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FIG 7 Specific interaction of miR122 with viral RNA is crucial for efficient
propagation of HCVcc. (A) Diagram of pre-miR122 and partial nucleotide
sequences of wild type (WT) miR122 and mutant miR122 carrying a single
mutation (sMT) and double mutations (dMT). (B) Hep3B cells were trans-
duced with lentiviral vectors expressing either WT-, sMT-, or dMT-miR122 or
with a control, and the relative expression of miR122 was determined by qRT-
PCR by using U6 snRNA as an internal control. (C) Hep3B cells expressing
WT- or dMT-miR122 or the control cells were infected with HCVecatan MOI
of I, and the level of HCV RNA was determined by qRT-PCR at 24 and 48 h
postinfection. (D) The culture supernatants were collected at 72 h postinfec-
tion, and the viral titers of the supernatants were determined by focus-forming
assay using Huh7.5.1 cells.

38, 52). In this study, we assessed the possibility of establishment
of human liver cell lines that are susceptible to HCVcc propaga-
tion through exogenous expression of miR122 by a lentiviral vec-
tor. Although Huh7 cells and their derived cell lines are highly
susceptible to propagation of HCVcc, they intrinsically express an
abundant amount of miR122. Among the cell lines that we inves-
tigated, Hep3B cells exhibit a high sensitivity to HCVcc propaga-
tion by expression of miR122 compared to that of Huh7 cells,
whereas no sensitivity to HCVcc was observed in the parental
Hep3B cells. Therefore, the Hep3B cell line was suggested to be an
ideal tool to investigate miR122 function in the life cycle of HCV.,

RNA viruses replicate in host cells with high error rates, gener-
ating a broad population diversity, which allows rapid adaptation
to new environments (33). HCV propagates in the liver of patients
with quasispecies heterogeneity and transmits to a new host
through contaminated blood or blood products (16). It is known
that the complexity of HCV clones significantly decreases during
transmission through a genetic bottleneck, resulting in a more
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homogencous population. This selection of certain clones is
mainly caused by the host factors required for viral replication and
immune pressure in a new host and is involved in the early phase
of HCV infection in the new environment (18, 25, 32). A sole cell
line, Huh7, has been employed in most of the experiments for i
vitro studies of entry, RNA replication, and particle formation of
HCV. Therefore, it has not been possible to assess propagation of
HCVec in human liver cell lines other than Huh7 cells and trans-
mission of HCVec to liver cell lines of different origins. The estab-
lishment of a novel human liver cell line, Hep3B/miR122, for
propagation of HCVcc would help to generate new insights into
the mutual interaction between HCV and human hepatocytes.
Although we are not able to evaluate the effects of the acquired
immunity on the induction of the adaptive mutations in cell cul-
ture systems, we can assess the host factors involved in the gener-
ation of the adaptive mutations by using two different human liver
cell lines that support continuous propagation of HCVcc. Further
studies are needed to determine the adaptive mutations in the
HCV genome by passage in either Hep3B/miR122 or Huh?7 cells
and in one after the other.

At least seven major HCV genotypes and numerous subtypes
have been identified (21), but laboratory strains capable of repli-
cating in vitro are limited (36, 64, 68, 70). It is important to estab-
lish cell lines that permit the complete propagation of a wide range
of HCV genotypes for further understanding of the life cycle of
HCV. Although the partial replication of serum-derived HCV in
primary hepatocytes in a specialized culture system has been re-
ported (50), development of a simpler and more user-friendly
system is required for promotion of research on HCV. It might be
feasible to establish new cell culture systems for not only various
genotypes of infectious HCV clones but also serum-derived HCV
by the expression of miR122 in various human liver cell lines.

While preparing the manuscript, Narbus et al. reported that
the expression of miR122 enhances HCV replication in HepG2/
CD81 cells (46). Our data also demonstrated that the expression of
miR122 increased HCV replication in HepG2/CD81 cells, as
shown in Fig. 1D. However, the impact of miR122 expression on
the production of infectious particles in HepG2/CD81 cells is sig-
nificantly lower than that in Huh7 cells (46). Although LH86 (71)
and Li23 (30) cell lines derived from human hepatocellular carci-
noma have been shown to permit propagation of HCVcc, these
cell lines are not well characterized. In contrast, the Hep3B cell line
has been utilized in a wide range of research fields for a long time,
resulting in the accumulation of many sources of data from
genomic and proteomic analyses (1, 47, 55, 63, 67). Moreover, the
Hep3B cell line is available from the major cell banks all over the
world, which should readily allow reevaluation of the findings in
this study. Comparison of the experimental data on HCVcc prop-
agation between Huh7 and Hep3B/miR122 cells might provide a
clue to understanding the host factors crucial for the efficient
propagation of HCV in human liver cells.

The higher susceptibility to HCVcc propagation of the cured
cells derived from Huh?7 cells than the parental cells was suggested
to be attributable to impairment of the innate immune response
(57). However, this is not the only reason for efficient propagation
of HCVcc in the Huh7-based cured cell lines (17). It has been
shown that cured cell lines, such as Huh7.5.1 and Huh7-Lunet,
express a higher level of miR122 than the parental Huh7 cells (13),
suggesting that upregulation of miR122 in the cured cells partici-
pates in the efficient propagation of HCVcc. However, the level of
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miR122 expression in the cured Hep3B cells was not necessarily
correlated with the replication efficiency of HCVcc in the present
work (Fig. 6C). Most recently, Denard et al. reported that the
expression of CREB3L1/OASIS, which specifically prevents divi-
sion of virus-infected cells, in cured Huh7 cells was reduced com-
pared to that in the parental cells (12), suggesting that CREB3L1/
OASISis also involved in the enhancement of HCVcc propagation
in the cured cells.

In this study, we have shown that expression of miR122 confers
susceptibility to human liver cell lines for the efficient propagation
of HCVcc. Elimination of the HCV genome from the replicon
cells of Hep3B/miR122 cells enhanced propagation of HCVcc in
accord with the increment of miR122 expression, and propaga-
tion of HCVcc in the cured cells was continuously increased in
every passage. Furthermore, the interaction between HCV RNA
and miR122 was shown to be specific for production of infectious
particles in Hep3B/miR122 cells. The establishment of a new per-
missive cell line for HCVcc allows us not only to investigate the
biological function of miR122 on the life cycle of HCV but also to
develop novel therapeutics for chronic hepatitis C.
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Abstract Hepatitis C virus (HCV) exhibits a narrow host
range and a specific tissue tropism. Mice expressing major
entry receptors for HCV permit viral entry, and therefore
the species tropism of HCV infection is considered to be
reliant on the expression of the entry receptors. However,
HCYV receptor candidates are expressed and replication of
HCV-RNA can be detected in several nonhepatic cell lines,
suggesting that nonhepatic cells are also susceptible to
HCYV infection. Recently it was shown that the exogenous
expression of a liver-specific microRNA, miR-122, facili-
tated the efficient replication of HCV not only in hepatic
cell lines, including Hep3B and HepG2 cells, but also in
nonhepatic cell lines, including HeclB and HEK-293T
cells, suggesting that miR-122 is required for the efficient
replication of HCV in cultured cells. However, no infec-
tious particle was detected in the nonhepatic cell lines, in
spite of the efficient replication of HCV-RNA. In the
nonhepatic cells, only small numbers of lipid droplets and
low levels of very-low-density lipoprotein-associated pro-
teins were observed compared with findings in the hepatic
cell lines, suggesting that functional lipid metabolism
participates in the assembly of HCV. Taken together, these
findings indicate that miR-122 and functional lipid
metabolism are involved in the tissue tropism of HCV
infection. In this review, we would like to focus on the role
of miR-122 and lipid metabolism in the cell tropism of
HCV.
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Introduction

More than 170 million individuals worldwide are chroni-
cally infected with hepatitis C virus (HCV), and the cir-
rthosis and hepatocellular carcinoma (HCC) induced by
HCV infection are life-threatening diseases [1]. On the
other hand, HCV infection sometimes induces extra-hepatic
manifestations (EHM), including mixed cryoglobulinemia
and non-Hodgkin lymphoma [2-5]. The mechanisms of the
pathogenesis and cell tropism of HCV have not been fully
elucidated yet owing to the lack of an appropriate infection
model. Although chimpanzees are susceptible to HCV
infection, the use of these animals to study experimental
infection is ethically problematic, and no other animal
model with susceptibility to HCV infection has been
established [6]. Furthermore, robust in vitro HCV propa-
gation has been limited to the combination of cell-culture-
adapted clones based on the genotype 2a JFHI1 strain
(HCVcc) and human liver cancer-derived Huh7 cells [7, 8].
The expression of a liver-specific microRNA, miR-122, has
been shown to dramatically enhance the translation and
replication of HCV-RNA [9]. Recently, several reports
have shown that the exogenous expression of miR-122
facilitates the efficient replication of viral RNA in several
hepatic and nonhepatic cell lines [10-13]. Of note, the
clinical application of a specific inhibitor of miR-122 to
chronic hepatitis C patients is now in progress [14]. In
addition, it has been shown that liver-specific expression of
very-low-density lipoprotein (VLDL)-associated proteins
is involved in the assembly of infectious HCV particles
[15, 16]. This review will focus on the role of miR-122
expression and lipid metabolism in HCV infection.

@ Springer

- 959 -



J Gastroenterol

microRNA and virus infection

miRNAs were first identified by Lee et al. [17] and since
that time a great number of miRNAs have been registered
in the miRNA database. miRNA incorporated into RNA-
induced silencing complex (RISC) interacts with a target
mRNA via a specific recognition element. RISC contains
argonaute 2 (Ago2), Dicer, and TAR RNA binding protein
(TRBP) [18, 19]. In humans, Ago2 plays a pivotal role in
the repression of translation of target genes [20]. It is now
commonly believed that miRNAs play important roles in
cell homeostasis, and that abnormality of miRNA expres-
sion participates in the development of several diseases,
including viral infections [18, 19]. miRNAs encoded by
Epstein—Barr virus (EBV) were identified in 2004 [4, 21],
and over 200 viral miRNAs have been reported in several
DNA viruses, especially in herpesviruses [22, 23]. Previous
reports have shown that viral miRNAs participate in viral
propagation by regulating the host gene expression [22,
23]. Many viral miRNAs suppress the host gene expression
involved in innate and acquired immunities and enhance
viral propagation [22, 24, 25]. Most RNA viruses replicate
in the cytoplasm, and thus it had been believed that RNA
viruses do not encode viral miRNAs. Rouha et al. [26]
showed that an RNA virus, the tick-borne encephalitis
virus, is capable of producing functional miRNA by the
insertion of an miRNA element into viral RNA. Actually, it
has been shown that virus-derived small RNAs emerge by
infection with RNA viruses, including influenza virus and
West Nile virus [27, 28]. These data suggest that both viral-
encoded and host gene-derived miRNAs are involved in
the regulation of viral propagation.

Liver-specific microRNA, miR-122

miR-122 is a liver-specific microRNA and is the micro-
RNA most abundantly expressed in the liver [29-31].
Although Li et al. [32] have suggested that hepatocyte
nuclear factor 4 alpha (HNF4A) positively regulates the
expression of miR-122, the details on the tissue specificity
of miR-122 expression have not been fully elucidated yet.
miR-122 targets the 3'untranslated region (3'UTR) of the
mRNAs of cytoplasmic polyadenylation element binding
protein (CPEB), hemochromatosis (Hfe), hemojuverin
(Hjv), disintegrin, and metalloprotease family 10
(ADAMI10) and represses their translation [33-35]. miR-
122 activates the translation of p53 mRNA through the
suppression of CPEB and participates in cellular senes-
cence [33]. Through the inhibition of Hfe and Hjv, miR-
122 participates in iron metabolism [34]. Esau et al. [36]
showed that miR-122 positively regulated lipid metabolism
through the reduction of the mRNAs of lipid-associated

@_ Springer

proteins, and that inhibition of miR-122 expression atten-
uated liver steatosis in high-fat-fed mice, suggesting that
miR-122 may be an attractive therapeutic target for meta-
bolic diseases. miR-122 has also been shown to be
involved in the propagation of hepatitis viruses, including
hepatitis B virus (HBV) and HCV [9, 37, 38]. Wang et al.
[38] have revealed that miR-122 suppresses cyclin G1, and
this factor is known to enhance the replication of HBV by
inhibiting the binding of p53 to HBV enhancer elements. In
other reports, a low level of miR-122 expression in plasma
was significantly associated with the incidence of HBV-
related HCC [39]. These results suggest that miR-122
expression inhibits the propagation and pathogenesis of
HBV. On the other hand, miR-122 expression enhances the
propagation of HCV through genetic interaction with the
5'UTR of the HCV genome [9]. It is interesting to note that
the effects of miR-122 expression on viral propagation are
different between HBV and HCV.

miR-122 expression and HCV infection (Fig. 1)

Jopling et al. [9] reported for the first time that the inhi-
bition of miR-122 dramatically decreased RINA replication
in HCV replicon cells harboring subgenomic (SGR) or
fullgenomic (FGR) viral RNA. They identified the 21
nucleotide (nt) of the miR-122 binding site in the 5" end of
the 5’UTR of HCV RNA. In addition, lack of enhancement
of HCV replication by the expression of a mutant miR-122
incapable of binding to the SUTR was canceled by the
introduction of a complementary mutation in the 5'UTR,
suggesting that direct interaction of miR-122 with the
5'UTR is crucial for the enhancement of HCV replication.
In subsequent reports, they identified a second adjacent
miR-122 binding site in the 5'UTR [40]. Furthermore,
ectopic expression of the mutant miR-122 rescued the
replication of an HCV RNA possessing mutations in both
miR-122 binding sites, suggesting that the interaction of
miR-122 with both sites in the 5’UTR is required to aug-
ment viral replication. In addition, Machlin et al. [41] have
revealed that not only the seed sequence but also nucleo-
tides located at the positions of 15 and 16 in miR-122 are
required for the enhancement of HCV replication. Inter-
estingly, nucleotides 15 and 16 are not required for the
conventional microRNA function of miR-122, suggesting
that the conventional machinery of miR-122 is not
involved in the miR-122-dependent enhancement of HCV
replication. A recent study showed that the interaction of
miR-122 with the 5'UTR of HCV was also required for the
efficient production of infectious particles in cell culture
[42].

Although the precise mechanisms of the miR-122-
mediated enhancement of HCV replication have not been
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Fig. 1 miR-122 enhances the translation of hepatitis C virus (HCV)
RNA. Primary miRNA (pri-miRNA) transcribed by RNA polymerase
II in the nucleus is processed into precursor miRNA (pre-miRNA) by
Drosha and DiGeorge syndrome critical region protein 8 (DGCRS).
Pre-miRNA is exported into the cytoplasm by nucleocytoplasmic
shuttle protein exportin 5, processed to 22nt by dicer, and then
incorporated into argonaute proteins to form the RNA-induced

fully elucidated yet, Henke et al. [43], by using poly-
merase defective viral RNA, showed that miR-122 stim-
ulated the translation of HCV RNA by enhancing the
association of ribosomes at an early initiation stage. They
concluded that miR-122 might contribute to HCV liver
tropism at the level of translation. Wilson et al. [44]
showed that knockdown of Ago2 in SGR cells and
HCVcc-infected cells attenuated HCV replication, and
that knockdown of Ago2 also reduced the translation of
the polymerase defective HCV RNA. Shimakami et al.
[45] showed that miR-122 stabilized viral RNA and
reduced its decay in concert with Ago2, and that miR-
122-dependent stabilization of HCV RNA was not
observed in Ago2-knockout murine embryonic fibroblasts.
These results suggest that Ago2 is required for the effi-
cient enhancement of both the translation and replication
of HCV. On the other hand, Machlin et al. [41] have
suggested that the 3’ overhang binding of miR-122 to the
5" end of the HCV genome participates in circumvention
from the recognition by the cytoplasmic RNA sensor,
RIG-IL It is feasible to speculate that miR-122 has other
functions in the HCV life cycle, in addition to the sta-
bilization of viral RNA and evasion from the host’s innate
immune response.

Exportin5/RanGTP

Translation of HCV-RNA

HCV RNA

ent

miR122

-

silencing complex (RISC). The passenger strand of miRNA (biue)
is degraded and the guide strand (red) is matured in the RISC.
Generally, miRNA represses the translation of host mRNA by binding
to its 3’untranslated region (3'UTR). In contrast, liver-specific miR-
122 binds to two sites in the 5'UTR of the HCV genome and enhances
its translation and replication. GTP Guanosine-5-triphosphate, /RES
internal ribosomal entry site

Establishment of new permissive cell lines for HCV
propagation by the expression of miR-122

The lack of immunocompetent small animal models and
cell culture systems to support the propagation of HCV in
patient sera has hampered both the understanding of the
HCV life cycle and the development of antiviral drugs
[46]. HCV replicon cells in which the HCV genome
autonomously replicates, and pseudotype viruses bearing
HCV E1 and E2 glycoproteins were established to assess
viral replication and entry, respectively [47, 48]. After-
wards, an infectious HCV derived from the JFHI strain of
genotype 2a (HCVcc) was developed [7, 8]. On the basis of
the data obtained from these in vitro systems, the HCV life
cycle has been clarified, and host factors involved in HCV
propagation have been identified as therapeutic targets for
chronic hepatitis C [46]. However, the robust propagation
of HCVcc in well-characterized human liver cell lines
other than Huh7 had not been successful until recently.
Chang et al. [49] showed that the exogenous expression of
miR-122 facilitated the replication of HCV RNA in kid-
ney-derived HEK-293 cells. In addition, Lin et al. have
demonstrated that the expression of miR-122 and depletion
of interferon regulatory factor 3 (IRF-3) permit replication
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of the HCV genome in mouse fibroblasts [50]. These
results suggest that the expression of miR-122 might
facilitate the efficient replication of HCVcc not only in
hepatic cells but also in nonhepatic cells. In fact, the
expression level of miR-122 in Huh7 cells has been shown
to be higher than that in other hepatic cell lines, including
Huh6, HepG2, and Hep3B cells [10]. Recently, two groups
reported that miR-122 expression facilitated the efficient
propagation of HCVcc in human hepatic cell lines [10, 11].
Narbus et al. [11] showed that HepG2 cells stably
expressing CD81 and miR-122 supported efficient repli-
cation and the production of infectious particles. Interest-
ingly, internal ribosomal entry site (IRES)-dependent
translation of HCV exhibited a slight (1.4-2.1-fold)
increase by the expression of miR-122 in HepG2 cells
compared with that in parental cells, suggesting that miR-
122 is required for efficient RNA replication but not in
translation in HepG2 cells upon infection with HCVcc.
Kambara et al. [10] established a novel permissive cell line
for the propagation of HCVcc by the expression of miR-
122 in Hep3B cells. miR-122 expression facilitated the
efficient propagation of HCVcc and the establishment of
HCV replicon cells in Hep3B cells. In addition, “cured”
Hep3B cells established by the elimination of HCV RNA
from the Hep3B replicon cells facilitated the efficient
propagation of HCVcc compared to parental cells. Inter-
estingly, the expression of miR-122 in the “cured” Hep3B
cells was significantly higher than that in the parental cells.
In addition, Ehrhadt et al. [51] have shown that the
expression levels of miR-122 in Huh7-derived cured cells,
including Huh7.5 and Huh-Lunet cells, are significantly
higher than those in parental Huh7 cells. Collectively, these
results suggest that miR-122 is a key determinant of the
efficient replication of HCVcc in hepatic cell lines.

Expression of miR-122 facilitates the efficient
replication of HCV in nonhepatic cells

In clinical studies, negative strands of HCV genome have
been detected in nonhepatic tissues of chronic hepatitis C
patients, suggesting the possibility of extrahepatic propa-
gation of HCV [52-56]. In addition, HCV replication was
detected in peripheral blood mononuclear cells (PBMCs)
of patients with occult HCV infection [57]. Roque-Afonso
et al. [52] showed that highly divergent variants of HCV
were detectable in PBMCs, but not in plasma or in liver,
suggesting the possibility of the extrahepatic propagation
of HCV. Furthermore, previous reports have suggested that
recurrences of HCV infection after antiviral treatment or
liver transplantation were attributable to chronic infection
of HCV in extrahepatic tissues [58]. Collectively, these
results might suggest a correlation between extrahepatic
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HCYV replication and the development of EHM, including
mixed cryoglobulinemia and non-Hodgkin lymphoma,
which are frequently observed in chronic hepatitis C
patients. However, details of the extrahepatic propagation
of HCV have not been studied owing to the lack of an
appropriate experimental model [59, 60].

HCV replicon cells have been established in several
nonhepatic cell lines. Kato et al. [61] established JFH1-
based SGR cells by using HeLa and HEK293 cells, sug-
gesting that the HCV genome can replicate in nonhepatic
cells. In addition, Fletcher et al. [62] showed that brain
endothelial cells supported HCV entry and replication,
suggesting that HCV infection in the central nervous sys-
tem participates in HCV-associated neuropathologies.
Given the marked effects of miR-122 expression on the
propagation of HCVcc in hepatic cell lines, we hypothe-
sized that the expression of miR-122 in nonhepatic cell
lines would facilitate the establishment of novel permissive
cell lines for HCV. Recently, we have shown that Hec1B
cells derived from the human uterus exhibited a low level
of viral replication and the exogenous expression of miR-
122 significantly enhanced replication upon infection with
HCVcc [63]. In addition, an miR-122-specific inhibitor for
miR-122 called locked nucleic acid (LNA-miR-122)
inhibited the enhancement of HCVcc replication in Hec1B
cells expressing miR-122, while the basal replication of
HCVcc in parental Hec1B cells was resistant to the treat-
ment. These results suggest that Hec1B cells permit HCV
replication in an miR-122-independent manner and the
exogenous expression of miR-122 enhances viral replica-
tion. In this report, cured HeclB cells established by the
elimination of HCV RNA from HeclB replicon cells
exhibited more potent replication of HCVcc than the
parental cells. As seen in the cured Hep3B cells, the
expression levels of miR-122 in the HeclB cured cells
were significantly higher than those in the parental cells
[63]. Taken together, these results show that the expression
of miR-122 facilitates the replication of HCVcc in non-
hepatic cells.

Viral assembly in nonhepatic cells

Previous reports have shown that the production of VLDL
is involved in the formation of infectious HCV particles
[15, 16]. Apolipoprotein B (ApoB), apolipoprotein E
(ApoE), and microsomal triglyceride transfer protein
(MTTP) have major roles in the secretion of VLDL.
Gastaminza et al. [15] have demonstrated that ApoB and
MTTP are cellular factors essential for the efficient
assembly of infectious HCV particles. They concluded that
HCV acquired hepatocyte tropism through utilization of
the VLDL secretory pathway. On the other hand, studies by
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other groups have demonstrated that infectious HCV par-
ticles are highly enriched in ApoE, which is a major
determinant of HCV infectivity and production [64]. In
their reports, small interfering RNA (siRNA)-mediated
knockdown of ApoB and treatment with MTTP inhibitors
exhibited no significant effect on the infectivity and pro-
duction of HCV, suggesting that ApoE but not ApoB is
required for viral assembly. In addition, Mancone et al.
[65] have shown that apolipoprotein A-I (ApoA-I) is
required for the replication of HCV and the production of
infectious particles. Collectively, these results suggest that
several VLDL-associated proteins are involved in HCV
assembly.

In our recent report, the viral assembly process was
shown to be impaired in nonhepatic cells exogenously
expressing miR-122, in spite of the efficient replication of
the HCV genome [63]. Interestingly, low but substantial
infectious titers were detected in hepatic Hep3B cells upon
infection with HCVcc, even though the RNA replication
was lower than that in nonhepatic HeclB cells expressing
miR-122. The expression levels of VLDL-associated pro-
teins, including ApoE, ApoB, and MTTP, in nonhepatic
cell lines were significantly lower than those in hepatic cell
lines, suggesting that lack of expression of VLDL-associ-
ated proteins is one of the reasons for the inability of
nonhepatic cells to produce infectious particles. Miyanari
et al. [66] showed that lipid droplets (LDs) were required
for the formation of infectious particles via interaction
between the core protein and viral RNA. Interestingly, only
a small amount of LDs was detected in nonhepatic cells,
including Hec1B and HEK293T cells, compared with the
amount in hepatic cell lines, suggesting that a low level of
LD formation is also involved in the impairment of
infectious particle formation in nonhepatic cells [63].
Taken together, these findings suggest the possibility that
the reconstitution of functional lipid metabolism in non-
hepatic cells facilitates the production of infectious
particles.

Tropism of HCV infection

In many cases, the cell tropism of viral infection is defined
by the expression of virus-specific receptors. The expres-
sion of CD4 and chemokine receptors has an important role
in the determination of the lymphotropism of human
immunodeficiency virus infection [67]. In measles virus
infection, the signaling lymphocyte activation molecule is
a determinant of lymphotropism [68, 69]. Previous reports
have shown that human CD81, scavenger receptor class B1
(SR-B1), Claudinl (CLDNI1), and Occludin (OCLN) are
crucial for HCV entry [70-73]. Although murine cells
cannot permit HCV entry, the exogenous expression of

human-derived receptor candidates in murine cells has
been shown to facilitate HCV entry, suggesting that HCV-
specific receptors participate in the determination of the
cell tropism of HCV [74, 75]. However, previous reports
have also revealed that HCV receptor candidates were
highly expressed in many nonhepatic tissues [62, 76], and
our recent report has demonstrated that many nonhepatic
cells permit the entry of HCV pseudotypes [63]. In addi-
tion, many reports have suggested the possibility of HCV
replication in extrahepatic sites such as PBMCs and neu-
ronal cells [55, 62], suggesting that host factors other than
receptors could be involved in the tissue tropism of HCV.

Although previous reports have shown that host factors
such as VAMP-associated protein (VAP)-A, VAP-B,
cyclophilin A, FK506 binding protein 8, and heat shock
protein 90 participate in HCV replication, these molecules
are unlikely to participate in the determination of the liver
tropism of HCV, owing to their ubiquitous expression
[46, 77-79]. As described above, miR-122 is abundantly
expressed specifically in hepatocytes and is essential for
the efficient replication of HCV. In addition, a recent report
showed that hepatocyte-like cells derived from induced
pluripotent stem cells (iPSCs) expressed high levels of
miR-122 and supported the entire life cycle of HCVcc,
suggesting that miR-122 might be one of the most critical
determinants of the liver tropism of HCV infection
[80, 81]. On the other hand, VLDL-associated proteins,

Nonhepatic cells

Cirrhasis Matignant lymphoma
HCC Autoimmune diseases

Receptor + +

Entry + +

miR-122 ++ -

Repiication ++ e

Pathogenesis ++ +

Lipid metabolism ++ -

Dissemination ++ -

Fig. 2 HCV replication in hepatocytes and nonhepatic cells. Chronic
HCV infection induces liver cirrhosis and hepatocellular carcinoma
(HCC), and is also often associated with the development of
extrahepatic manifestations (EHM) such as malignant lymphoma
and autoimmune diseases. Not only hepatocytes but also nonhepatic
cells express major HCV receptors, including CD81, SR-BI, CLDNI,
and OCLN. In hepatocytes, functional expression of miR-122 and
lipid metabolism facilitate the efficient propagation of HCV. In
contrast, the lack of expression of miR-122 and very-low-density
lipoprotein (VLDL)-associated proteins might be associated with the
incomplete propagation of HCV in nonhepatic cells. Low levels of
HCYV replication in nonhepatic cells may participate in the develop-
ment of EHM
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including ApoB, ApoE, and MTTP, are specifically
expressed in hepatic cells, and no infectious particles are
produced in nonhepatic cells such as HeclB and 293T-
CLDN cells [63]. Collectively, these data suggest that the
VLDL-producing system is involved in the liver tropism of
HCV.

Although HCV can internalize not only into hepatocytes
but also into nonhepatic cells through receptor-mediated
endocytosis, miR-122 expression and functional lipid
metabolism in hepatocytes facilitate the efficient replica-
tion and assembly of HCV (Fig. 2). On the other hand, lack
of expression of miR-122 and VLDL-associated proteins
might be associated with the incomplete propagation of
HCV in nonhepatic cells (Fig. 2).

Conclusion

Recent progress in HCV research has revealed that the
tissue tropism of HCV is reliant on the expression of liver-
specific miR-122 and a functional lipid metabolism rather
than being reliant on the expression of entry receptors.
However, the molecular mechanisms of the enhancement
of viral replication induced by the interaction of miR-122
with the 5UTR of HCV and the assembly of viral particles
via VLDL-producing machinery remain unknown. In
addition, the participation of nonhepatic cells in the
development of EHM has been suggested, through an
incomplete or low level of HCV replication. Elucidation of
the liver tropism of HCV will provide a clue to the
development of new antiviral drugs for the treatment of
chronic hepatitis C and could lead to an understanding of
the pathogenesis of EHM induced by HCV infection.

Conflict of interest The authors declare that they have no conflicts
of interest.

References

1. Seeff LB. Natural history of chronic hepatitis C. Hepatology.
2002;36:S35-46.

2. Hartridge-Lambert SK, Stein EM, Markowitz AlJ, Portlock CS.
Hepatitis C and non-Hodgkin lymphoma: the clinical perspective.
Hepatology. 2012;55:634-41.

3. Calleja JL, Albillos A, Moreno-Otero R, Rossi I, Cacho G,
Domper F, et al. Sustained response to interferon-alpha or to
interferon-alpha plus ribavirin in hepatitis C virus-associated
symptomatic mixed cryoglobulinaemia. Aliment Pharmacol Ther.
1999;13:1179-86.

4, Gumber SC, Chopra S. Hepatitis C: a multifaceted disease.
Review of extrahepatic manifestations. Ann Intern Med.
1995;123:615-20.

5. Galossi A, Guarisco R, Bellis L, Puoti C. Extrahepatic manifes-
tations of chronic HCV infection. J Gastrointest Liver Dis.
2007;16:65-73.

6. Bukh J. A critical role for the chimpanzee model in the study of
hepatitis C. Hepatology. 2004;39:1469-75.

@ Springer

11.

12.

13.

18.

19.

20.

21

22.

24.

25,

26.

29.

- 964 -

. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z,

et al. Production of infectious hepatitis C virus in tissue culture
from a cloned viral genome. Nat Med. 2005;11:791-6.

. Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL,

Liu CC, et al. Complete replication of hepatitis C virus in cell
culture. Science. 2005;309:623-6.

. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Mod-

ulation of hepatitis C virus RNA abundance by a liver-specific
microRNA. Science. 2005;309:1577-81.

. Kambara H, Fukuhara T, Shiokawa M, Ono C, Ohara Y, Kami-

tani W, et al. Establishment of a novel permissive cell line for the
propagation of hepatitis C virus by expression of microRNA
miR122. J Virol. 2012;86:1382-93.

Narbus CM, Israelow B, Sourisseau M, Michta ML, Hopcraft SE,
Zeiner GM, et al. HepG2 cells expressing microRNA miR-122
support the entire hepatitis C virus life cycle. J Virol
2011;85:12087-92.

Sainz B Jr, Barretto N, Yu X, Corcoran P, Uprichard SL. Per-
missiveness of human hepatoma cell lines for HCV infection.
Virol J. 2012;9:30.

Fukuhara T, Tani H, Shiokawa M, Goto Y, Abe T, Taketomi A,
et al. Intracellular delivery of serum-derived hepatitis C virus.
Microbes Infect. 2011;13:405-12.

. Lanford RE, Hildebrandt-Eriksen ES, Petri A, Persson R, Lindow

M, Munk ME, et al. Therapeutic silencing of microRNA-122 in
primates with chronic hepatitis C virus infection. Science.
2010;327:198-201.

. Gastaminza P, Cheng G, Wieland S, Zhong J, Liao W, Chisari

FV. Cellular determinants of hepatitis C virus assembly, matu-
ration, degradation, and secretion. J Virol. 2008;82:2120-9.

. Cun W, Jiang J, Luo G. The C-terminal alpha-helix domain of

apolipoprotein E is required for interaction with nonstructural
protein SA and assembly of hepatitis C virus. J Virol.
2010;84:11532-41.

. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic

gene lin-4 encodes small RNAs with antisense complementarity
to lin-14. Cell. 1993;75:843-54.

Bartel DP. MicroRNAs: target recognition and regulatory func-
tions. Cell. 2009;136:215-33.

Huntzinger E, lzaurralde E. Gene silencing by microRNAs:
contributions of translational repression and mRNA decay. Nat
Rev Genet. 2011;12:99-110.

Hutvagner G, Simard MJ. Argonaute proteins: key players in
RNA silencing. Nat Rev Mol Cell Biol. 2008;9:22-32.

Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, et al.
Identification of virus-encoded microRNAs. Science. 2004;
304:734-6.

Boss IW, Renne R. Viral miRNAs and immune evasion. Biochim
Biophys Acta. 2011;1809:708-14.

. Ziegelbauer JM. Functions of Kaposi’s sarcoma-associated her-

pesvirus microRNAs. Biochim Biophys Acta. 2011;1809:623-30.
Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM,
Cullen BR. MicroRNAs expressed by herpes simplex virus 1
during latent infection regulate viral mRNAs. Nature.
2008;454:780-3.

Nachmani D, Stern-Ginossar N, Sarid R, Mandelboim O. Diverse
herpesvirus microRNAs target the stress-induced immune ligand
MICB to escape recognition by natural killer cells. Cell Host
Microbe. 2009;5:376-85.

Rouha H, Thurner C, Mandl CW. Functional microRNA gener-
ated from a cytoplasmic RNA wvirus. Nucl Acids Res.
2010;38:8328-37.

Perez JT, Varble A, Sachidanandam R, Zlatev I, Manoharan M,
Garcia-Sastre A, et al. Influenza A virus-generated small RNAs
regulate the switch from transcription to replication. Proc Natl
Acad Sci USA. 2010;107:11525-30.



J Gastroenterol

28.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Hussain M, Torres S, Schnettler E, Funk A, Grundhoff A, Pijlman
GP, et al. West Nile virus encodes a microRNA-like small RNA
in the 3 untranslated region which up-regulates GATA4 mRNA
and facilitates virus replication in mosquito cells. Nucl Acids
Res. 2012;40:2210-23.

. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W,

Tuschl T. Identification of tissue-specific microRNAs from
mouse. Curr Biol. 2002;12:735-9.

Chang J, Provost P, Taylor JM. Resistance of human hepatitis
delta virus RNAs to dicer activity. J Virol. 2003;77:11910-7.
Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA,
et al. miR-122, a mammalian liver-specific microRNA, is pro-
cessed from hcr mRNA and may downregulate the high affinity
cationic amino acid transporter CAT-1. RNA Biol. 2004,
1:106-13.

Li ZY, Xi Y, Zhu WN, Zeng C, Zhang ZQ, Guo ZC, et al.
Positive regulation of hepatic miR-122 expression by HNF4al-
pha. J Hepatol. 2011;55:602-11.

Burns DM, D’Ambrogio A, Nottrott S, Richter JD. CPEB and
two poly(A) polymerases control miR-122 stability and p353
mRNA translation. Nature. 2011;473:105-8.

Castoldi M, Vujic Spasic M, Altamura S, Elmen J, Lindow M,
Kiss J, et al. The liver-specific microRNA miR-122 controls
systemic iron homeostasis in mice. J Clin Invest. 2011;
121:1386-96.

Bai S, Nasser MW, Wang B, Hsu SH, Datta J, Kutay H, et al.
MicroRNA-122 inhibits tumorigenic properties of hepatocellular
carcinoma cells and sensitizes these cells to sorafenib. J Biol
Chem. 2009;284:32015-27.

Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M, et al.
miR-122 regulation of lipid metabolism revealed by in vivo
antisense targeting. Cell Metab. 2006:3:87-98.

Qiu L, Fan H, Jin W, Zhao B, Wang Y, Ju Y, et al. miR-122-
induced down-regulation of HO-1 negatively affects miR-122-
mediated suppression of HBV. Biochem Biophys Res Commun.
2010;398:771-7.

Wang S, Qiu L, Yan X, Jin W, Wang Y, Chen L, et al. Loss of
microRNA 122 expression in patients with hepatitis B enhances
hepatitis B virus replication through cyclin G(1)-modulated P53
activity. Hepatology. 2012;55:730-41.

Zhou J, Yu L, Gao X, Hu J, Wang J, Dai Z, et al. Plasma
microRNA panel to diagnose hepatitis B virus-related hepato-
cellular carcinoma. J Clin Oncol. 2011;29:4781-8.

Jopling CL, Schutz S, Sarnow P. Position-dependent function for
a tandem microRNA miR-122-binding site located in the hepa-
titis C virus RNA genome. Cell Host Microbe. 2008;4:77-85.
Machlin ES, Samow P, Sagan SM. Masking the 5’ terminal
nucleotides of the hepatitis C virus genome by an unconventional
microRNA-target RNA complex. Proc Natl Acad Sci USA.
2011;108:3193-8.

Shimakami T, Yamane D, Welsch C, Hensley L, Jangra RK,
Lemon SM. Base pairing between hepatitis C virus RNA and
microRNA 122 3’ of its seed sequence is essential for genome
stabilization and production of infectious virus. J Virol.
2012;86:7372-83.

Henke JI, Goergen D, Zheng J, Song Y, Schuttler CG, Fehr C,
et al. MicroRNA-122 stimulates translation of hepatitis C virus
RNA. EMBO J. 2008;27:3300-10.

Wilson JA, Zhang C, Huys A, Richardson CD. Human Ago2 is
required for efficient microRNA 122 regulation of hepatitis C virus
RNA accumulation and translation. J Virol. 2011;85:2342-50.
Shimakami T, Yamane D, Jangra RK, Kempf BJ, Spaniel C,
Barton DJ, et al. Stabilization of hepatitis C virus RNA by an
Ago2-miR-122 complex. Proc Natl Acad Sci USA. 2012;
109:941-6.

46.

47.

48.

49.

50.

51.

52.

58.

60.

61.

62.

63.

- 965 -

Moriishi K, Matsuura Y. Host factors involved in the replication
of hepatitis C virus. Rev Med Virol. 2007;17:343-54.

Lohmann V, Komner F, Koch J, Herian U, Theilmann L, Bart-
enschlager R. Replication of subgenomic hepatitis C virus RNAs
in a hepatoma cell line. Science. 1999;285:110-3.

Bartosch B, Dubuisson J, Cosset FL. Infectious hepatitis C virus
pseudo-particles containing functional E1-E2 envelope protein
complexes. J Exp Med. 2003;197:633-42.

Chang J, Guo JT, Jiang D, Guo H, Taylor JM, Block TM. Liver-
specific microRNA miR-122 enhances the replication of hepatitis
C virus in nonhepatic cells. J Virol. 2008;82:8215-23.

Lin LT, Noyce RS, Pham TN, Wilson JA, Sisson GR, Michalak
TI, et al. Replication of subgenomic hepatitis C virus replicons in
mouse fibroblasts is facilitated by deletion of interferon regula-
tory factor 3 and expression of liver-specific microRNA 122.
J Virol. 2010;84:9170-80.

Ehrhardt M, Leidinger P, Keller A, Baumert T, Diez J, Meese E,
et al. Profound differences of microRNA expression patterns in
hepatocytes and hepatoma cell lines commonly used in hepatitis
C virus studies. Hepatology. 2011;54:1112-3

Roque-Afonso AM, Ducoulombier D, Di Liberto G, Kara R,
Gigou M, Dussaix E, et al. Compartmentalization of hepatitis C
virus genotypes between plasma and peripheral blood mononu-
clear cells. J Virol. 2005;79:6349-57.

. Zehender G, De Maddalena C, Bernini F, Ebranati E, Monti G,

Pioltelli P, et al. Compartmentalization of hepatitis C virus
quasispecies in blood mononuclear cells of patients with mixed
cryoglobulinemic syndrome. J Virol. 2005;79:9145-56.

. Blackard JT, Kemmer N, Sherman KE. Extrahepatic replication

of HCV: insights into clinical manifestations and biological
consequences. Hepatology. 2006;44:15-22.

. Laskus T, Operskalski EA, Radkowski M, Wilkinson J, Mack

WJ, deGiacomo M, et al. Negative-strand hepatitis C virus
(HCV) RNA in peripheral blood mononuclear cells from anti-
HCV-positive/HIV-infected women. J Infect Dis. 2007;
195:124-33.

. Fletcher NF, Wilson GK, Murray J, Hu K, Lewis A, Reynolds

GM, et al. Hepatitis C virus infects the endothelial cells of the
blood-brain barrier. Gastroenterology. 2012;142:634-43 ¢6.

. Castillo 1, Rodriguez-Inigo E, Bartolome J, de Lucas S, Ortiz-

Movilla N, Lopez-Alcorocho JM, et al. Hepatitis C virus repli-
cates in peripheral blood mononuclear cells of patients with
occult hepatitis C virus infection. Gut. 2005;54:682-5.

Laskus T, Radkowski M, Wilkinson J, Vargas H, Rakela J. The
origin of hepatitis C virus reinfecting transplanted livers: serum-
derived versus peripheral blood mononuclear cell-derived virus.
J Infect Dis. 2002;185:417-21.

. Ito M, Masumi A, Mochida K, Kukihara H, Moriishi K, Matsuura

Y, et al. Peripheral B cells may serve as a reservoir for persistent
hepatitis C virus infection. J Innate Immun. 2010;2:607-17.
Ramirez S, Perez-Del-Pulgar S, Carrion JA, Costa J, Gonzalez P,
Massaguer A, et al. Hepatitis C virus compartmentalization and
infection recurrence after liver transplantation. Am J Transpl.
2009;9:1591-601.

Kato T, Date T, Miyamoto M, Zhao Z, Mizokami M, Wakita T.
Nonhepatic cell lines HelLa and 293 support efficient replication
of the hepatitis C virus genotype 2a subgenomic replicon. J Virol.
2005;79:592-6.

Fletcher NF, Yang JP, Farquhar MJ, Hu K, Davis C, He Q, et al.
Hepatitis C virus infection of neuroepithelioma cell lines. Gas-
troenterology. 2010;139:1365-74.

Fukuhara T, Kambara H, Shiokawa M, Ono C, Katoh H, Morita
E, et al. Expression of microRNA miR-122 facilitates an efficient
replication in nonhepatic cells upon infection with hepatitis C
virus. J Virol. 2012;86:7918-33.

@ Springer





