, and IL-13 mRNA increases in the liver with increas-
ing adiposity [74].

Cytokine signaling pathway associated with obesity-induced
inflammation and HCC development

Several specific intracellular signaling pathways, including
c-Jun N-terminal kinase (JNK) and nuclear factor (NF)-«B,
have emerged as potential targets for many inflammatory
cytokines and chemokines that promote obesity-related met-
abolic disorders such as insulin resistance [75]. For instance,
activation of JNK inhibits normal tyrosine phosphorylation
of insulin receptor substrate-1 and downstream insulin sig-
nal transduction [76]. The effects of obesity-induced activa-
tion of NF-«B are mediated through the synthesis of NF-xB
target gene expression, including TNF-«, IL-6, and IL-1f3
[77]. Therefore, activation of INK and NF-«kB is associated
with the induction of insulin resistance, whereas their inhi-
bition provides glucose tolerance and protection from obe-
sity in rodents [75]. Reactive oxygen species that are
increased by adiposity have also been shown to activate
JNK and NF-«xB [78]. In addition, saturated FFAs lead to
JNK activation, which can, in turn, increase the production
of inflammatory cytokines capable of causing insulin resis-
tance [79]. Saturated FFAs have also been found to enhance
NF-«B activation in macrophages [80], suggesting that there
is a potential link between elevated circulating or tissue lipid
concentrations and the part of the immune system that
mediates inflammation. In hepatocytes, saturated FFAs can
induce time- and dose-dependent lipoapoptosis, which is the
combination of lipid accumulation and induction of apopto-
sis in hepatocytes [81]. Experimental data have also shown
that FFAs cause TNF-o production and subsequent NF-kB
activation by promoting hepatic lipotoxicity [82]. These
findings appear significant because lipotoxicity and lipoa-
poptosis play a pivotal role in the progression of NAFLD to
NASH [83]. INK1 activation also promotes the develop-
ment of NASH in mice fed with methionine- and choline-
deficient diets [84], which indicates that JNK and NF-kB
are critical factors in the occurrence of NAFLD and its
progression to NASH.

The role of obesity-induced inflammation in liver tumori-
genesis has recently been demonstrated in several experimen-
tal models [50, 66, 85, 86]. For instance, administration of
DEN was found to enhance the development of preneoplastic
lesions in the livers of rats fed with high-fat diets and this was
associated with elevated TNF-o/NF-kB signaling and ERK-
related hepatocyte proliferation [85]. Phosphorylation of
ERK, Akt, Stat3, and JNK proteins and upregulation of
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TNF-x, IL-6, and IL-1 in the liver are involved in DEN-
induced liver tumorigenesis in db/db obese mice [50]. En-
hanced production of adipose-derived TNF-c and IL-6 and
activation of Stat3 are critical in the development of obesity-
related liver tumorigenesis [66]. This study [66], together with
another recent study [87], clearly indicates that Stat3 activa-
tion, which is associated with TNF-o and IL-6 production in
hepatocytes, is essential for liver carcinogenesis.

Targeting obesity-related metabolic abnormalities for
cancer prevention

As mentioned earlier, obesity and its related metabolic ab-
normalities, such as a state of chronic inflammation, play a
critical role in the development of HCC. On the other hand,
these findings may suggest the possibility that the metabolic
disorders caused by obesity might be effective targets in the
prevention of liver carcinogenesis [18]. For instance, abla-
tion of IL-6 or inhibition of TNF-« signaling can inhibit
obesity-promoted hepatocarcinogenesis by reducing hepa-
tosteatosis and steatohepatitis [66]. Treatment with adipo-
nectin, an anti-inflammatory adipokine, also reduces liver
tumorigenesis in nude mice [59].

To verify our hypothesis that targeting metabolic abnor-
malities caused by obesity might be an effective strategy for
preventing cancer development in obese individuals, we
have conducted several experimental studies. We initially
performed chemopreventive studies using a mouse model of
obesity-related colorectal carcinogenesis because increased
body fat levels and BMI are associated with an increased
risk of colorectal cancer [17, 88, 89]. The model used obese
and diabetic db/db mice, which are susceptible to the colon-
ic carcinogen azoxymethane (AOM) and thus easily develop
colonic precancerous lesions [90]. We have found that pit-
avastatin and renin—angiotensin system inhibitors, which are
drugs for hyperlipidemia and hypertension, respectively,
suppress AOM-induced colonic preneoplastic lesions in
db/db mice by inhibiting the levels of TNF-x and IL-6 in
the serum and colonic mucosa [20, 21]. Curcumin, a com-
ponent of turmeric, also exerts chemopreventive effects in
the development of obesity-related colonic preneoplastic
lesions in db/db mice, and this is associated with inhibition
of NF-kB activity and TNF-« and IL-6 expression in the
colonic mucosa [19]. Furthermore, branched-chain amino
acids (BCAA) and (—)-epigallocatechin gallate (EGCG)
prevent obesity-related colorectal carcinogenesis by improv-
ing insulin resistance and inhibiting IGF/IGF-1R axis in
these mice [91, 92].

Among these agents, BCAA is considered as one of the
most promising candidates to prevent obesity-related liver tu-
morigenesis. This is because it is widely used for the treatment
of protein energy malnutrition (PEM) that frequently occurs in

patients with liver cirthosis [93-96]. EGCG, a major biologi-
cally active component of green tea, also seems to have a
considerable effect given that green tea catechins (GTCs) im-
prove metabolic abnormalities and possess anticancer and can-
cer chemopreventive properties [97-100]. In the following
sections, we will discuss in detail the effects of BCAA and
EGCG in the prevention of obesity-related liver tumorigenesis
based on our recent experimental studies. In addition, we also
discuss the effects of acyclic retinoid (ACR), which is a prom-
ising agent for the chemoprevention of HCC [101-104], on the
prevention of liver tumorigenesis in obese mice.

Preventive effects of BCAA on obesity-related liver
tumorigenesis

Because the liver is a critical organ for regulating me-
tabolism, a variety of nutritional and metabolic disorders,
such as PEM and insulin resistance, are frequently seen
in patients with chronic liver diseases [93-96, 105, 106].
Decreased serum levels of BCAA (valine, leucine, and
isoleucine) and albumin appear with a high incidence in
liver cirrhosis, whereas supplementation with BCAA has
been shown to improve PEM and increase the serum
albumin concentration in cirrthotic patients. This subse-
quently improves the quality of life and prognosis in
patients with liver cirrhosis by preventing complications
associated with the disease [93-96]. In addition, recent
clinical and experimental studies have revealed that
BCAA improves insulin resistance and glucose tolerance
[107-110]. In 2005, Muto et al. reported the results of a
large-scale (n=622) multicenter randomized controlled
trial, the Long-Term Survival Study, which investigated
the effects of supplemental BCAA therapy on event-free
survival in patients with decompensated cirrhosis. In the
trial, oral supplementation with a BCAA preparation
significantly prevented progressive hepatic failure and
improved event-free survival [95], strongly suggesting
that supplementation with BCAA can serve as a first-
line therapy for patients with decompensated cirrhosis.
Moreover, it should be emphasized that the results of the
subset analysis from this trial demonstrated that long-term
oral supplementation with BCAA was associated with a
reduced frequency of HCC in obese cirrhotic patients (P=
0.008) [12]. To clarify the precise mechanisms of BCAA in
the prevention of the development of HCC in obese cirrhotic
patients, we performed an experimental study using the
obesity-related liver carcinogenesis model in db/db mice
[49]. In the study, BCAA supplementation significantly
suppressed the development of DEN-induced hepatic pre-
neoplastic lesions in db/db mice by inhibiting the expression
of IGF-1, IGF-2, and IGF-1R in the liver. The development
of liver neoplasms, including hepatic adenoma and HCC,
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was also reduced by BCAA supplementation, and this was
associated with improvement of insulin resistance, reduction
of serum leptin levels, and attenuation of hepatic steatosis
and fibrosis [49]. Obese cirrhotic patients generally have a
particularly high incidence of hyperinsulinemia and insulin
resistance [105, 106]. Therefore, our findings [49], together
with the results of an in vitro study showing that BCAA
suppresses insulin-induced proliferation of HCC cells by
inhibiting the insulin-induced activation of the PI3K/Akt
pathway [111], suggest that BCAA supplementation re-
duced the risk of developing HCC in obese cirrhotic
patients. This was accomplished, at least in part, by target-
ing insulin resistance and its related signaling pathways
(Fig. 2; Table 1). These findings are consistent with the
results of an experimental study reported by Yoshiji et al.
showing the chemopreventive effects of BCAA supplemen-
tation against liver tumorigenesis in obese and diabetic rats,
which are also complicated with insulin resistance [112].
In addition, in our unpublished study, BCAA supplemen-
tation was shown to suppress the spontaneous development
of hepatic preneoplastic lesions in db/db mice by inhibiting
the expression of TNF-c¢, IL-6, and IL-13 mRNA in the
liver. BCAA supplementation also inhibited increased mac-
rophage infiltration and the expression of TNF-«, IL-6, and
monocyte chemoattractant protein-1 mRNA in the white
adipose tissue, suggesting that chronic inflammation in-
duced by obesity in the liver and adipose tissue could also
serve as a critical target of BCAA in the inhibition of the

DD
-

early phase of obesity-related liver tumorigenesis (unpub-
lished data).

Preventive effects of GTCs on obesity-related liver
tumorigenesis

Green tea is a beverage commonly consumed worldwide. Its
component polyphenols, which are known as GTCs, have
received great attention for their beneficial effects, particu-
larly their involvement in the improvement of metabolic
abnormalities and prevention of certain types of malignan-
cies [97-100]. A recent meta-analysis of clinical trials
reported that GTCs help reduce body weight [98]. Supple-
mentation with GTCs was found to decrease plasma levels
of insulin, TNF-«, and IL-6 and improve hepatic steatosis
and liver dysfunction in a rodent model of obesity and
diabetes. This indicated that treatment with GTCs is effec-
tive in the prevention of the progression of obesity-related
metabolic disorders such as chronic inflammation
[113-115]. The anti-inflammatory properties of GTCs are
also responsible for the anticancer and cancer-preventive
effects of the molecules [99]. EGCG, a type of GTC, sup-
presses inflammation-related colon carcinogenesis in mice
by decreasing the mRNA expression of TNF-& and IL-6 in
the colonic mucosa [116]. EGCG also inhibits proliferation
and induces apoptosis in HCC- and colorectal cancer-
derived cells by inhibiting the activation of IGF-1R and its

D
vV &

Improvement, Attenuation, and Inhibition

Development of HCC

Fig. 2 Mechanisms of action of BCAA, EGCG, and ACR in the inhibition of obesity-related liver carcinogenesis
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Table 1 Suppressive effects of BCAA, EGCG, ACR, and pitavastatin on obesity-related liver tumorigenesis in db/db mice

Agent Inhibition rate (%)  Inhibition mechanisms Reference number
Adenoma FCA®
BCAA 75% ¢ 50> ¢ Hepatic IGF-1, IGF-2, and IGF-1R mRNAs |  Serum leptin and ALT levels | [49]
Hepatic steatosis | Insulin sensitivity T
Hepatic fibrosis | Hepatocyte proliferation |
EGCG 86° 48° Hepatic pIGF-1R, pERK, and pAkt Serum insulin, IGF-1, IGF-2, [50]
proteins } and FFA levels |
Hepatic steatosis | Hepatic pAMPK protein 1
Hepatic and systemic inflammation | Hepatic pStat3 and pJNK proteins |
ACR 86° 81° Hepatic Ras activity | Hepatic pRXRa, pERK, and pStat3 [86]
proteins |
Hepatic RARP and p21€""! mRNAs 1 Hepatic steatosis |
Insulin sensitivity 1 Hepatic and systemic inflammation |
Pitavastatin  NE® 29¢ Pro-apoptotic effect 1 Hepatocyte proliferation | [60]

Hepatic steatosis |
Serum adiponectin level 1

Hepatic pAMPK protein 1
Hepatic and systemic inflammation |

Foci of cellular alteration

® Compared to the casein supplementation mice (a nitrogen content-matched control for BCAA)

€ Mice were treated with agent for 34 weeks
9Not examined
®Mice were treated with agent for 14 weeks

downstream signaling pathways, including Ras/MAPK and
PI3K/Akt [46, 117]. In addition, this agent prevents carbon
tetrachloride-induced hepatic fibrosis in rats by inhibiting
IGF-1R expression [118], indicating that the IGF/IGF-1R
axis, which is critically involved in cancer development and
obesity-related metabolic disorder, might be a critical target
of GTCs. Several interventional studies also provide clear
evidence for the chemopreventive effects and safety of tea
preparations [119-121].

Because GTCs are expected to improve metabolic disorders
and exert chemopreventive properties by targeting chronic in-
flammation and the IGF/IGF-1R axis, we examined whether
EGCG treatment inhibits obesity-associated liver tumorigenesis
[50]. We found that drinking water containing EGCG signifi-
cantly inhibited the development of hepatic preneoplastic lesions
and adenoma [50]. EGCG consumption also improved hepatic
steatosis; decreased the serum levels of insulin, IGF-1, and IGF-
2; and inhibited the phosphorylation of the IGF-1R, ERK, Akt,
Stat3, and JNK proteins in the liver of obese mice [50]. The
serum levels of FFA and TNF-a were also decreased by drink-
ing EGCG, which additionally lowered the expression of TNF-
«, IL-6, and IL-13 mRNAs in the liver [50]. These findings
suggest that EGCG prevents obesity-related liver tumorigenesis
by inhibiting the IGF/IGF-1R axis, improving hyperinsuline-
mia, and attenuating chronic inflammation (Fig, 2; Table 1).
Thus, in addition to BCAA, GTCs may also be useful in the
chemoprevention of liver tumorigenesis in obese individuals.

Preventive effects of ACR on obesity-related liver
tumorigenesis

Retinoids, a group of structural and functional derivatives of
vitamin A, play fundamental roles in cellular activities,
including growth, differentiation, and apoptosis, as well as
in morphology [122, 123]. Because of this, loss of retinoid
activity or responsiveness is linked to the development of
several types of human malignancies, including HCC; there-
fore, they might be critical targets for cancer chemopreven-
tion and chemotherapy [103, 104, 124, 125]. Retinoids exert
their biological functions primarily by regulating gene ex-
pression through two distinct nuclear receptors, the retinoic
acid receptors (RARs) and retinoid X receptors (RXRs),
both of which are composed of three subtypes («, (3, and
v) [122, 123]. Among the retinoid receptors, RXRx is
thought to be one of the most important with respect to
exerting fundamental effects on cellular activities. This is
because it forms a heterodimer with other nuclear receptors
and thereby acts as the master regulator of nuclear receptors
[122, 123]. We have reported that abnormalities in the
expression and function of RXR«x are prominently involved
in the development of HCC. The repression of RXRa was
found to occur in the early stages of liver carcinogenesis in a
rat model of chemically induced liver carcinogenesis [126].
Moreover, a malfunction of the RXR o due to phosphoryla-
tion by the Ras/MAPK signaling pathway is significantly

@ Springer

— 167 —



198

Semin Immunopathol (2013) 35:191-202

associated with liver carcinogenesis. That is, accumula-
tion of phosphorylated RXR« protein, which is regarded
as the nonfunctional form of RXRe, interferes with the
function of normal (unphosphorylated) RXR« in a
dominant-negative manner, thus playing a critical role
in HCC development [103, 104, 127-130]. These find-
ings therefore suggest that targeting RXRo phosphory-
lation may be an effective and important strategy for the
prevention and treatment of HCC.

ACR, a synthetic retinoid that was initially devel-
oped as an agonist for RXR, is a possible candidate
for this purpose because it can impede the develop-
ment of HCC and it inhibits cancer cell growth by
repressing the Ras/MAPK signaling pathway and sub-
sequent RXRa phosphorylation [103, 104, 128, 131].
One early-phase randomized controlled clinical trial
tested the chemopreventive effect of ACR on second-
ary HCC in patients who underwent potentially cura-
tive treatment for initial HCC. In this study, oral
administration of ACR significantly reduced the inci-
dence of recurrent or new HCC (P=0.04) and im-
proved the recurrence-free survival (P=0.002) and
overall survival rates (P=0.04) [101, 102]. Moreover,
a large-scale (n=401) randomized placebo-controlled
trial (phase II/III trial) also showed that ACR had a
strong effect on the prevention of second primary
HCC in HCV-positive patients. It showed a hazard
ratio of 0.27 (95 % CI, 0.07-0.96) 2 years after the
treatment, indicating that ACR reduced the recurrence
of HCC, particularly after 2 years of treatment [132].

Because numerous preclinical experiments and clin-
ical trials indicate that ACR is a promising agent for
the chemoprevention of HCC, we investigated whether
ACR could prevent obesity-related liver tumorigenesis
[86]. In the study, treatment with ACR effectively
prevented the development of obesity-related liver tu-
morigenesis by inhibiting the activation of Ras and the
phosphorylation of ERK and RXR«, thus restoring
RXRa« function in the liver of DEN-treated db/db mice
[86]. ACR administration also inhibits this tumorigen-
esis through attenuation of the chronic inflammation
induced by excessive fatty deposits, as demonstrated
by the improved liver steatosis and decreased serum
TNF-« levels and expression levels of TNF-«, IL-6,
and IL-1 mRNA in the liver [86]. In addition, ACR
administration improved insulin sensitivity, which was
also associated with the prevention of obesity-related
liver tumorigenesis [86] (Fig. 2; Table 1). Therefore,
the results obtained from both clinical trials [101, 102,
132] and this preclinical experiment [86] encourage
the clinical use of ACR for cirrhotic patients with
obesity and diabetes who are at a notably higher risk
of developing HCC.
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Conclusion

Obesity and its related metabolic abnormalities, includ-
ing increased cancer risk, are a serious public health
problem worldwide. Among all cancers, HCCs are the
malignancies most frequently affected by obesity. The
liver disease influenced most by obesity is NAFLD, and
this disease, by itself and in synergy with other risk
factors such as hepatitis virus infection, is becoming
one of the most common causes of HCC in developed
countries. Therefore, there is an urgent need to develop
more effective therapeutic strategies to prevent the de-
velopment of obesity-related HCC or halt its progres-
sion. Obesity and diabetes enhance HCC development
through insulin resistance, activation of the IGF/IGF-1R
axis, and lipid accumulation within hepatocytes, thereby
leading to a chronic low-grade systemic inflammation.
This involves abnormalities of various types of cyto-
kines and adipokines. Among them, TNF-x and IL-6
play a critical role in the onset of NASH and the
initiation and promotion of HCC.

In this review, we indicate the possibility that phar-
maceutical and nutraceutical approaches for targeting
and restoring metabolic disorders, especially chronic
low-grade inflammation involving increased levels of
TNF-o¢ and IL-6, may be an effective strategy for pre-
venting the development of obesity-related HCC. We
further indicate that BCAA, GTCs, and ACR are con-
sidered as some of the most promising agents for
achieving this purpose. Therefore, further advanced
translational research, such as pilot trials, to clarify
whether active intervention using these agents can pre-
vent the development and recurrence of HCC in patients
with chronic liver disease and obesity is required. In
addition, further experimental studies to determine
whether specific drugs, such as antidiabetic drugs, anti-
hypertensive drugs, and lipid-lowering drugs, can inhibit
obesity-related liver carcinogenesis should be performed.
Considering that these drugs are widely used for
patients with metabolic syndrome, it would be beneficial
if they could exert chemopreventive effects on obesity-
associated carcinogenesis. Our recent findings that pit-
avastatin, a recently developed lipophilic statin, sup-
presses the development of chemically induced colonic
and hepatic preneoplastic lesions in db/db mice by
attenuating chronic inflammation may provide a basis
for this attempt [21, 60] (Fig. 2; Table 1).
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Historically, evidence of chemical carcinogenesis has played a significant role in verifying conclusions

draw from epidemiological studies. Chemical agents that were suspected to have a certain role in human
chronic diseases, such as cancers, have been tested in animals to establish firmly a causative risk or link
to risk. The three best examples are: (1) tobacco smoke and lung cancer; (2) asbestos and mesothelioma;
and (3) aflatoxin and hepatic cancer. New chemical compounds are synthesized every day, and a number
of natural or synthetic compounds are incorporated in foods either as a result of their processing or to
preserve or enhance them. Chemical carcinogenesis studies using model animals have greatly contrib-
uted to understanding the mechanisms underlying the development and prevention of carcinogenesis.
The carcinogenesis process is generally considered to include three steps: initiation, promotion, and
progression. Each step is characterized by morphological and biochemical alterations resulting from
genetic and epigenetic changes, including mutations in proto-oncogenes and tumor suppressor genes
that control proliferation, cell death, and cellular repair. Long-term in vivo assays using laboratory ani-
mals enable the identification of carcinogenic compounds and their modes of action. Based on these
findings, we should be able to establish effective strategies to treat and prevent malignancies resulting
from exposure to potentially carcinogenic chemicals.
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1. Introduction

Neoplasms can be classified as benign or malignant depending on
their biological characteristics. The malignant cells show a variety
of biological features (Figure 1). They proliferate autonomously,
invade adjacent tissues, and frequently metastasize to distant tis-
sues that are not related to the primary site.! The most important
biological characteristic of a malignant neoplasm is its ability to
metastasize. By contrast, benign neoplasms grow more slowly, but
can compress their adjacent normal tissue.? Therefore, the histo-
pathological observation/diagnosis of neoplasms (benign or ma-
lignant; and epithelial or nonepithelial origin) is important for
understanding the pathogenesis and pathobiology of the neo-
plasms.>~> The histological and cytological changes that occur
during tumorigenesis are illustrated in Figure 2. Malignant
epithelial cells multiply clonally, escape from apoptosis, and accu-
mulate genetic andfor epigenetic alterations.® When malignant
neoplasms originate from nonepithelial cells, they are called sar-
comas. The escape of malignant cells from apoptosis results in

* Corresponding author. Takuji Tanaka, Clin-ToxPath (C-Top) Consulting, 1-7-9
Ichihashi, Gifu City 500-8381, Japan.
E-mail: T. Tanaka <takutt@toukaisaibou.co.jp>

uncontrolled growth of neoplastic cells, and this is a critical point
that determines the malignant potential of the cells,’ and thus
apoptosis induction is considered to be one of the mechanisms that
can be targeted for cancer chemoprevention.®

The term “carcinogenic” is defined as the capacity of a chemical
compound to induce the development of cancer in certain tissues
under certain conditions.*'® A compound is considered to be
“carcinogenic” when its administration to laboratory animals pro-
duces a statistically significant increase in the incidence of several
histological types of neoplasms compared with the control group
not exposed to the compound.

The carcinogenic factors that are responsible for cancer devel-
opment are classified as either exogenous or endogenous.!® The
exogenous factors include agents associated with food preservation
and preparation, socio-economic status, lifestyle, ionizing and
nonionizing radiation, natural and synthetic chemical compounds,
and xenobiotics including Helicobacter pylori, Epstein—Barr virus,
human T-lymphtropic virus, human papillomavirus, hepatitis B
virus, hepatitis C virus, and certain parasites.”"'? Alcohol con-
sumption, tobacco smoking, and the intake of certain foods
contaminated by mycotoxins are also responsible for causing
certain types of neoplasms.'?

Endogenous carcinogenic factors include conditions and agents
that cause immune system disruption and subsequent

1878-3317/$ — see front matter Copyright © 2013, Taipei Medical University. Published by Elsevier Taiwan LLC. All rights reserved.
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Figure 1 Biological characteristics of malignant cells. (A) Histology of human skin squamous cell carcinoma; (B) PCNA immunohistochemistry; (C) p53 immunohistochemistry, and
(D) scraped cytology of human skin cancer. (A) hematoxylin and eosin stain and (D) Papanicolaou stain. Bars are 50 pm (A—C) and 20 pm (D). PCNA = proliferating cell nuclear

antigen.

inflammation, such as ulcerative colitis.>>~'® Epidemiological
studies suggest that the risk of developing cancer varies between
different population groups, and these differences are associated
with both genetic differences and lifestyle-related factors and
habits. Indeed, the migration of certain populations to new regions
with different lifestyles can result in the development of new
types of cancer not previously prevalent in that group.”” For
example, exposure to Western lifestyles had a substantial impact
on breast cancer risk in Asian migrants to the USA during their
lifetime.!® A study conducted by Maskarinec and Noh'® showed
that the migrant effect was strongest for colon and stornach can-
cers; prostate and breast cancers were affected to a lesser degree;

and lung cancer risk differed little between Japanese in Japan and
Hawaii. Migration led to lower risk of stomach, esophageal,
pancreatic, liver, and cervical cancers, but to higher rates for all
other cancers.””

Neoplastic development is based on the existence of genetic
mutations. In most cases, the effects of such mutations are assumed
to vary between tissues and among species. During cell division,
spontaneous genetic errors occur with an estimated frequency of
around 107°-~10~8 nucleotides per cycle of cell division. Although
numerous repair systems exist within the cells to correct these
errors, if the damage persists and reaches a gene responsible for
neoplastic development, then cancer can develop. Indeed, studies

- Mitosis
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- mitosis
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Figure 2 Differentiation and atypia of normal, preneoplastic, and neoplastic cells. Cellular differentiation is decreased during carcinogenesis. Nuclear atypia and number of mitoses
including abnormal mitoses are increased during carcinogenesis. An abnormal mitosis in this figure is tripolar mitosis.
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Chemical carcinogenesis

to date have consistently shown that human cancer is a genetic
disease.?*

This short review, starting with the historical studies of chem-
ical carcinogenesis, aims to summarize several aspects of chemical
carcinogenesis that have been extensively studied to establish
causative associations between environmental exposures and
increased cancer risk.

2. The history of chemical carcinogenesis

The first experimental work on chemical carcinogenesis was car-
ried out in 1915 by Dr Katsusaburo Yamagiwa (a pathologist) and
his assistant Koichi Ichikawa.?' They painted rabbit ears with coal
tar and observed the development of skin squamous cell papil-
lomas and carcinomas. Subsequently, other researchers extensively
studied carcinogenesis of other tissues, such as the lungs, bladder,
liver, kidneys, and pancreas using laboratory animals, and showed
that the experimental use of animals and carcinogens was helpful
for studying human cancers, and could provide insight into the
causes of cancers.

Drs Beremblum and Shubik used polycyclic aromatic hydrocar-
bons and croton oil to investigate skin carcinogenesis in mice, and
demonstrated that cancer develops through several stages.”> When
applied as a single application to the skin at a low dose, 9,10-
dimethyl-1,2-benzanthracene (DMBA) caused only a few or no
skin tumors. However, multiple skin tumors developed when
croton oil was applied repeatedly after this low-dose DMBA treat-
ment. When croton oil was applied repeatedly prior to the DMBA
treatment, no skin tumors developed. Based on these observations,
they suggested that carcinogenesis was a complex process that
included “initiation” and “promotion” stages. During the next
decade, based on the studies by Rous and Beard® and Greene,?*
Foulds®® introduced the term “progression” after investigating
experimentally induced breast adenocarcinoma in female mice.
Prior to when carcinogens were known to bind to DNA, the cancers
produced by chemical carcinogens were believed to be due to their
interaction with proteins in specific tissues.”® By the end of the
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1960s, increasing evidence pointed to a correlation between the
DNA binding capacity of a carcinogen and its biological potency.”’

3. Understanding chemical carcinogenesis
3.1. The multiple steps of carcinogenesis

Human cancer development is characterized by the five “Ms”,
namely multifactorial etiology, multistep, multiyear, multigenetic
alterations, and multipath disease. Chemical carcinogenesis also
involves multistage and multistep processes. Although the process
includes multiple molecular and cellular events that lead to the
transformation of normal cells into malignant neoplastic cells, ev-
idence has defined at least three steps in the chemical carcino-
genesis process.>'® These steps are “initiation”,? “promotion”,?? and
“progression”?® (Figure 3). The first step, “initiation”, is the stage
where a normal cell undergoes unrepaired DNA damage and DNA
synthesis to produce a mutated (initiated) cell. The production of an
initiated cell can occur through interactions with physical carcino-
gens, i.e., UV light irradiation, as well as chemical carcinogens that
possess DNA damaging or mutagenic properties. Additionally,
during cell proliferation, mutations may be acquired through mis-
repair of damaged DNA, resulting in spontaneously initiated
(mutated) cells. Following the formation of an initiated celi,
chemicals and/or endogenous physiological substances can cause
the selective clonal growth of the initiated cell through the process
of tumor promotion. Tumor promotion involves the expansion of
the initiated cell(s) to a focal lesion. The tumor promotion process is
not a direct DNA-reactive or damaging process, but involves mod-
ulation of the gene expression, which results in an increase in cell
number through cell division and/or decrease in apoptotic cell
death.®® Following continual cell proliferation, additional mutations
might be acquired in the preneoplastic cells, resulting in the in-
duction of a neoplasm. The term “conversion” during progression
stage implies that benign tumors gain malignant phenotypes. The
third step, “progression”, involves additional damage to the genome
and, unlike the “promotion” step, is irreversible. The multistep
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Figure 3 Multistep chemical carcinogenesis.
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process has been well defined in rodent systems, and evidence has
shown that similar processes occur in humans.

In humans, the clinical detection of a tumor that has developed
may not occur for 20—50 years after an individual is exposed to a
carcinogen.?® The multistep process of carcinogenesis has been
studied extensively in colon cancer, with the progression from
hyperplastic crypts, to adenoma to cancer, and then finally
metastasis, all being well characterized.”

3.1.1. Initiation

DNA damage can be repaired by enzymatic mechanisms.>® How-
ever, initiated cells that are proliferating have less time to repair
damaged DNA and remove covalent bonds with their DNA (DNA
adducts).>' When the initiated cells survive without repair for
weeks, months, or years, they can grow in an autonomous and
clonal fashion. During the initiation process, cell division remains
symmetrical by creating two new initiated cells. Mitogenic stimu-
lation (which leads to an increase in the number of new cells and
apoptosis inhibition) by intrinsic and/or extrinsic factors results in
the clonal expansion of initiated cells, which then survive. An in-
crease in DNA damage is especially important in stem cells, because
damaged stem cells can survive for a long time in the tissues, and
may remain hidden.’

3.1.2. Promotion
The most important activity of tumor promoters is mitogenic
stimulation.! In order to exert the tumor-promoting effects that
depend on the concentration, the tumor promoter’s stimulation
must continue for a long duration (weeks, months, or years) in the
target tissues.® Promotional effects are reversible. When the tumor
promoter disappears, regression of the tumor occurs, possibly
through apoptosis mechanisms. Some tumor promoters are tissue-
specific, but others act simultaneously on several different tissues.?*
A long-term and/or high-dose exposure, a tumor promoter can
sometimes induce preneoplasms and neoplasms even without
initiation stimuli.'! Examples of agents that can cause such lesions
are phenobarbital, benzene, asbestos, and arsenic.® This is
explained by two possibilities: the genotoxicity of these com-
pounds may not be detected, leading to a lack of repair, or the
initiated cells may spontaneously develop in response to the insult.
In the latter case, an increase in the frequency of cell division can
enhance the DNA replication errors as well as mutations. Not all
cells exposed to a tumor promoter undergo to the promotion step,
and only cells that are stimulated to divide and escape from

apoptosis go on to the next step, “pmgression".6

3.1.3. Progression

The sequence of lesions identified by histopathological examina-
tions between the initiation and promotion steps are designated as
preneoplasms and/or benign neoplasms.>*> Their transformation
into malignant lesions (with metastasis) is the last step, called
“conversion”, of the carcinogenesis process.>> During the pro-
gression step, a neoplastic or malignant phenotype is obtained
through genetic and epigenetic mechanisms."? In this step, the
proliferation is independent of the presence or absence of
progression-related stimuli.>® Progression is characterized by irre-
versibility, genetic instability, growth factor production, invasion,
metastasis, and alterations in the biochemistry, metabolism, and
morphology of affected cells.!"¥” Neoangiogenesis is essential to
the neoplastic progression.

3.1.4. Metabolism of chemical carcinogens

The metabolism of carcinogens has been discussed mainly in terms
of the enzymes involved in the activation®® and detoxification® of
these chemicals. Miller*® and Ames et al*! developed the concepts

T. Tanaka et al.

of bioactivation, detoxification, and genotoxicity of carcinogens.
Chemical carcinogens are absorbed after their oral, inhaled, cuta-
neous, or injection-based exposure, and are distributed in a variety
of tissues.*? The substances absorbed orally pass through the liver,
and only then are they distributed to the other tissues. The car-
cinogens that first enter the lungs following inhalation are
distributed by the bloodstream prior to reaching the liver.*> The
carcinogens that act directly on DNA are classified as direct-acting
carcinogens. However, most chemicals require enzymatic conver-
sion to act as carcinogens, and thus it is often the metabolites of
compounds that cause the neoplastic changes (Figure 4). These
carcinogens are classified as indirect-acting carcinogens or pro-
carcinogens.44 Metabolic activation, mostly in the liver, is
controlled by Phase I reactions, whereas Phase Il reactions generally
protect the tissues through the transformation of activated com-
pounds into inert products that are easily eliminated from the
body.35"‘5

Metabolic activation occurs predominantly in the liver at the
plain endoplasmic reticulum where the cytochrome P450s are
abundant, and to a lesser degree in other tissues, including the
bladder, skin, gastrointestinal tract, esophagus, kidneys, and lungs.
During Phase 1 reactions, the cytochrome P450 monooxygenases
introduce a reactive polar group into the carcinogen, making it
lipophilic, and then convert it into a powerful electrophilic product
that is capable of causing DNA adduct formation*® Phase II re-
actions are catalyzed by hepatic and extra-hepatic, cytoplasmic and
cytochromic enzymes, acting separately or cooperatively.*’ Conju-
gation reactions enable these enzymes to decompose the polar
group in glucose, amino acids, glutathione, and sulfate, which are
less toxic metabolites that are more soluble in water and more
easily excreted via the urine and bile.*®

The metabolic activation of carcinogens is equally important for
both humans and animals, although there are qualitative and
quantitative differences between them, leading to incorrect in-
terpretations when animal models are used in the research and
analysis of the carcinogenic properties of chemical compounds.*®
There are several exogenous and endogenous factors that influ-
ence the susceptibility to carcinogenesis.*”

3.1.5. Epigenetic mechanisms involved in chemical carcinogenesis
The most well understood epigenetic mechanisms involve DNA
methylation and histone acetylation, methylation, and phosphor-
ylation. The demethylation of promoter regions at the CpG se-
quences can lead to an overexpression of proto-oncogenes, and
silencing of gene expression can occur as a result of hyper-
methylation, sometimes leading to chromosome condensation.>®
There appears to be a relationship between DNA methylation and
histone modifications; patterns of histone deacetylation and his-
tone methylation are associated with DNA methylation and gene
silencing. Interestingly, these epigenetic changes in chromatin can
also alter the sensitivity of DNA sequences to mutation, thus
rendering genes more or less susceptible to a toxic insult.>”

4. Molecular targets of chemical carcinogens

When oncogenes are transfected into immortalized mouse cell
lines, they are able to induce neoplastic transformation. However,
there are other genes that can influence neoplastic trans-
formation.® For example, there are several genes that intervene in
carcinogenesis.>®! Alterations in proto-oncogenes, tumor sup-
pressor genes, and cell cycle regulatory genes are especially
important during carcinogenesis.”**>>? Although there are several
genetic diseases where mutations in one gene can cause disease,
neoplastic development requires the presence of errors in the
cellular defense mechanisms, which are controlled by checkpoints
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