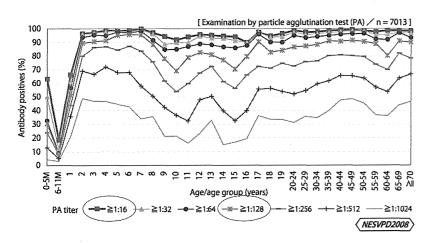
Yoshio Mori Department of Virology III, National Institute of Infectious Diseases, Japan

NESVPD

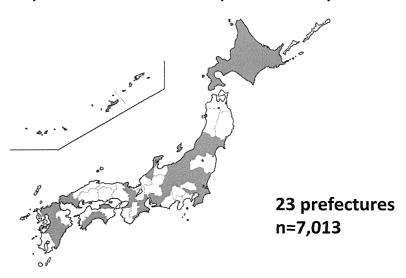
- Originally started in 1962
- Annually (depending on target diseases)
- To understand the actual situation of herd immunity or prevalence of pathogens, promoting effective management of immunization program
- Conducted by the Infectious Diseases Control Division,
 Ministry of Health, Labour and Welfare, Japan supported by prefectural health authorities and NIID

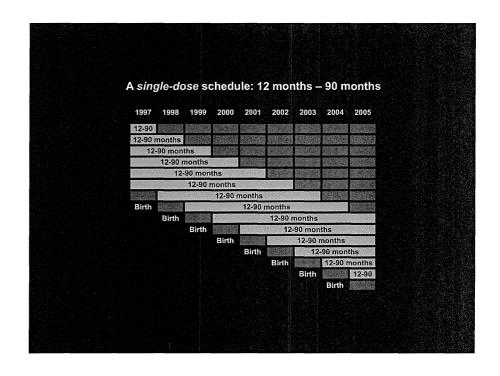
National Epidemiological Surveillance of Vaccine-Preventable Diseases (NESVPD)

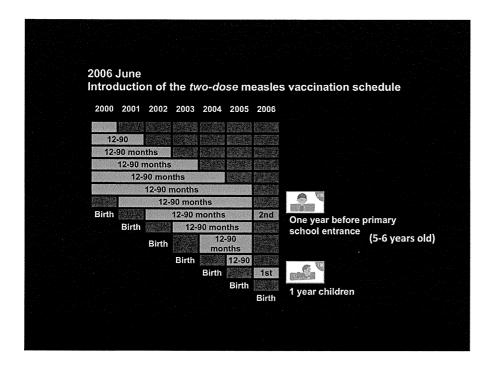
Target diseases:

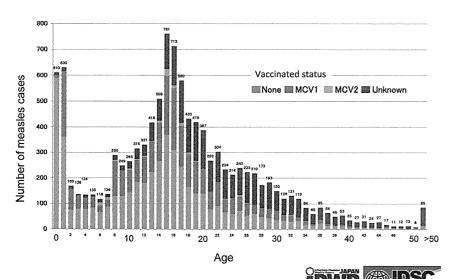

- 1. Poliomyelitis (Seroprevalence, pathogens)
- 2. Influenza (Seroprevalence, pathogens)
- 3. Japanese encephalitis (Seroprevalence of humans and pigs)
- 4. Measles (Seroprevalence)
- 5. Rubella (Seroprevalence)
- 6. Pertussis (Seroprevalence)
- 7. Diphtheria (Seroprevalence)
- 8. Tetanus (Seroprevalence)

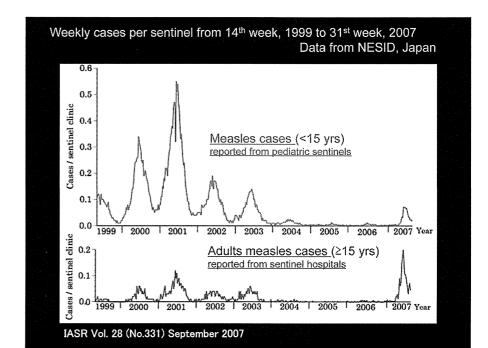
58

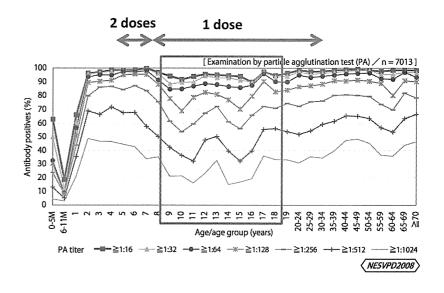

Measles


Age distribution of measles PA antibody positives in Japan, 2008


- National Epidemiological Surveillance of Vaccine-Preventable Diseases, 2008 -

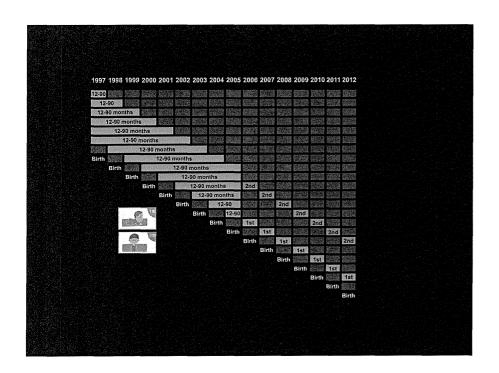

Sample collection for measles-seroprevalence survey in 2008



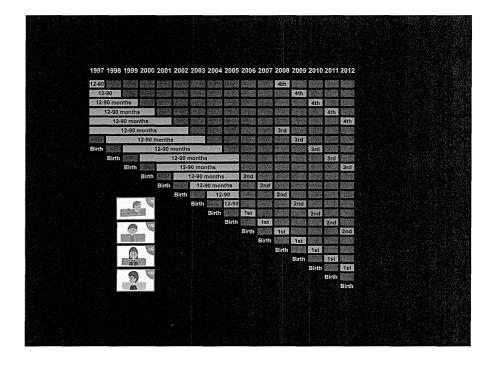


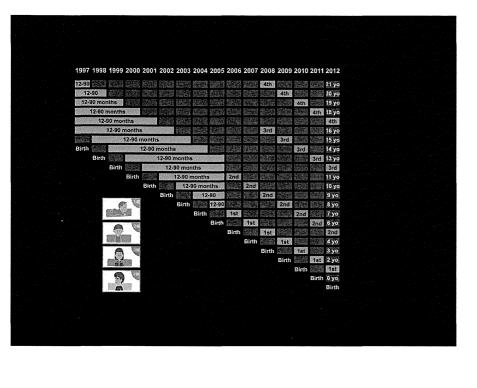
Cumulative measles cases by age and vaccinated status in 2008 (n=11,005)

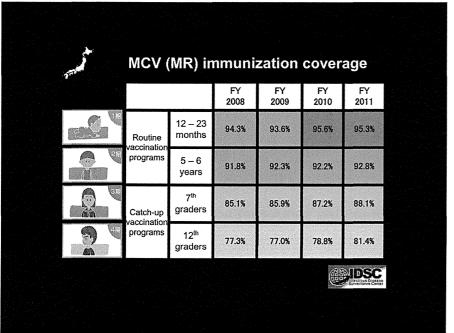
Dec 28, 2007 Special guidance for measles

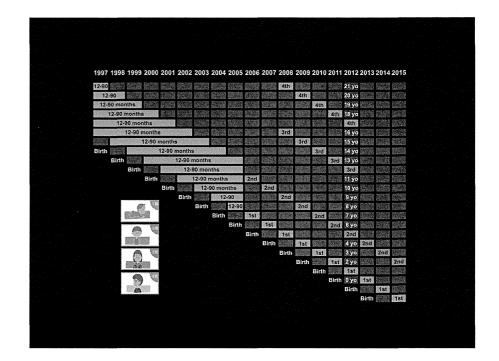

by Ministry of Health, Labour and Welfare, Japan

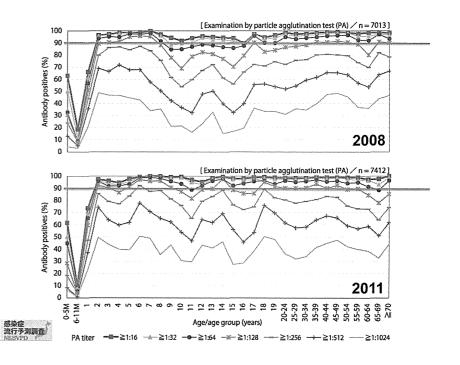

Supplementary immunization for 5 years targeting at teenagers (2008-2012)

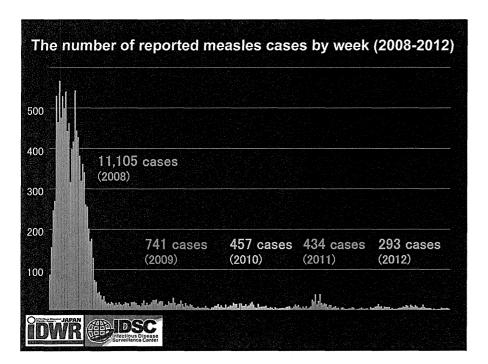


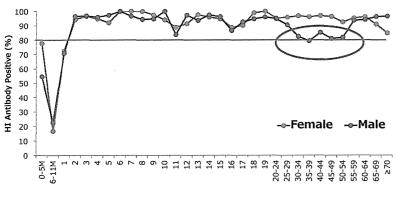



(3rd cohort) at 1st grade age of junior high school (7th graders) (4th cohort) at 3rd grade age of high school (12th greders)

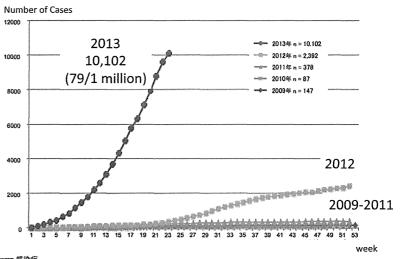




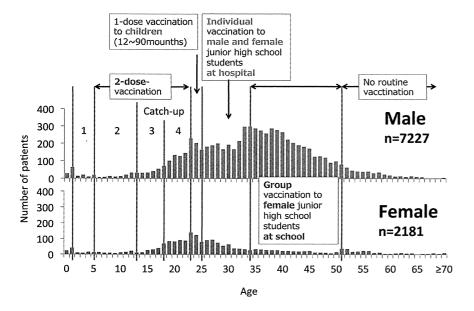




Age and sex distribution of rubella HI antibody positive (HI titer: ≥8) in 2011


Age Group

Examination by hemagglutination inhibition (HI) test/n=2824(F), 2445(M)


Rubella

Cumulative rubella cases by week (2009~2013.23w)

Rubella patients reported in 2013 (1-22w) in Japan

Historical transition of vaccination strategies for rubella control in Japan

> 1977 - 1994

Group immunization for female junior-high school students at school

➤ 1995 - 2006 Immunization to children (boys and girls) at 12-90 months + Individual immunization for male and female junior-high school students at hospitals

2006 – present Two-dose schedule of MR combined vaccines (1st cohort) 1 year children (2nd cohort) One year before primary school entrance

➤ 2008 - 2012 Supplementary immunization for 5 years targeting at ages (teens) (3rd cohort) at 1st grade age of junior high school (4th cohort) at 3rd grade age of high school

Summary

- National surveillances for seroprevalence to Mealses and Rubella are conducted regularly in Japan.
- The data collected from this program are useful to indicate susceptible groups and should be used to promote effective management of immunization program.

CRS surveillance in Japan

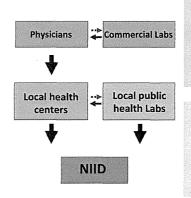
Yoshio Mori Department of Virology III, National Institute of Infectious Diseases, Japan

Criteria for CRS reporting in Japan

Clinical symptoms

based on criteria for "clinically confirmed CRS cases" defined by WHO

Laboratory diagnosis

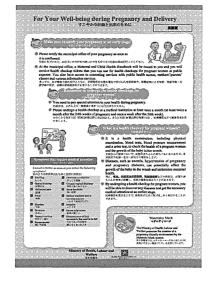

Serological testing or viral detection

Collection data

History of maternal rubella infection

Week of gestational age at rubella onset Area of rubella infection Vaccination history etc.

Surveillance system for rubella and CRS in Japan


Rubella

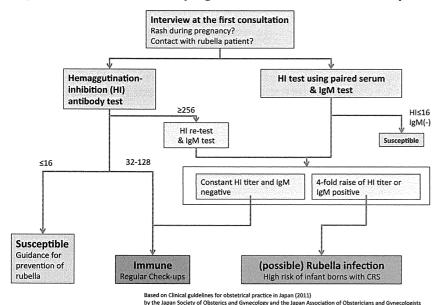
based on clinical or laboratory diagnosis case-based reporting from 2008

CRS

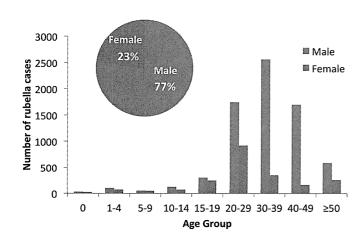
Clinically- and laboratory-confirmed case-based reporting from 1999

Public support for health checkup of pregnant women

Tickets for health checkups

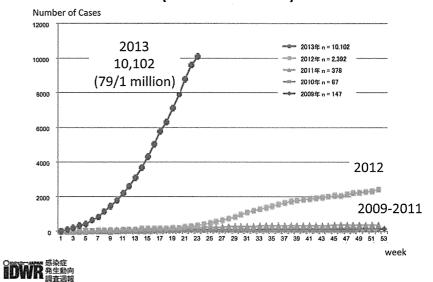

1. Basic health checkups

 Blood testing including that for anti-Rubella antibody


2. Medical checkups

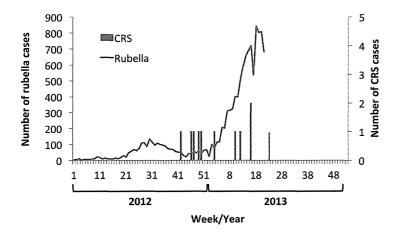
- Biopsy for cervical cancer
- Ultrasonography
- Testing for group B Streptococcus
- Testing for chamydia infection

Algorithm for evaluation of pregnant women with rubella in Japan



Age and sex distribution of rubella patients (2013.1-22w)

DWR 発生動向 DWR 発生動向


Cumulative rubella cases by week (2009~2013.23w)

Number of reported CRS cases (1999~2013.5)

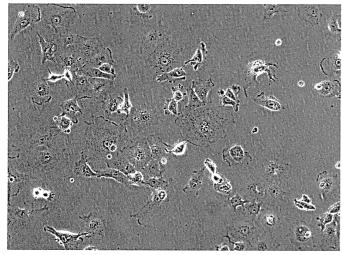
Year	Number of CRS	Number per 1 million birth	comments
1999	0	0	1 dose-rubella vaccination at 12-90 month-old (since 1995)
2000	1	0.8	
2001	1	0.9	
2002	1	0.9	
2003	1	0.9	
2004	10	9.0	Epidemic with estimated 39 thousand rubella cases
2005	2	1.9	Maternal infection in India (1)
2006	0	0	2 dose-MR vaccination at 1 and 5 year-old
2007	0	0	
2008	0	0	Catch-up MR vaccination at 12 and 17 year-old (until 2012)
2009	2	1.9	Maternal infection in Philippine (1)
2010	0	0	
2011	1	1.0	Maternal infection in Vietnam (1)
2012	5	4.8	
2013	6		
Total	30		On the Sk

Weekly rubella and CRS cases (2012.1-2013.22)

Summary

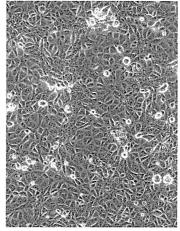
- 11 infants with CRS were reported between Jan. 2012 and Jun 2013 in Japan.
- The majority of rubella patients in the present epidemic are 20-40's men and 20's women, leading to concern about increase of CRS cases.

Nationalwide Rubella Epidemic – Japan, 2013. MMWR 62(23), 2013

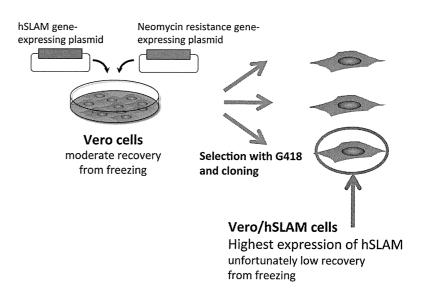

Improving survival of Vero/hSLAM in the deep-freezing

Plans for a novel cell line for isolation of MV and RV

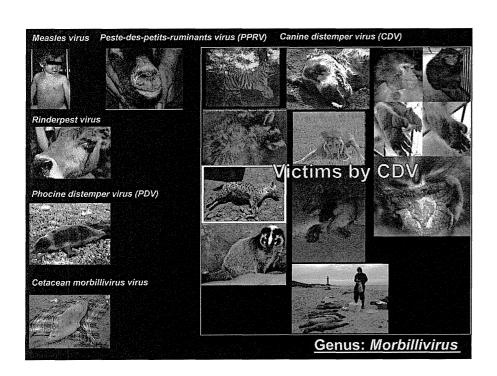
Yoshio Mori, K. Komase, M. Takeda Department of Virology III, National Institute of Infectious Diseases, Japan

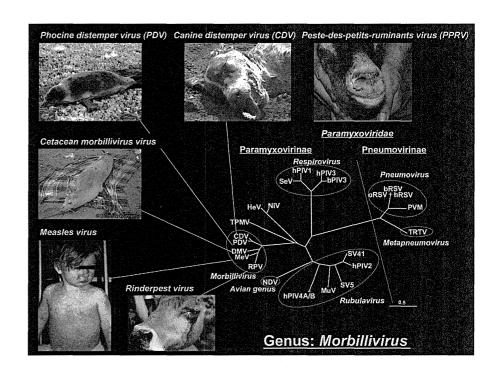


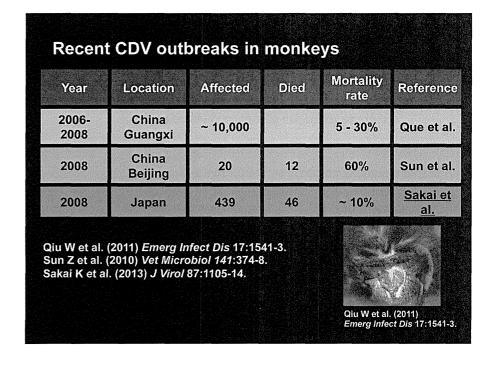
Vero/hSLAM cells at 24 hours after thawing


1×106 cells at φ60mm dish

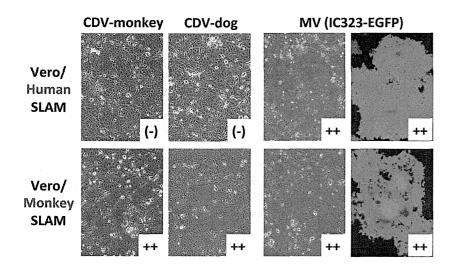
Vero/hSLAM cells

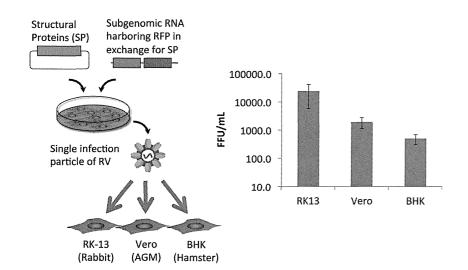

- Established by Dr. Yanagi's group (Ono et al, J. Virol., 2001)
- Stably express human SLAM, which is one of cellular receptors for wild type MV
- Useful for isolation of wild type MV
- Also available for isolation of RV
- Distributed to all over the world
- Low recovery from freeze stocking
- Regulated by CITES


Method for establishment of Vero/hSLAM cells



To improve survival of Vero/hSLAM cells from deep-freezing


- Optimize methods for freezing and thawing (eg, cell density during freezing and plating just after thawing)
- Re-establishment of a new cell line based on high expression of hSLAM and high recovery rate from deep-freezing



Monkey (Macaca) SLAM works as a receptor for MV and CDV

RK-13 rabbit cell line is highly susceptible to RV

Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES)

African Green Monkey (Cholorocebus aethiops)

- Vero cells were originally established in 1962 from Kidney cells of African green monkey, which was a species listed on Appendix II of CITES.
- Formal procedures are required for international transportation of Vero cells.

Summary

Vero/hSLAM cell line holds some problems.

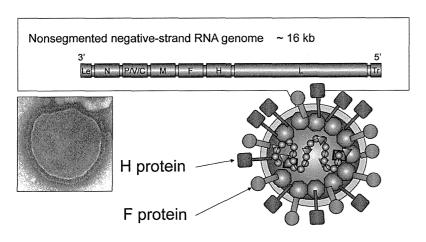
Low survival from deep-freezing CITES

 Establishment of a novel cell line for isolation of MV and RV are planned.

Human SLAM or monkey SLAM? Vero or RK-13 cells?

Functional Constraints on the Measles H Protein Prevent Escape from Neutralization

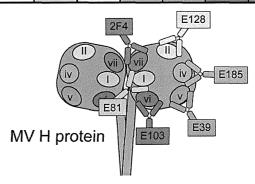
National Institute of Infectious Diseases


Dept. of Virology III

Katsuhiro Komase

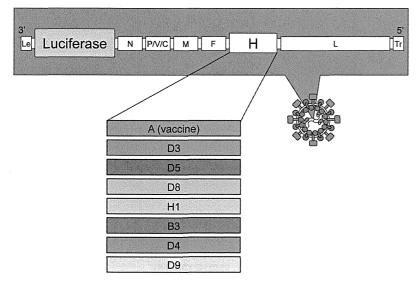
2014年 1月 29日

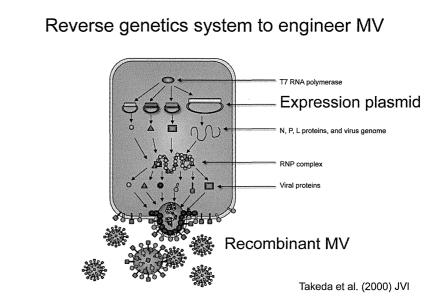
Measles virus

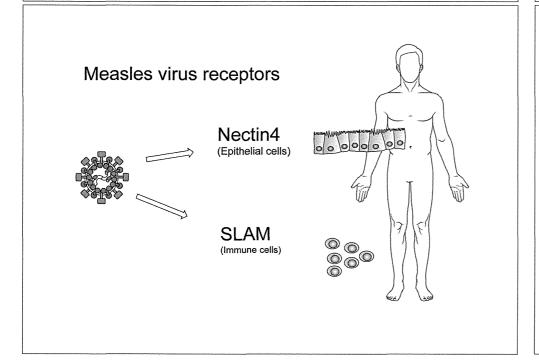


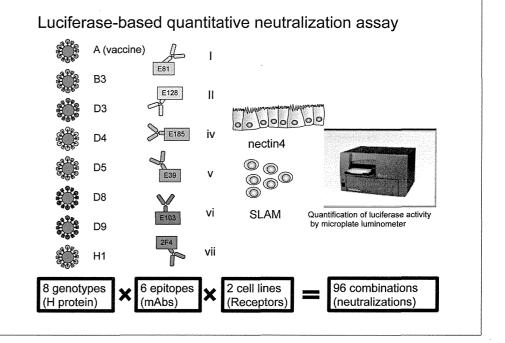
Antibody selection

24 genotypes of MV


mAbs used in the present study


epitope	I	11	iv	٧	vi	vii
mAb	E81	E128	E185	E39	E103	2F4




 \geq

Generation of neutralizing targets (recombinant MVs)

Neutralization titers of 96 combinations

SLAM-mediated infection

	epitope	1	11	iv	V	vi	vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
B95a	A (vaccine)	863	1968	494	<27	2558	22141
	B3	1727	1968	987	<27	10231	11070
43407555	D3	1727	15	31	<27	10231	22141
	D4	1727	31	62	<27	20462	22141
10.00	D5	863	15	494	<27	10231	11070
	D8	1727	1968	987	<27	20462	44281
	D9	1727	15	987	<27	20462	11070
	H1	1727	1968	494	<27	20462	22141

Nectin4-mediated infection

	epitope	ı	- 11	iv	V	vi	vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
II-18	A (vaccine)	27631	62977	124	1750	10231	11070
	B3	27631	62977	1974	1750	10231	11070
40.00	D3	27631	123	62	<27	20462	11070
0.000	D4	27631	31	<8	<27	10231	11070
35.4502	D5	27631	<4	1974	<27	20462	22141
45.7366	D8 ⁵	27631	62977	987	<27	10231	22141
	D9	27631	123	1974	<27	10231	11070
200	H1	13815	62977	494	1750	10231	22141

Epitopes II is an effective neutralizing epitope, but not conserved.

SLAM-mediated infection

	epitope		3 - EH	iv	V	ví	vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
B95a	A (vaccine)	863	1968	494	<27	2558	22141
7.4	B3	1727	1968	987	<27	10231	11070
	D3	1727	15	31	<27	10231	22141
	D4	1727	31	62	<27	20462	22141
	D5	863	15	494	<27	10231	11070
1000000	D8	1727	1968	987	<27	20462	44281
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	D9	1727	15	987	<27	20462	11070
	H1	1727	1968	494	<27	20462	22141

Nectin4-mediated infection

	epitope	1	ll li	iv	V	Vi Vi	vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
11-18	A (vaccine)	27631	62977	124	1750	10231	11070
30000	B3	27631	62977	1974	1750	10231	11070
30000	D3	27631	123	62	<27	20462	11070
	D4	27631	31	<8	<27	10231	11070
	D5	27631	<4	1974	<27	20462	22141
	D8	27631	62977	987	<27	10231	22141
	D9	27631	123	1974	<27	10231	11070
	H1	13815	62977	494	1750	10231	22141

Epitopes I, vi and vii are conserved effective neutralizing epitopes

SLAM-mediated infection

	epitope	1	- 11	iv	٧	vi	Vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
B95a	A (vaccine)	863	1968	494	<27	2558	22141
	B3	1727	1968	987	<27	10231	11070
	D3	1727	15	31	<27	10231	22141
	D4	1727	31	62	<27	20462	22141
	D5	863	15	494	<27	10231	11070
2.2	D8	1727	1968	987	<27	20462	44281
	D9	1727	15	987	<27	20462	11070
2.	H1	1727	1968	494	<27	20462	22141

Nectin4-mediated infection

	epitope	ı	11	iv	٧	vi	vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
II-18	A (vaccine)	27631	62977	124	1750	10231	11070
	B3	27631	62977	1974	1750	10231	11070
	D3	27631	123	62	<27	20462	11070
	D4	27631	31	<8	<27	10231	11070
	D5	27631	<4	1974	<27	20462	22141
	D8	27631	62977	987	<27	10231	22141
	D9	27631	123	1974	<27	10231	11070
	H1	13815	62977	494	1750	10231	22141

Epitopes iv and v are less important epitopes.

SLAM-mediated infection

	epitope	1	ll l	iv	٧	Vi	Vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
B95a	A (vaccine)	863	1968	494	<27	2558	22141
0.00	B3	1727	1968	987	<27	10231	11070
	D3	1727	15	31	<27	10231	22141
	D4	1727	31	62	<27	20462	22141
	D5	863	15	494	<27	10231	11070
	D8	1727	1968	987	<27	20462	44281
	D9	1727	15	987	<27	20462	11070
	H1	1727	1968	494	<27	20462	22141

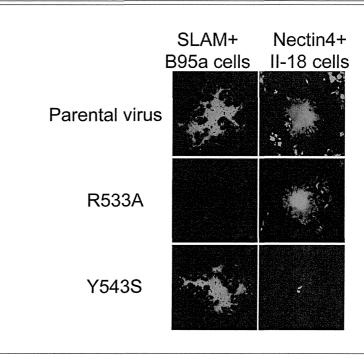
Nectin4-mediated infection

	epitope	1	- 11	iv	٧	vi	vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
II-18	A (vaccine)	27631	62977	124	1750	10231	11070
	B3	27631	62977	1974	1750	10231	11070
	D3	27631	123	62	<27	20462	11070
500 E	D4	27631	31	<8	<27	10231	11070
6189.40	D5	27631	<4	1974	<27	20462	22141
	D8	27631	62977	987	<27	10231	22141
	D9	27631	123	1974	<27	10231	11070
	H1	13815	62977	494	1750	10231	22141

Epitopes I, vi and vii are conserved among these 8 genotypes

SLAM-mediated infection

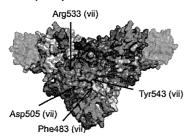
	epitope		l II	iv	٧	Vi	Vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
B95a	A (vaccine)	863	1968	494	<27	2558	22141
	B3	1727	1968	987	<27	10231	11070
	D3	1727	15	31	<27	10231	22141
	D4	1727	31	62	<27	20462	22141
	D5	863	15	494	<27	10231	11070
16.00	D8	1727	1968	987	<27	20462	44281
in the second	D9	1727	15	987	<27	20462	11070
	H1	1727	1968	494	<27	20462	22141


Nectin4-mediated infection

	epitope	1	- 11	iv	V	Vi	vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
II-18	A (vaccine)	27631	62977	124	1750	10231	11070
	B3	27631	62977	1974	1750	10231	11070
100	D3	27631	123	62	<27	20462	11070
	D4	27631	31	<8	<27	10231	11070
	D5	27631	<4	1974	<27	20462	22141
3.00	D8	27631	62977	987	<27	10231	22141
	D9	27631	123	1974	<27	10231	11070
14.56	H1	13815	62977	494	1750	10231	22141

Epitope vii (conserved epitope) Arg533 (vii) Tyr543 (vii) Asp505 (viii) Phe483 (vil) Without SLAM Without SLAM Asp507 Arg90 Asp507 Arg90 Asp507 Arg90 Pro552 Qiu123 Phe552 Val63 Hashiguchi T et al. (2011) Nat Struct Mol Biol. 18:135-41.

Linkage between the growth defect and escape


	Mutation	Neut	ralization	titer	Growth in		
		1	vi	vii	B95a	II-18	
Cell		E81	E103	2F4	SLAM	Nectin4	
B95a		1727	10231	22141	++	++	
	F483A	1727	10231	<346	++	(-)	
	Y543S	1727	2558	692	++	(-)	
II-18		27631	20462	11070	++	++	
	D505S	13815	20462	<5	(-)	++	
	R533A	27631	20462	173	(-)	++	

7

Summary of the conserved epitope vii

- > Receptor-interacting residues themselves constitute an important neutralizing epitope.
- ➤ Consequently, MV became incapable of utilizing either SLAM or nectin4, when it possessed an escape mutation on the epitope.

Comparison of neutralizing titers by mAbs and vaccinees' serum

II-18 cell	mAbs*									
j	E81 (/)	E128 (//)	E185 (iv)	E39 (v)	E103 (vi)	2F4 (vii				
Α	27631	62977	124	1750	10231	11070				
D3	27631	123	62	<27	10231	11070				
D3 (Q311R/ Q391R)	<3	ND**	ND	ND	20	11070				
D3 (Q311R/ Q391R/R533A)	3	ND	ND	ND	40	346				
D3 (Q311R/ Q391R/D505S)	<3	ND	ND	ND	20	<5				

*1mg/ml of lg. **Very low (titers were not determined)

Antibody

>25000 10000-25000 5000-10000 2500-5000 1000-2500 <1000					
\$25000 10000-25000 5000-1000 2500-5000 1000-2500 <1000	>25000	10000-25000 50	80-10000 250	0-5000 1000-	2500 <1000

Epitopes I, vi and vii are conserved effective neutralizing epitopes

SLAM-mediated infection

	epitope	1	- 11	iv	V	vi	l vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
B95a	A (vaccine)	863	1968	494	<27	2558	22141
	B3	1727	1968	987	<27	10231	11070
	D3	1727	15	31	<27	10231	22141
	D4	1727	31	62	<27	20462	22141
	D5 .	863	15	494	<27	10231	11070
	D8	1727	1968	987	<27	20462	44281
	D9	1727	15	987	<27	20462	11070
	H1	1727	1968	494	<27	20462	22141

Nectin4-mediated infection

	epitope	1	11	iv	٧	Vi	vii
	IgG 1 mg/ml	E81	E128	E185	E39	E103	2F4
11-18	A (vaccine)	27631	62977	124	1750	10231	11070
	B3	27631	62977	1974	1750	10231	11070
	D3	27631	123	62	<27	20462	11070
	D4	27631	31	<8	<27	10231	11070
	D5	27631	<4	1974	<27	20462	22141
	D8	27631	62977	987	<27	10231	22141
	D9	27631	123	1974	<27	10231	11070
	H1	13815	62977	494	1750	10231	22141

Comparison of neutralizing titers by mAbs and vaccinees' serum

II-18 cell			m/	\bs*						Vaccinee	s		
	E81 (/)	E128 (//)	E185 (iv)	E39 (v)	E103 (vi)	2F4 (vii)	Vac9	Vac12	Vac27	Vac31	Vac40	Vac41	Vac49
Α	27631	62977	124	1750	10231	11070	80	640	80	80	80	160	160
D3	27631	123	62	<27	10231	11070	160	640	80	160	160	160	320
D3 (Q311R/ Q391R)	<3	ND**	ND	ND	20	11070							
D3 (Q311R/ Q391R/R533A)	3	ND	ND	ND	40	346							
D3 (Q311R/ Q391R/D505S)	<3	ND	ND	ND	20	<5							

*1mg/ml of lg. **Very low (titers were not determined)

Antibody

>25000 10000-25000 5000-10000 2500-5000 1000-2500 <1000			14/3/10/2004	0.000	\$25000000000000000000000000000000000000	
	>25000	10000-25000	5000-10000	2500-5000	1000-2500	<1000
	March of the March					

Serum

200	400	-00		-40
320	100	60	40	~40

Comparison of neutralizing titers by mAbs and vaccinees' serum

II-18 cel			m/	\bs*						Vaccinee	s		
54.1.5	E81 (/)	E128 (//)	E185 (iv)	E39 (v)	E103 (vi)	2F4 (vii)	Vac9	Vac12	Vac27	Vac31	Vac40	Vac41	Vac49
Α	27631	62977	124	1750	10231	11070	80	640	80	80	80	160	160
D3	27631	123	62	<27	10231	11070	160	640	80	160	160	160	320
D3 (Q311R/ Q391R)	<3	ND**	ND	ND	20	11070	80	320	160	160	320	320	320
D3 (Q311R/ Q391R/R533A	3	ND	ND	ND	40	346	160	320	160	160	160	320	320
D3 (Q311R/ Q391R/D505S)	<3	ND	ND	ND	20	<5	160	640	80	320	320	320	320

*1mg/ml of lg. **Very low (titers were not determined)

Antibody

Serum

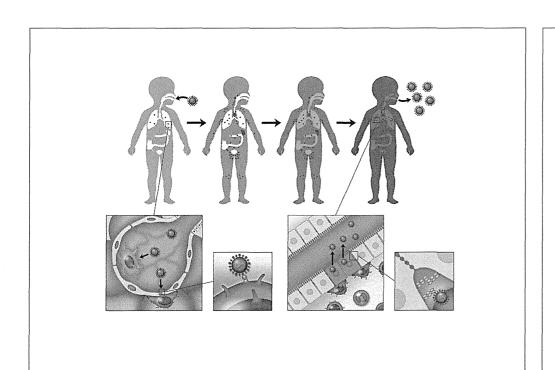
- MVs are neutralized by vaccinees' serum, even at the cost of reduced affinity for one of the receptors or lower replication capacity.
- MV does not undergo a major antigenic drift, and global measles elimination is biologically feasible with currently used MV vaccines.

Acknowledgements

NIID, Virology III Maino Tahara Kouji Sakai Makoto Takeda Xue-Ma Ji-Lan He

CCDC Songtao Xu

US CDC Paul A. Rota Hokkaido Univ. Katsumi Maenaka Hideo Fukuhara


Kyushu Univ. Shinji Ohno Yusuke Yanagi

Emory Univ. Melinda A. Brindley Richard K. Plemper

Thank you for your attention

2014年 1月 29日

Escape mutations from 2F4

		Mutation	Neut	Neutralization titer						
	epitope		1	Vi	Vii					
Cell			E81	E103	2F4					
B95a	D3/		1727	10231	22141					
	D3/	F483A	1727	10231	<346					
	D3/	Y543S	1727	2558	692					
II-18	D3/		27631	20462	11070					
100	D3/	D505S	13815	20462	<5					
	D3/	R533A	27631	20462	173					