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Fig. 4. PtdIns(3,4)P; accumulates in endomembrane structures with HCV core protein. (A) HuH-7.5.1-8 cells grown on a coverslip were transfected with TAPP1-PH/pVenus
and Core-195/pEF1 expression constructs. After 2 days of culture, the cells were probed with anti-GFP (a) and anti-core (b) antibodies. Merged image is shown in (c). (B) HCV-
infected HuH-7.5.1-8 cells were probed with anti-PtdIns(3,4)P; (a) and anti-core (b) antibodies. The selected area is shown at higher magnification in (c and d), and the
merged image is shown in (e). Typical images from repeated experiments are presented.

employs to enter into the cell. Thus we first tested whether viral
entry was affected by PI3K-C2B knockdown. Cells (AC2B-#2,
AC2B-#3 and Con-#1) were exposed to HCV, followed by the incu-
bation for additional 2 h to allow the virus enter into the cell. Then
internalized HCV was detected by RT-PCR analysis. As shown in
Fig. 2A, HCV genome RNA was detected in both PI3K-C2B-knock-
down cells (AC2B-#2 and AC2B-#3) as well as control cell (Con-
#1) and parental HuH-7.5.1-8 cell; while the depletion of CD81, a
critical receptor for HCV, completely abrogated HCV entry (751r).
This result suggests that PI3K-C28 did not contribute to entry step
of HCV. It is also of note that the expression of cell surface mole-
cules (CD81, CLDN1, OCLN, and SCARB1) that are involved in
HCV entry was not affected by PI3K-C2pB knockdown (Fig. 2A).
This result, together with the result shown in Fig. 1, prompts us
that PI3K-C2p primarily affects intracellular HCV propagation

step(s) such as genome replication process. We therefore tested
the requirement of PI3K-C2B for HCV genome replication using
HCV replicon systems. We used full-genomic and sub-genomic
replicon systems that employ firefly luciferase as the reporter.
The full-genomic replicon possesses structural proteins including
core (Fig. 2B), and cells harboring the replicon potentially release
infectious virus into the medium. Conversely, the sub-genomic
replicon lacks structural proteins in addition to p7 and NS2 pro-
teins (Fig. 2B). Cells were transfected with these replicon RNAs,
and replication activity was determined by measuring luciferase
activity. As shown in Fig. 2C, AC2B-#2 showed reduced replication
activity of both sub-genomic (Fig. 2C, SGR) and full-genomic
(Fig. 2C, FGR) replicons compared to their replication activity in
control cell (Con-#1) at 72 h after the transfection. Replication-
deficient mutants SGR-GND and FGR-GND exhibited no replication
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activities under this condition (Fig. 2C). The transfection efficien-
cies of Con-#1 and AC2B-#2 cells were almost comparable under
these conditions (data not shown). We did not use AC2p-#3 cell
for this assay, because this cell line did not show comparable trans-
fection efficiency for replicon RNAs (data not shown). Intriguingly,
the inhibitory effect of PI3K-C2B knockdown was much larger in
the full-genomic replicon system (75% reduction) than in the
sub-genomic replicon system (31% reduction) (Fig. 2C). In addition,
a similar magnitude of inhibition (78% reduction) was also ob-
served in cells 47 h after the transfection of the full-genomic repli-
con RNA (Fig. 2D); at that time point, infectious particles for the
reinfection were not sufficiently released into the culture medium.
These results suggest that full genome-specific elements, including
core protein, E1/E2 envelope proteins, p7 protein, and NS2 protein
(Fig. 2B), were affected by PI3K-C2B itself and/or PIs generated by
PI3K-C2B and involved in the replication process.

3.3. HCV core protein binds to PtdIns(3,4)P;

HCV core protein encompasses the the D1 region (basic domain)
and the D2 region (hydrophobic domain) (Fig. 3A), suggesting the
interaction of the core protein with negatively charged lipids, such
as PIs. Therefore we next focused on the core protein and at-
tempted to test the binding of the core protein toward Pls.
Although we have difficulties in preparing full-length core protein,
recombinant core protein, encompassing the D1 region but not the
D2 region was successfully produced in Escherichia coli (Fig. 3B),
and then subjected to a liposome binding assay. As shown in
Fig. 3C and D, the core protein showed binding activity toward
D4-phosphorylated PIs (Ptdins(4)P, PtdIns(3,4)P,, Ptdins(4,5)P,,
and PtdIns(3,4,5)P3) in vitro. It should be noted that recombinant
core protein used for the in vitro binding assay lacks D2 region,
thus the in vitro binding profile does not necessarily reflect
in vivo function. Therefore, we next tested the localization of these
D4-phosphorylated Pls with HCV core protein in cells and found
overlapped localization of PtdIns(3,4)P, and HCV core protein in
HCV-infected HuH-7.5.1-8 cells. In HuH-7.5.1-8 cells TAPP1 PH do-
main, a widely used PtdIns(3,4)P,-selective probe [22], showed
reticular staining pattern, which appeared to partially overlap with
HCV core protein (Fig. 4A); although the overlapped staining was
not so clear presumably due to relatively low binding affinity of
the PH domain towards PtdIns(3,4)P, {23] and high background
cytoplasmic staining. Therefore we next used an anti-PtdIns(3,4)P,
antibody [24] to detect PtdIns(3,4)P, in HCV-infected HuH-7.5.1-8
cells. The anti-PtdIns(3,4)P; antibody showed, in addition to retic-
ular staining pattern, staining of ring-like intracellular structures,
which overlapped with the core protein (Fig. 4B). It is of note that
other PIs, including Ptdins(4)P, did not show significant overlapped
staining with the core protein (see Fig. S3 and data not shown).
Although we are still unable to sufficiently explain why the core
protein selectively associated with PtdIns(3,4)P, but not with other
core-binding PIs in cells; these results suggest that PtdIns(3,4)P,
accumulated in endomembrane structures through direct binding
to HCV core protein.

3.4. Participation of PIs in the HCV replication cycle

The results obtained in this study show that PI3K-C2p plays an
indispensable role in HCV replication in cells presumably through
the production of PtdIns(3,4)P,. Previous studies have demon-
strated that PI4Ks are essential for HCV replication in cells through
the interaction with NS5A protein to facilitate replication complex
formation [13]. Our results raise the possibility that, in addition to
playing a direct role in the replication complex formation, PI4Ks
function as producers of PtdIns(4)P, a precursor of PtdIns(3,4)P-.
PtdIns(3,4)P,, produced by PI3K-C2B, might play a role in the

replication process reciprocally with PtdIns(4)P, although the pre-
cise action of PtdIns(3,4)P, remains elusive.

PtdIns(3,4)P, can be dephosphorylated by inositol polyphos-
phate 4-phosphatases (INPP4A and INPP4B) and potentially by
PTEN to produce PtdIns(3)P and PtdIns(4)P, respectively. Knock-
down of INPP4A did not affect HCV protein accumulation in cells
(Fig. S4). The expression of INPP4B was not detected in HuH-
7.5.1-8 cells (data not shown). These results suggest that PTEN
plays a dominant role in the breakdown of PtdIns(3,4)P,, which
is required for the HCV replication cycle. Nonetheless, PTEN knock-
down surprisingly resulted in complete abrogation of the HCV rep-
lication cycle in HuH-7.5.1-8 cells, although cell viability was not
affected by the knockdown (Fig. S4 and data not shown). Although
we can not exclude the possibility that PtdIns(3,4)P, is catabolized
by unidentified enzyme(s); it is more likely that PTEN knockdown
may increase multiple Pl species, such as PtdIns(3)P and
PtdIns(3,4,5)P; in addition to PtdIns(3,4)P,, thereby disrupting a
wide range of Pl-regulated signals and resulting in unexpected
abrogation of the HCV replication cycle. This observation suggests
that multiple PIs, in addition to PtdIns(4)P [8-13,25] and
PtdIns(3,4)P, (this study), are involved in the HCV replication cycle.

HCV is known to utilize endomembrane structures derived from
the endoplasmic reticulum for the sites of its replication and
assembly [5,7]; lipid droplets function as crucial intracellular
organelles for HCV replication and assembly. HCV JFH1 core pro-
tein predominantly localizes near lipid droplets, showing a
“ring”-like shape [26]. Crucial role of PI3K-C2B, as observed in
Figs. 1A and 2C, prompted us to test whether PI3K-C28 knockdown
affects lipid droplet formation. However, under normal growth
condition and even after oleate addition, there was no difference
in lipid droplet formation between PI3K-C2B-knockdown cells
and control cells (Fig. S5). Furthermore, core protein localization
was not altered in PI3K-C2B-knockdown cells as compared to its
localization in control cells (Fig. S6). These results suggest that
PI3K-C2B may not be involved in lipid droplet formation and that
PI3K-C2B may be involved in the process of HCV replication after
the recruitment of HCV proteins to the sites near lipid droplets.
PtdIns(3,4)P, might be produced by PI3K-C2B, presumably at the
endoplasmic reticulum, and then recruited to the core protein
accumulation site through direct binding with core protein.
Although further study will be required to reveal the underlying
mechanism by which PIs regulate HCV replication process, results
obtained in this study imply that manipulating PI signals may con-
trol HCV propagation.
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Abstract

Glycyrrhizin (GL) has been used in Japan to treat patients with chronic viral hepatitis, as an anti-inflammatory drug to
reduce serum alanine aminotransferase levels. GL is also known to exhibit various biological activities, including anti-
viral effects, but the anti-hepatitis C virus (HCV) effect of GL remains to be clarified. In this study, we demonstrated
that GL treatment of HCV-infected Huh7 cells caused a reduction of infectious HCV. production using cell culture-
produced HCV (HCVcc). To determine the target step in the HCV lifecycle of GL, we used HCV pseudoparticles
(HCVpp), replicon, and HCVcc systems. Significant suppressions of viral entry and replication steps were not
observed. Interestingly, extracellular infectivity was decreased, and intracellular infectivity was increased. By
immunofluorescence and electron microscopic analysis of GL treated cells, HCV core antigens and electron-dense
particles had accumulated on endoplasmic reticulum attached to lipid droplet (LD), respectively, which is thought to
act as platforms for HCV assembly. Furthermore, the amount of HCV core antigen in LD fraction increased. Taken
together, these results suggest that GL inhibits release of infectious HCV particles. GL is known to have an inhibitory
effect on phospholipase A2 (PLA2). We found that group 1B PLA2 (PLA2G1B) inhibitor also decreased HCV release,
suggesting that suppression of virus release by GL treatment may be due to its inhibitory effect on PLA2G1B. Finally,
we demonstrated that combination treatment with GL augmented IFEN-induced reduction of virus in the HCVcc
system. GL is identified as a novel anti-HCV agent that targets infectious virus particle release.
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Introduction (SNMC)) have been used for more than 20 years as a

) treatment for chronic hepatitis patients who do not respond to
Hepatitis C virus (HCV) infection is a major public health IFN therapy.

problem since most cases cause chronic hepatitis, hepatic
cirrhosis and hepatocellular carcinoma. Current treatment of
chronic hepatitis C is based on the combination of pegylated
interferon-alpha (IFN-a) and ribavirin. However, approximately
50% of treated patients infected with genotype 1 do not
respond, or show only a partial or transient response, and
therapy causes significant side effects [1]. In Japan,
glycyrrhizin (GL) preparations (stronger neo-minophagen C

GL is the major component of licorice root extract, and is
composed of glycyrrhetinic acid. GL has been shown to
possess several beneficial pharmacological activities, including
anti-inflammatory activity [2], anti-tumor activity [3], anti-allergic
activities [4], and anti-viral activities [5]. Several mechanisms of
the GL-induced anti-inflammatory effect are reported, such as
inhibition of thrombin-induced platelet aggregation [6], inhibition
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of prostaglandin E2 production [7] and inhibition of
phospholipase A2 (PLA2) [8].

Many anti-viral effects of GL have been reported previously,
for example, against herpes simplex type 1 (HSV-1) [9],
varicella-zoster virus (VZV) [10], hepatitis A (HAV) [11] and B
virus (HBV) [12], human immunodeficiency virus (HIV) [13],
severe acute respiratory syndrome (SARS) and coronavirus
[14], Epstein—Barr virus (EBV) [15], human cytomegalovirus
[16] and influenza virus [17]. GL has been considered as a
potential treatment for patients with chronic hepatitis C, and
long term administration of GL to patients is effective in
suppressing serum alanine aminotransferase (ALT) levels and
histological change [18]. However, a direct anti-viral effect of
GL against HCV has never been reported.

In this study, we evaluated the anti-HCV effects of GL, and
demonstrated that GL targeted the release step of infectious
HCV particles from infected cells. We found that the
suppression of virus release by GL may be derived from its
inhibitory effect on group 1B PLA2 (PLA2G1B). These findings
suggest possible novel roles for GL in the treatment of patients
with chronic hepatitis C.

Materials and Methods

Cell culture and reagents

The human hepatoma cell line, Huh7, and its derivative cell
line, Huh7.5.1, provided by Francis Chisari (Scripps Research
Institute, La Jolla, CA), were maintained in Dulbecco’s modified
Eagle’s medium (DMEM) containing 10% fetal bovine serum
(FBS) [19]. Huh7 cells harboring the subgenomic replicon [20]
[21] were maintained in complete DMEM supplemented with
0.5 mg/ml G418 (Geneticin, Life Technologies Japan Ltd.,
Tokyo, Japan). GL (20B-carboxyl-11-oxo0-30-norolean-12-
en-3p-yl-2-0O-B-D-glucopyranuronosyl-g-D-
glucopyranosiduronic acid) and IFN-a were kindly provided by
the Minophagen Pharmaceutical Co., Ltd., (Tokyo, Japan) and
"MSD KK, (Tokyo, Japan) respectively. Oleyloxyethyl
phosphorylcholine (OPC) (Cayman Chemical Company, Ann
Arbor, Mi), sPLA2IIA Inhibitor | (MERCK, Darmstadt,
Germany), anti-Actin (Santa Cruz Biotechnology, Santa Cruz,
CA) and anti-Human CD81 (BD Pharmingen, San Jose, CA)
antibodies were purchased. The solvents were distilled water
(GL), ethanol (OPC), and DMSO (sPLA2IIA inhibitor).

Quantification of HCV core antigen and cell viability

The production of cell culture-produced HCV (HCVcc) has
been previously reported [22]. Purification of LD has been
previously reported [23]. The concentration of HCV core
antigen in filtered culture medium, in cell lysates and in LD
fraction of infected cells was determined using the Lumipulse
Ortho HCV antigen kit (Ortho Clinical Diagnostics, Tokyo,
Japan). Cell viability was analyzed by using Cell Titer-Glo
Luminescent Cell Viability Assay (Promega, Madison, W)
according to the manufacturers’ protocol.

Electroporation of HCV RNA lacking E1 and E2

In vitro synthesis of HCV RNA JFH1 lacking E1 and E2
(JFH1delE1E2), and electroporation were performed as
described previously [22].

PLOS ONE | www.plosone.org
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HCV pseudoparticle (HCVpp) assay

HCVpp harboring E1 and E2 glycoproteins of the JFH-1
clone (genotype 2a) (HCVpp2a) and the TH clone (genotype
1b) (HCVpp1b) were produced as previously described [24].
Pseudotype virus with VSV G glycoprotein (VSVpp) were also
generated [24]. Huh7 or Huh7.5.1 cells were seeded into 48-
well plates, incubated overnight at 37°C, and then infected with
the HCVpp in the presence of various concentration of GL.
Several hours post-infection, medium was replaced with DMEM
with 10% FBS, and the cells were harvested 48 hours later to
determine intracellular luciferase activity (Luciferase Assay
System, Promega).

HCV subgenomic replicon assay

The assay for the genotype 1b and 2a subgenomic reporter
replicon has been previously reported [20] [21]. After 72 hours
of treatment with GL, the replicon-transfected cells were
harvested for either measurement of luciferase activity
(Promega) or HCV RNA titer, as described previously [25]. The
replication efficiency of HCV in each preparation was
calculated as the percentage of luciferase activity or HCV RNA
titer compared with that of cells subjected to the control
treatment.

Extra- and intracellular infectivity

To determine extracellular HCV infectivity, naive Huh7 cells
were inoculated with cell culture supernatant medium
containing HCVcc. After 3 hours of incubation, the medium was
replaced with DMEM containing 10% FBS, and the cells were
cultured for an additional 72 hours. The infectious HCV titer in
the culture medium was determined by quantification using the
Lumipulse Ortho HCV antigen kit or by immunostaining of the
HCV core antigen. Using an immunoassay that also provided
results indicative of HCV infectivity [26], we confirmed a good
correlation between the levels of core antigen and infectious
titers (data not shown). To estimate intracellular infectivity, cells
in the culture plates filled with DMEM containing 10% FBS
were subjected to four cycles of freezing and thawing, using
dry ice and a 37°C water bath. Cells in the culture plates were
centrifuged at 1,200 rpm for § min at 4°C to remove cell debris,
and the supernatants were collected to evaluate infectivity as
above.

RNA interference

The siRNA targeted to PLA2G1B, 5'-
GCUGGACAGCUGUAAAUUUTT-3', and scramble negative
control siRNA to PLA2G1B were purchased from Sigma
(Tokyo, Japan). Cells in a 24-well plate were transfected with
siRNA using HiPerFect transfection reagent (Qiagen, Tokyo,
Japan) following the manufacturer’s instructions.

Quantification of triglyceride

Triglyceride (TG) was measured with a Triglyceride kit
(Wako, Tokyo, Japan) according to the manufacturers
instructions.
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Indirect immunofluorescence assay

The inoculated cells were fixed with methanol and
immunostained with a mouse monoclonal anti-core antibody
and a rabbit polyclonal anti-NS5A antibody [22], followed by an
Alexa Fluor 555-conjugated anti-mouse secondary antibody
(Life Technologies Japan Ltd.).

Transmission electron microscopy (EM)

Cells were fixed with 1.5% glutaraldehyde in 1.0%
cacodylate buffer, pH 7.4, for 5 min, and then post-fixed with
2% 0s0, in phosphate buffer, pH 7.4, for 1 hour. The cells
were dehydrated in ethanol and embedded in Epon. Ultrathin
sections were double stained and examined at an accelerating
voltage of 80 keV. Immuno-EM (IEM) were performed by using
the labeled-(strept) avidin-biotin (LAB) kit according to the
manufacturer's  instructions (Zymed laboratories, San
Francisco, CA) as described previously [27].

Statistical Analysis

Assays were performed at least four independent
experiments. Data are expressed as the mean + SD. Statistical
analysis was performed using Student’s t test.

Results

Anti-HCV effects of GL

To assess the anti-HCV effects of GL, HCVcc-infected cells
were treated with various concentrations of GL for 72 hours,
and then the levels of HCV core antigen and infectivity of the
medium were determined. HCV core antigen levels were
reduced by 29% with 500 pM GL (Figure S1). As shown in
Figure 1A, infectivity of supernatant following GL treatment at
3, 30, or 500 pM was reduced by 12, 62, or 71% of the control
levels, respectively. The calculated 50% effective concentration
(EC4,) was 16.5 pM. There was no effect on cell viability after
these treatments (Figure 1B). These results suggest that GL
effectively inhibited the production of infectious HCV.

HCV propagates in hepatocytes throughout its lifecycle,
including the stages of attachment, entry, uncoating,
translation, genome replication, assembly, budding, and
release. To investigate which step of the HCV lifecycle GL
inhibited, we used the HCVpp system for evaluating
attachment and entry, and the HCV replicon system for
translation and genome replication. Treatment of HCVpp2a
with GL resulted in a moderate reduction of luciferase activity in
the cells infected with HCVpp, with an ECy, value of 728 yM
(Figure 1C). On the other hand, there was no significant
reduction of luciferase activity in the cells infected with
HCVpp1b (Figure 1D) and VSVpp (Figure 1E). No cytotoxic
effects of GL were observed (data not shown).

Huh7 cells harboring the type-2a subgenomic replicon were
treated with various concentrations of GL for 72 hours. Relative
luciferase activities of GL-treated cells were inhibited in a dose-
dependent manner with an ECs, value of 738 uM (Figure 1F). A
similar result was obtained by using the type-1b subgenomic
replicon (data not shown). We also transfected HCV RNA
lacking E1E2 (JFH1delE1E2) and monitored the effect of GL
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on HCV replication to avoid reinfection of Huh7 cells. There
was ho significant reduction of HCV RNA titers in the cells
(Figure 1G). There was no significant cytotoxicity seen
following these treatments (data not shown).

To investigate the effect of GL on entry, HCV particles were
treated with increasing concentrations (0 to 1500uM) of GL.
The viral samples were then used to inoculate Huh7 cells
cultured in Gl-containing medium. Several hours post-
infection, medium was replaced with DMEM without GL. The
levels of HCV core antigen in the medium were determined at
72 h postinfection (p.i.). There was no significant reduction of
HCV production (Figure 1H). These results indicated that GL
did not inhibited HCV entry and replication significantly.

Effects of GL on infectious HCV particle release

To further assess whether GL treatment affects other steps
of the viral lifecycle, we analyzed infectious HCV particle
assembly and release following GL treatment. Supernatant or
crude cell lysates of HCVcc-infected cells treated with GL were
used to inoculate naive Huh7 cells to determine extra- and
intracellular specific infectivity, respectively. Specific infectivity
was determined as the ratio of infectious virus titer to HCV core
antigen level, as described previously [28]. As shown in Figure
2A, the extracellular specific infectivity titer was inhibited by
57% by GL at a concentration of 500 pM, on the other hand,
the intracellular specific infectivity titer was increased 3.8-fold
over that of controls at the same concentration of GL (Figure
2B). There was no significant cytotoxicity following these
treatments (data not shown).

It has been previously reported that virus assembly takes
place around lipid droplets (LDs) [29]. By immunofluorescence
staining, we examined the subcellular co-localization of HCV
core (Figure 2C) or NS5A (Figure 2D) with LDs in HCVce-
infected cells with or without GL treatment. Un-infected cells
were shown in Figure 2E. We observed HCV proteins
colocalized with LDs (Figure 2C and 2D). Intensity profiles
along the line segments, shown on the bottom of the images,
demonstrated that core proteins were tightly colocalized with
LD in the HCVcc-infected cells treated with GL, when
compared with untreated cells (Figure 2C lower panel). We
quantified the size of LDs in HCV-infected cells (Figure 2D) and
un-infected cells (Figure 2E) with GL-treatment. We found that
GL did not affect the size of LDs in un-infected cells (Figure 2F
right panel). On the other hand, the size of LDs increased in
HCV-infected cells with GL-treatment (Figure 2F left panel).

HCVcc-infected cells (Figure 2G) and un-infected cells
(Figure 2H), treated with GL, were prepared for EM analysis. In
the cytoplasm of HCV-infected cells, we observed increased
numbers of LDs in close proximity to endoplasmic reticulum
(ER) and the electron-dense signals on ER attached to LD
(Figure 2G upper panel), which are thought to act as platforms
for the assembly of viral components [29]. Interestingly, in the
cytoplasm of HCV-infected cells after treatment with GL,
accumulated electron-dense particles were observed on ER
attached to LD (Figure 2G lower panel). IEM experiments
showed that anti-core antibody stained the membrane around
LDs (Figure 2| lower panel). In naive Huh7 cells, the close
association of LDs with ER was rarely observed (Figure 2H).
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Figure 1. Anti-HCV effects of GL. (A) HCVcc-infected cells were treated with various concentrations of GL for 72 hours. Naive
Huh?7 cells were inoculated with supernatant and cuitured for 72 hours. Infectivity was determined by immunostaining. (B) Celi
viability was assessed using Cell Titer-Glo Luminescent Cell Viability Assay. Huh7 cells were infected with HCVppZ2a (C), HCVpp1b
(D), and VSVpp (E) in various concentrations of GL for 24 hours, and then medium was replaced. Effects of GL on entry of HCVpp
‘and VSVpp were determined by measuring the luciferase activity at 72 hours post-transfection. (F) Huh7 cells harboring the type-2a
subgenomic replicon were treated with various concentrations of GL for 72 hours. Replication efficiency of the replicon was
estimated by measuring the luciferase activity. (G) The effects of GL on HCV replication were tested by electroporation of HCV RNA
lacking E1E2 (JFH1delE1E2). (H) HCV particles were treated with increasing concentrations (0 to 1500uM) of GL. The viral samples
were then used to inoculate Huh7 cells with GL-containing medium. Several hours post-infection, medium was replaced with DMEM
without GL. The levels of HCV core antigen of the medium were determined at 72 h postinfection (p.i.). IFN (300 IU/ml) was used as
a positive control for reduced HCV replication. Anti-human CD81 antibody (10 pg/ml) was used as a positive control for reduced
HCV entry to the cells. Results are expressed as the mean + SD of the percent of the control from four independent experiments. *P
< 0.05, **P < 0.005 versus control (0 yM treatment).

doi: 10.1371/journal.pone.0068992.9001
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Figure 2. Effects of GL in release of infectious HCV particles. HCVcc-infected cells were treated with GL at a concentration of
500 pM for 72 hours. Untreated cells were used as controls. Extra- (A) and intracellular specific infectivity (B) were determined.
Subcellular co-localization of HCV core (C) or NS5A (D) with LDs in HCVcc-infected cells with or without GL treatment. (E) Un-
infected cells. LDs and nuclei were stained with BODYPI 493/503 (green) and DAPI (blue), respectively. (C) Points a and b, as well
as ¢ and d, define two line segments that each cross several structures. Intensity profiles along the line segments shown on the
bottom of the images. (F) The size of LDs in un-ifected cells (right panel) and HCV-infected cells (left panel) were quantified.
Transmission EM of LDs in infected cells (G) and un-infected cells (H) treated with GL at 500 pM. Arrows indicate electron-dense
signals (G upper panel) and particles (G lower panel). (I) IEM using the LAB method of LDs in infected cells treated with GL at 500
UM. Mouse 1gG (upper panel) or anti-core monoclonal antibody (lower panel) was used for primary antibody. (J) Immunoblotting with
anti-actin antibody in the LD fraction. Quantification of HCV core antigen (K) and TG (L) in the LD fraction. The LD fraction was
collected from cell lysates. The ratio of HCV core antigen level in the LD fraction to that in total cell lysate was determined. (M)
HCVcc-infected cells were treated with GL at 500 uM for 72 hours. Untreated cells were used as controls. Supernatant was
ultracentrifuged through a 10-60% sucrose gradient and the infectivity of each fraction was determined. Infectivity of fraction 2 of un-
treated cells was assigned the arbitrary value of 100%. The density of each fraction was measured by refractive index
measurement. Brefeldin A (1 uM for 24 hours) was used as a positive control for reduced HCV release. Results are expressed as
the mean + SD of the percent of the control from four independent experiments. *P < 0.05, **P < 0.005 versus control (0 pM
treatment). Scale bars, 200 and 500 nm.

doi: 10.1371/journal.pone.0068992.9002
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To confirm the accumulation of core antigen around LD, we
purified the LD [23], and quantified HCV core antigen and TG
in the LD fraction, followed by immunoblotting with anti-actin
antibody (Figure 2J). Analysis of the levels of HCV core antigen
and TG in the LD fraction of the total cell lysate showed that
the amount in GL-treated cells was increased by 31% and 35%
compared with controls, respectively (Figure 2K and 2L). Taken
together, these results suggested that GL inhibits release, but
not assembly and budding, of infectious HCV particles in cells.

To characterize the infectivity of HCV particles released from
HCVcc-infected cells treated with GL, supernatant from cell
cultures treated or not treated with GL was subjected to
continuous  10-60%  (w/v) sucrose density gradient
centrifugation, and the infectivity titer of each fraction was
measured. A reduction in infectivity by GlL-treatment was
observed in fractions 1-7 (Figure 2M). These results suggest
that GL may decrease the amount of HCV infectious particles
in the supernatant.

Role of PLA2 in HCV lifecycle

GL is known to have an inhibitory effect on PLAZ2 [8]. PLAZ is
classified into several groups and their biological functions are
not the same. It is unknown which group of PLAZ is targeted by
GL. We analyzed the effect of GL on PLA2G1B and PLA2G2A,
which were major groups of PLA2 family. To confirm the effects
of GL on expression of PLA2G1B, cells, transfected with an
expression plasmid for PLA2G1B, were treated with GL and
OPC, which is a specific inhibitor for PLA2G1B. Treatment with
GL effectively decreased the cellular level of PLA2G1B (Figure
S2). To verify whether PLA2 has a role in viral entry and
replication, we tested the effect of PLA2 inhibitors on HCVpp
infection and the replicon system, respectively. OPC has no
significant effect on virus entry and replication (Figure 3A and
3B). On the other hand, sPLA2HA inhibitor I, which is a specific
inhibitor for PLA2G2A, inhibited both HCVpp entry (Figure 3A)
and subgenomic replicon replication (Figure 3B). There was no
significant cytotoxicity seen after these treatments (data not
shown).

To evaluate the effects of PLA2 inhibitors on HCVce
infectivity, infected cells were treated with PLA2 inhibitors and
extra- and intracellular specific infectivity were measured
(Figure 3C and 3D). OPC slightly decreased specific infectivity
of virus in the supernatant and significantly increased specific
infectivity of virus in the cell lysate. On the other hand,
sPLA2IIA inhibitor | significantly decreased the specific
infectivity of virus in both the supernatant and cell lysate. To
confirm the importance of PLA2G1B in HCV release, we
silenced PLA2G1B with its specific siRNA and monitored its
effect on HCV release. PLA2G1B siRNA decreased the cellular
level of PLA2G1B (Figure S3). Suppression of PL2G1B
reduced core protein level in the medium (Figure 3E left panel)
and increased specific infectivity in the cells (Figure 3E right
panel). We performed GL treatment with or without OPC and
showed that GL and OPC had no additive effect when applied
together (Figure 3F). There was no significant cytotoxicity seen
after these treatments (data not shown). Taken together, these
results suggest that the suppression of virus release by GL
may be derived from its inhibitory effect on PLA2G1B. These
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results also suggested that PLA2G1B has a role in virus
release.

Antiviral effects of IFN along with GL

We have demonstrated that the target causing the anti-HCV
effect of GL differs from that of IFN. To analyze the antiviral
effect of IFN combined with GL, HCVcc-infected cells were
treated with 0.1 and 1.0 IU/ml of IFN in combination with
various concentrations of GL. HCV core level in culture
medium (Figure 4A) and in the cell (Figure 4B), specific
infectivity in culture medium (Figure 4C) and in the cells (Figure
4D) were measured. Regardless to the IFN concentration, HCV
core level and specific infectivity of the supernatant decreased
in response to GL treatment in a dose dependent manner
(Figure 4A and 4C). On the other hand, HCV core level and
specific infectivity of the cell increased (Figure 4B and 4D),
suggesting that GL inhibited HCV release. The results
indicated that a combination therapy of IFN with GL could be
an effective treatment for HCV.

Effect of GL on IFN induction and secretion proteins

The IFN-inducing ability of GL has also been previously
reported [30]. We evaluated IFN stimulated gene induction by
GL, but no effects were observed (Figure S4). PLA2 is known
to be associated with various intracellular trafficking events and
secretion of very low-density lipoprotein (VLDL) [31]. HCV
particles are known to be secreted using the host membrane
trafficking system [32]. There is now increasing evidence that
VLDL participates in HCV assembly and release [33].
Therefore, we analyzed the level of albumin, an abundantly
secreted protein from hepatocytes, and apolipoprotein E
(ApoE), a component of lipoproteins, in the culture
supernatants of Huh7 cells and found that they were not
influenced by GL treatment (Figure S5).

Discussion

Recently, Ashfag et al. found the inhibitory effect of GL on
HCV production in patient serum infected Huh7 cells [34]. Their
cell culture system does not produce HCV efficiently. Thus, it
does not permit analysis of the complete viral life cycle. In this
study, we observed distinct suppression of HCV release by GL,
using the HCVcc system (Figure 1A). Anti-viral effects of GL on
early steps in the viral lifecycle have been reported previously,
for example the inhibition of endocytosis of influenza A virus
(IAV), the direct fusion of HIV-1 [35], the penetration of the
plasma membrane of HAV [11] and EBV [15], the virus entry of
SARS [14], and infection by pseudorabies virus [36]. GL
effectively inhibits the replication of VZV [10], HSV-1 [9], EBV
[15] and HIV [13]. This is the first report that GL can suppress
virus release, however, the detailed mechanisms of these
remain elusive. It has also been reported that GL had a
membrane stabilizing effect [37] and a reduction of membrane
fluidity [35], [38]. HCV uses cellular membrane structure in its
lifecycle [39], [40). Thus, it is conceivable that membrane
alterations may play a negative role in the HCV lifecycle.

We found core protein accumulation on LDs in Gl-treated
cell (Figure 2C, 21 and 2K). This inverse correlation between
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Figure 3. A role of PLA2 in HCV lifecycle. (A) Huh7 cells were infected with HCVpp in the presence and absence of OPC or
sPLA2IIA inhibitor for 2 hours, then medium was replaced. Effects of PLA2 inhibitor on the entry of HCVpp were determined by
measuring the luciferase activity at 72 hours post-infection. Anti-human CD81 antibody (10 pg/mi) was used as a positive control for
reducing HCV entry to the cells. (B) Huh7 cells harboring the type-2a subgenomic replicon were treated with OPC or sPLA2IIA
inhibitor for 72 hours. Replication efficiency of the replicon was estimated by measuring HCV RNA titer. HCVcc-infected cells were
treated with PLA2 inhibitor for 72 hours. Specific infectivity of the supernatant (C) and cell lysate (D) were evaluated by quantifying
the HCV core antigen in cells at 72 hours post-infection. (E) Effects of siRNA against PLA2G1B on core level in the medium (left
panel) and specific infectivity in HCV-infected celis (right panel). ApoE siRNA was used as a positive control for reduced HCV
infectivity. (F) HCVcc-infected cells were treated with GL (500 uM) with or without OPC (10 uM), and intracellular specific infectivity
was measured. IFN (10 IU/ml) was used as a positive control. Results are expressed as the mean + SD of the percent of the control
from four independent experiments. *P < 0.05, **P < 0.005 versus control (0 yM treatment).

doi: 10.1371/journal.pone.0068992.g003
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GL. HCVecc-infected cells were treated with IFN alone, or IFN
with GL for 72 hours. HCV production was assessed by
measuring the HCV core antigen in culture medium (A) and cell
(B). Specific nfectivity in culture medium (C) and cell (D) were
measured. Results are expressed as the mean + SD of the
percent of the controf from four independent experiments. *P <
0.05, **P < 0.005 versus versus IFN mono-therapy.

doi: 10.1371/journal.pone.0068992.g004
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the efficiency of virus production and core protein accumulation
on LDs was also observed that colocalization of HCV protein
with LDs was low in cases of the chimera Jc1, supporting up to
1,000-fold higher infectivity titers compared with JFH1 [41],
[29]. In this study, we demonstrated that GL did not affect the
size of LDs in un-infected cells (Figure 2F right panel). On the
other hand, the size of LDs increased in HCV-infected cells
with GL-treatment (Figure 2F left panel), probably because
accumulated-HCV enhanced the formation of LDs [29].

We demonstrated the importance of PLA2G1B in HCV
release by PLA2G1B inhibitor and siRNA against PLA2G1B
(Figure 3). The overexpression of PLA2G1B did not have any
effect on HCV release (data not shown), probably because
enough PLA2G1B existed in the cells. This result is generally
observed in other host factors that involved in HCV lifecycle.
For example, overexpression of the human homologue of the
33-kDa vesicle-associated membrane protein-associated
protein (hVAP-33), which has a critical role in the formation of
HCYV replication complex, did not increase HCV replication [42].
PLA2 family proteins have been known as lipid-signaling
molecules, inducing inflammation [43]. On the basis of the
nucleotide sequence, the superfamily of PLA2 enzymes
consists of 15 groups, comprising 4 main types: cytosolic PLA2
(cPLA2), calcium-independent PLA2, platelet activating factor
acetyl hydrolase/oxidized lipid lipoprotein associated PLA2,
and the secretory PLA2 (sPLA2) including PLA2G1B, 2A, and
4A [44]. In this study, we showed that GL, PLA2G1B inhibitor,
and PLA2G1B siRNA inhibited HCV release and that GL and
OPC had no additive effect when applied together, suggesting
that suppression of HCV release by GL may be derived from its
inhibitory effect on PLA2G1B. The role of PLA2G1B in the HCV
lifecycle has not been reported. In this study, we also
demonstrated that PLA2G2A inhibitor decreased entry,
replication, and assembly of infectious HCV particles in cells
(Figures 3A, 3B, 3C, and 3D). The role of PLA2G2A in the HCV
lifecycle has not been reported. PLA2G2A is known to affect
the secretion of VLDL (30). Therefore, PLA2G2A may
contribute to HCV assembly. In the case of PLA2G4A, Menzel
et al. showed that inhibition of PLA2G4A produces aberrant
HCYV particles [45]. These observations suggest that PLA2 has
a role in several steps of the HCV lifecycle.

In this study, we showed that the ECs, of GL treatment for
intracellular infectivity was 16.5 puM (Figure 1A). It has been
reported that the maximum peripheral concentration of GL in
normal patients is 145 pM [46]. The placebo-controlled phase
I/l trial revealed no significant effect on viral titer [47]. In vivo,
accumulated HCV in GL treated cells may cause lysis and
apoptosis of the cells, leading to the release of infectious
particles in the circulation. This may be a major limitation to use
GL mono-therapy against HCV infection in patients. On the
other hand, combination treatment with GL augmented the IFN-
induced reduction in HCV core antigen levels (Figure 4A).

Although a number of natural compounds with anti-HCV
activities were identified in recent years (Silymarin, EGCG,
Ladanein, Naringenin, Quercetin, Luteolin, Honokiol, 3-hydroxy
caruilignan C, and other things) [48], many aspects concerning
their mechanisms of action remain unknown. In this study, GL
is identified as a novel anti-HCV agent that targets the release
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steps of infectious HCV particles. We found that the
suppression of viral release by GL may be due to an inhibitory
effect of PLA2G1B. These observations provide a basis for
development of an improved IFN-based combination therapy
against chronic hepatitis C.

Supporting Information

Figure S1. Anti-HCV effect of GL. HCVcc-infected cells
were treated with various concentrations of GL for 72 hours.
HCV production was assessed by measuring the level of HCV
core antigen in culture medium. Results are expressed as the
mean + SD of the percent of the control from four independent
experiments. IFN (10 IU/ml) was used as a positive control. *P
< 0.05, **P < 0.005 versus control (O pM treatment).

(TIF)

Figure S2. Effect of GL on expression of PLA2G1B. A
human PLA2G1B cDNA was inserted into the EcoRI site of
pCAGGS, yielding pCAGPLA2G1B. Since there was no
effective antibody to detect endogenous expression of
PLA2G1B, 293T cells transfected with the pCAGPLA2G1B
plasmid were treated with GL (500 pM) for 72 hours and lysed
in lysis buffer, followed by immunoblotting with anti-PLA2G1B
and anti-actin antibodies. OPC (10 uM) was used as a positive
control to reduce PLA2G1B protein in the cells.

(TIF)

Figure S3. Effect of PLA2G1B siRNA on expression of
PLA2G1B. HCVcc infected-Huh7 cells in a 24-well plate were
transfected with siRNAs targeted to PLA2G1B and scramble
negative control siRNA, followed by immunoblotting with anti-
PLA2G1B and anti-actin antibodies.

(TIF)

Figure S4. Effect of GL on IFN induction. The pISRE-Luc
vector contains the firefly luciferase reporter gene, downstream
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