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FIGURE 2 | Time course of MV infection in vitro. Jurkat/hSLAM
cells were infected with wild-type MV IC323-EGFP at MOl of 0.01,
0.05, and 0.25, washed, and harvested at the indicated time points.
(A) Cells were stained with PE-conjugated anti-hSLAM mAb, fixed
with 2% formalin/PBS, and GFP expression was analyzed. (B) RNA
was extracted from cells, and expression levels of MV-N and RNase
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P were analyzed by one-step qRT-PCR. The copy numbers of MV-N
and RNase P were determined, and the ratio of MV-N copies to
RNase P copies is depicted on the vertical axis. (C) Correlation
between the percentage of GFPt Jurkat/SLAM cells and the time
course of MV-N expression. Spearman’s rank correlation coefficient
was used for statistical analysis.

cell frequencies by flow cytometry. Next, we extracted RNA from
PBMCs and BM cells and analyzed MV-N expression by qRT-PCR,
as described in the previous section. MV-N expression paral-
leled the GFP* frequencies in BM (Figure 3B). Notably, a high
level of MV-N expression was also detected in PBMCs of mouse
127-4, suggesting that the level of MV-N expression per single

hematopoietic cell is similar between blood and BM. We plotted
the GFP™ frequency and MV-N expression level in BM cells of
eight mice. As shown in Figure 3C, these values were well corre-
lated (R = 0.9286). Taken together, these data indicate that MV
infection in vivo is detectable in BM by both flow cytometry and
MV-N RNA qRT-PCR analysis, but only MV-N RNA gRT-PCR is
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FIGURE 3 | Analysis of MV infection in vivo. Three hNOJ mice (127-1, -4,
and -5) were infected intravenously with 2,000 pfu of the MV vaccine
strain, AIK-C-EGFP. Mice were sacrificed at day 7 post-infection, and blood
and bone marrow cells (BM) were obtained. {A) BM cells were stained
with PB-anti-human CD45 mAb, fixed with 2% formalin/PBS, and GFP
expression was analyzed. (B) PBMCs from blood and BM cells were lysed,
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and RNA was prepared. The expression MV-N and RNase P was analyzed
as described in the legend for Figure 2B. (C) Correlation between the
percentage of GFPT cells among hCD45™ cells in BM and the level of
MV-N expression in MV-infected hNOJ mice, at day 7 {n = 4) or day 10
{n = 4) p.i. Spearman’s rank correlation coefficient was used for statistical
analysis.

sensitive enough to detect PBMC-associated MV infection in the
blood.

KINETICS OF MV GROWTH CAN BE MONITORED IN THE BLOOD OF
hNOJ MOUSE
Finally, we measured MV growth kinetics in vivo by
qRT-PCR analysis using sequential blood samples obtained from
MV-infected hNOJ mice; it was not feasible to perform these mea-
surements by flow cytometry because of the paucity of human
PBMC:s in the blood. Two or three hNOJ mice in each group were
infected intravenously with 200, 2000, or 20,000 pfu AIK-C-EGFP
and followed up to 21 days p.i. The level of PBMC-associated MV
RNA in individual mice is shown in Figure 4A. We noticed two
peaks of MV replication, the first at around day 3 p.i., and the sec-
ond at day 10 p.i., irrespective of the initial inoculum. Two mice
infected with 20,000 pfu MV exhibited a high level of MV replica-
tion that peaked at day 10 p.i. One mouse infected with 2,000 pfu
exhibited a high level of MV replication at day 3 p.i., followed by
a small peak at day 10 p.i. For some mice, we counted the number
of human cells per 50 ! of blood used for RNA extraction. The
data are shown in Figure 4B. We were able to detect high levels
of MV in samples containing less than 2,000 cells, indicating that
the gRT-PCR system is sensitive enough to detect low numbers of
MV-infected human cells.

Although MV replication was not obvious in three mice
infected with the smallest dose (200 pfu), one of these animals

exhibited an increase in MV RNA expression at day 21 p.i. (gray cir-
cle). We sacrificed this particular mouse and used flow cytometry
to analyze GFP expression in its blood, spleen, MLN, and BM. As
shown in Figure 4C, GFP™ cells were present in spleen (0.308%)
and all the other tissues, albeit at a lower frequency, indicating that
MYV infection can occur even at a low dose (200 pfu) and spread
slowly in the systemic lymphoid tissues of hNO]J.

It may be necessary to acquire at least 30,000 events to be sure of
having > 10,000 cells for flow cytometry analysis. This is because of
the substantial amount of sample loss that occurs in this system.
The flow cytometry data presented in Figure 4C were obtained
by analyzing ~0.4 ml blood from a sacrificed mouse. However,
even under these conditions, the proportion of MV-infected cells
detected was only 0.056%; indeed, the cells are barely visible on
the plot. Therefore, it appears that flow cytometry is not a suitable
method for the sequential monitoring of infected (GFP™) cells.
Thus, the qRT-PCR system we have developed here allowed us to
monitor systemic MV replication using a small volume of blood
from humanized mice.

DISCUSSION

Based on a highly sensitive MV-N RNA detection method pre-
viously developed by Hummel etal. {2006}, which could detect
one copy of synthetic MV RNA/reaction, we developed a novel
one-step real-time qRT-PCR system for the purpose of monitor-
ing MV replication in the blood of MV-infected humanized mice.
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FIGURE 4 | Monitoring of MV replication in vivo. Two to three hNOJ
mice per group were challenged with MV AIK-C-EGFP at 20,000 (squares),
2,000 (triangles), or 200 pfu (circles). The PBMCs of these mice were
collected at day 3, 5, 7, 10, 14, and 21 p.i. (A) The level of MV-N expression
in the blood of infected hNOJ. Vertical axis shows the level of MV-N relative
to that ©f RNaseP, as described in the legend for Figure 2B.(B) For some
mice {depicted using the same symbol as {A)), the number of human cells
per 50 .l of blood used for RNA extraction and analyzed for MV-N
expression was plotted on the X-axis. (C) An hNOJ mouse infected with
MV at a low dose (gray closed circle, 200-2) exhibited an increased level of
MV-N. Atday 21 p.i., the mouse was sacrificed; cells from blood, spleen,
BM, aned mesenteric lymph node (MLN) were prepared. Cells were stained
and analyzed as described in the legend for Figure 2A.

Because MV replication usually occurs in association with cells
(Griffin. 2007), it is necessary to evaluate the endogenous RNA
expressinn level of human PBMCs that co-exist with mouse blood
cells. To this end, we designed human-specific primer/probe sets
for the (CD45 and RNase P mRNAs. When we analyzed the detec-
tion efficiencies of these two primer/probe sets using distinct cell

types present in human PBMCs, we found that RNase P expression
was less dependent than CD45 expression on cell type. Using this
qRT-PCR system with RNase P as an internal control, we can
reliably detect MV replication with high sensitivity in humanized
mice in vivo. When MV expressing GFP was used for infections
in vitro or in vivo, the level of MV-N RNA was closely correlated
with the frequencies of GFPT MV-infected cells determined by
flow cytometry.

Our gRT-PCR system allowed us to follow MV replication in
vivo using a small amount of blood, with no need to sacrifice
mice at each time point. Although flow-cytometric analysis pro-
vides valuable information, such as the proportions of various cell
types and the surface phenotypes of MV-infected cells, the small
number of human cells circulating in the mouse blood may not
be sufficient for precise estimation of MV-infected cells by flow
cytometry. By contrast, our qRT-PCR system was able to detect
MV-N RNA in fewer than 2,000 human PBMCs (Figure 4B).
This is an important technological advantage considering that
individual humanized mice exhibit variable levels of human cell
engraftment, i.e., chimerism (Terahara etal, 2013); moreover,
there may exist donor-to-donor variation in susceptibility to MV
infection. Thus, it should be possible to select humanized mice
with a degree of MV infection appropriate for the purpose of a
given experiment.

In this study, MV was inoculated through the tail vein, and
infected cells were distributed to systemic lymphoid tissues as well
as BMs, where human hematopoietic cells localize in humanized
mice (Traggiai etal., 2004). MV may also be distributed to other
organs, such as lung and intestinal tissue, as demonstrated in the
case of HIV infection using the BLT mouse (Sun etal., 20067). To
our surprise, by monitoring MV replication in PBMCs of human-
ized mice, we noticed two peaks of MV replication, at around 3
and 10 days p.i., in some mice. This pattern of MV replication did
not depend on the initial dose of MV inoculum. We do not know
why MYV replication showed two peaks in many animals. How-
ever, it was recently reported in a monkey mode] that MV RNA
persists in PBMCs for more than | month after primary infection,
and declined in three phases (Lin et al., 2012). The authors of that
study hypothesized that both T cells, including regulatory T cells
(Treg), and antibody responses contributed to the dynamics of
MV replication in vivo. Although hNOJ mice are reported to show
poor immune responses, the role of regulatory T cells should be
considered. This is because these cells regulate HIV-1 infection
in humanized mice (Jiang etal, 2008). Alternatively, it may be
that the intravenous injection of MV rapidly kills the target cells
(probably those showing an activated phenotype) within 3 days.
The low number of MV-infected cells then gradually transmits the
virus to the human cells that are replenished from the BM stem
cell pool. Further investigations are required to clarify this issue.

The humanized mouse model is expected to be a useful tcol
for studying virus infection (Akkina, 2013). Although the human
immune system is not fully reconstructed by the transplantation
of human HSCs alone, we believe that further improvements are
possible, which will allow us to utilize this mouse model to not only
evaluate vaccine and drug efficacy but also to increase our under-
standing of the pathogenesis of MV infection. The described novel
method of monitoring MV-infected human cells in the blood will
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be useful for studying MV-based vaccines in humanized mouse
models without the need to sacrifice the mice.
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