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extracted in lysis buffer (50 mM Hepes-NaOH, pH 7.5, containing 150 mM
NaCl, 1% Nonidet P-40, 20 mM NEM, and protease inhibitors) and cen-
trifuged at 15,000 g for 20 min at 4°C. The supernatants were used for
immunoblotting, for immunoprecipitation of FLAGtagged oxidoreductases
with anti-FLAG M2-agarose beads (Sigma-Aldrich; 1), or for immunopre-
cipitation of endogenous Erol-a with Con A-Sepharose 4B (GE Health-
care; 2). Bead suspensions were rotated for 3 h at 4°C. After precipitation,
the beads were washed three times with lysis buffer and eluted by adding
lysis buffer containing 0.2 mg/ml FLAG peptide for 1 or by denaturing
with SDS-PAGE sample buffer containing 5 mM EDTA for 2. Immunoblot-
ting was conducted under reducing or nonreducing conditions with spe-
cific antibodies as indicated in the text {Results section Ero1-a is dominantly
regulated by PDI).

SPR measurements

The SPR analysis was performed essentially as described previously (Araki
and Nagata, 2011a}. In brief, association or dissociation rate constants
(kon or ko) for the direct binding of oxidoreductases to immobilized Ero1-
«{WT) were determined by SPR measurements on a protein interaction
array system (ProteOn XPR36; Bio-Rad Laboratories). Ero1-o(WT) was cou-
pled to the GLC (general amine coupling, compact polymer layer) sensor
chip (Bio-Rad Laboratories) through amine-coupling chemistry. As a con-
trol, one channel was coupled with BSA to exclude background binding.
Sensorgrams were recorded simultaneously for five concentrations of puri-
fied oxidoreductases (0.133-36 pM) in threefold increments at 25°C for
a 2-min association phase followed by a 10-min dissociation phase with
20 mM Hepes-NaOH, pH 7.4, 150 mM NaCl, 0.001% Tween, and 2 mM
EDTA as running and sample buffers. GSH or GSSG {final 2 mM GSH and
0.5 mM GSSG) were added to the running buffer just before use, and all
samples were exchanged and diluted in this buffer. Sensorgrams were an-
alyzed by nonlinear regression analysis according fo a two-state model
using ProteOn Manager Version 3.0 software (Bio-Rad Laboratories).
Experiments were replicated af least three fimes.

Oxygen consumption assays

Oxygen consumption was measured using a Clark-type oxygen electrode
(YSI 5331) as previously described [Araki and Nagata, 2011a). In brief,
all experiments were performed at 25°C using a constant temperature in-
cubator in air-saturated buffer (~250 pM O,) in 50 mM Hepes-NaOH,
pH 7.5, 150 mM NaCl, and 2 mM EDTA. Cafalyfic oxygen consumption
was initiated by the addition of Ero1-a(WT) or Ero1-o(C104A/C131A] at
a final concentration of 2 pM in a reaction mixture containing 10 mM GSH
and various concentrations of oxidoreductases as depicted in each figure.

NMR measurements

E. coli cells were grown in M9 minimal media containing 25 mg/liter
1-[1-%CJcysteine, either with or without 100 mg/liter -[">N]alanine or
200 mg/liter +-["*N]glycine, to produce isotopically labeled constitutively
active Ero1-¢(C104A/C131A). NMR measurements were made on a re-
search spectrometer (AVANCE 11-400; Bruker) at 303 K with a 5-mm NMR
sample tube, which contained 0.85 mM Ero1-o(C104A/C131A4) dissolved
in 10 mM sodium phosphate buffer containing 100 mM NaCl, pH 7.0. '*C
NMR spectra were recorded at 100 MHz with a WALTZ-16 composite
pulse decoupling sequence. The free induction decay was recorded with
32 K data points and a spectral width of 3,500 Hz. Carbonyl '*C signals
were assigned by the selective '°C carbonyl->N double-labeling method
(Serve et al., 2010). The '*CO-PN linkages in the polypeptide chains of
the doubly labeled proteins are used to give the carbonyl '3C resonances
that split into doublets as a result of the *C-"*N spin coupling (Kainosho and
Tsuji, 1982). Thus, one can sort out the carbonyl 1°C resonances caused
by the amino acid residues that possess a '*CO-"*N linkage. If there is only
one '3CO-"N linkage in a protein molecule, it is possible to unambigu-
ously assign the carbonyl '*C resonance to the specific amino acid residue
on the basis of knowledge of the amino acid sequence of the protein. For
example, Cys94 of Erol-o was assigned by the double-labeled Erol- in
which the carbonyl carbon of cysteine (Cys?4) and the nitrogen of glycine
(Gly95) because the Cys-Gly linkage exists only here in the Erol-a protein
sequence. To subfract the signal of the natural isotope abundance, the spec-
trum of the unlabeled protein was subtracted from that of the labeled one.
All data were collected and processed under the same experimental condi-
tion, and the y axis indicates relative intensity (arbitrary unit).

Measurement of redox equilibrium using glutathione

The redox equilibrium between recombinant oxidoreductases and glutathione
was measured essenfially as described previously (Sugiura et al., 2010).
In brief, oxidoreductases (1 pM) were incubated with 0.1 mM GSSG and
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various concentrations of GSH at 25°C for 1 h in 0.1 M sodium phos-
phate buffer, pH 7.0, containing 1 mM EDTA and 150 mM NaCl. After
incubation, 10% TCA was added to prevent further thiol-disulfide ex-
change. The precipitated pellet was washed with 100% acetone and solu-
bilized in 0.1 M sodium phosphate buffer, pH 7.0, containing 2% SDS
and 3 mM methoxypolyethylene glycol {mean molecular weight of 2,000)-
maleimide (mPEG2000-mal; Sunbright ME-O20MA, NOF Corporation).
The mixture was incubated at 25°C for 30 min to alkylate the free sulfhy-
dryl groups of cysteines. Samples were separated by SDS-PAGE and
stained with Coomassie brilliant blue (CBB). Values for the reduced form
fraction were quantified by measuring the PEG2000-induced mobility
from the complete oxidized state as shown in Fig. S4. After quantification,
the values for the completely oxidized or reduced states were regarded as
0 or 1, respectively, and all intermediate states were recalibrated. The
redox equilibrium constant (Keq} was calculated by fitting the recalibrated
fraction of the apparent reduced form to the following equation: R =
([GSH]?/[GSSG))/{Keq + ([GSH]?/[GSSG])}, in which R is the relative
ratio of reduced oxidoreductases.

Online supplemental material

Fig. S1  shows that Erol-a binds to ER-resident oxidoreductases. Fig. $2
shows validation of siRNA silencing and annotation of Cys94 with a double-
labeling method. Fig. S3 shows PDI[AA) does not accelerate the Erol-a
oxidation system. Fig. S4 shows the method used to calculate the Keq val-
ves. Table S1 shows a list of publications reporting Erol-w~related assays
and having a bearing on this study. Online supplemental material is avail-
able at http://www.jcb.org/cgi/content/full /jcb.201303027/DC1.
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Figure S1. Erol-a binds to ER-resident oxidoreductases. (A} Ero1-a(WT)-FLAG was expressed in HEK293T cells, and anti-FLAG immunoprecipitates were
analyzed by direct nanoflow liquid chromatography/tandem mass spectrometry. Preys identified during eight independent trials are listed. Each number in-
dicates the identified peptide number of each protein in individual experiments. Gray bars show the poor reproducible preys or nonoxidoreductases.
(B) HEK293T cells were transfected with a series of oxidoreductases, including the wild type (WT) and their mutants (CA and AA), as indicated. Cell lysates
were immunoprecipitated by anti-FLAG antibody, subjected to SDS-PAGE on two separate membranes, and analyzed by immunoblotting with anti-Ero1-a
(top) and anti-FLAG (bottom) antibodies. A black line on the right indicates the removal of intervening lanes from one of the membranes for presentation
purposes. Note that ERp44 contains a CRFS mofif in its active site, and its mutant is ARFS (AS). {C} Recombinant Ero 1-a(WT) proteins were immobilized on
the surface of a sensor chip. Binding responses were collected at five different concentrations (0.444-36 pM, in a threefold dilution series) of oxidoreduc-
tases under redox conditions equivalent to those in the ER (GSH/GSSG ratio = 4:1). Association or dissociation rate constants (ko, or ko) were determined
using a two-state reaction model. (D) SPR-quantified result. Data represent means + SE from at least three individual experiments. (E) Assays were conducted
in a sealed chamber starting with air-saturated buffer containing 10 mM GSH, which was regarded as the 100% oxygen level (~250 yM oxygen). Control
samples contained 2 pM Ero1-a(WT) or 10 pM PD! in the presence of 10 mM GSH. Oxidation of reduced PDI was initiated by the injection of 2 pM Ero1-a
or Ero1-a(C104A/C131A) and was monitored with an oxygen electrode. {F) Schematic and representative diagrams of the active (O,1} and inactive (Oxs)
forms of Erol-a and its constitutively active mutant Ero1-o{C104A/C131A).
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Figure $2. Validation of siRNA silencing and annotation of Cys94 with a double-labeling method. (A] siRNA-mediated silencing in HEK293T cells was
achieved via transfection of predesigned siRNAs. The sequences and concentrations are summarized in the bottom table. As conirols, two different siRNAs
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Table S1.  List of publications reporting Erol-a-related assays and having a bearing on this study

Ero1-a-related Figure in Studies related fo this study Other studies
assay this study
PDI ERpa4 ERp57 ERp46 P5 ERp72
Immunoprecipitation 1 A, 6 A, Benham et Anellietal.,  Appenzeller- Appenzeller-
of Erol-a (detect  and S1 A al., 2000; 2002, 2003;  Herzog et al., Herzog et al.,
ing WT oxidore- Mezghrani et Bertoli et al., 2010 2010
ductase) al., 2007; Anelli 2004; Otsu et
etal., 2002; al., 2006
Bertoli et al.,
2004; Otsu
et al., 2006;
Appenzeller-
Herzog et al.,
2008, 2010;
Masui et al.,
2011; Benham
etal., 2013
Immunoprecipitation S18B Jessop et Jessop etal,,  Jessop etal., Jessop et Schulmanetal., ERp18: Jessop
of the CXXA/ and 6 A al., 2009b; 2007, 2009a,b; 2009b al., 2009b; 2010 et al., 2009b;
AXXA mutant of Schulman et al., Schulman et al., Schulman et al., ERp18, TMX,
oxidoreductase 2010; Zito et 2010 2010 PDIR, and PDIp:
(detecting Erol-a) al., 2010 Schulman et al.,
2010
Activation of Erol-o 2, A and B Otsu et al., Otsu et al., Appenzeller- TMX3:
by oxidoreduc- 2006°; 2006° Herzog et al., Appenzeller-
tase (e.g., detect Appenzeller- 2008 Herzog et al.,
ing the O,1/(Ox Herzog et al., 2008
+ Ox) ratio) 2008
In vitro oxidase as- 1, D and E; Tsai and Not analyzed in  Inaba et al.,
says [e.g., oxy- and $1 E Rapoport, 2002;  this study® 2010
gen consumption Baker et al.,
assay and RNase 2008; Wang
assay) et al., 2009;
Chambers et al.,
2010; Inaba et
al., 2010; Zito
etal., 2010;
Araki and
Nagata, 201 1q;
Masui et al.,
2011; Wang et
al., 2011
In vitro binding 1 Band Wang et al., Masvui et al., Inaba et al.,
assays fe.g., SPR S1, Cand D 2009; Inaba et 2011 2010
assay and ITC al., 2010; Araki '
measurements) and Nagata,
2011a; Masui et
al., 2011

ITC, isothermal titration calorimetry.

°Otsu et al. {2006) examined the redox states of Erol-« when PDI or ERp44 was overexpressed. However, at that time, the redox states of Ero1-a were unknown to

correlate with its activation.

bBecause ERp44 has a CRFS motif, it has no detectable redox activity. Hence, it was not listed under the oxygen consumption assay.
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Background: Erolo and peroxiredoxin 4 contribute to disulfide formation in the early secretory compartment (ESC), but

lack known retention signals.

Results: Retention and localization of Erola and peroxiredoxin 4 are maintained through multistep and pH-dependent inter-

actions with PDI and ERp44 in ESC.

Conclusion: PDI and ERp44 dynamically localize Erola and peroxiredoxin 4 in ESC.
Significance: The levels and localization of four interactors allow differential ESC redox control.

In the early secretory compartment (ESC), a network of chaper-
ones and enzymes assists oxidative folding of nascent proteins.
Erol flavoproteins oxidize protein disulfide isomerase (PDI), gen-
erating H,O, as a byproduct. Peroxiredoxin 4 (Prx4) can utilize
luminal H, O, to oxidize PDI, thus favoring oxidative folding while
limiting oxidative stress. Interestingly, neither ER oxidase contains
known ER retention signal(s), raising the question of how cells pre-
vent their secretion. Here we show that the two proteins share sim-
ilar intracellular localization mechanisms. Their secretion is pre-
vented by sequential interactions with PDI and ERp44, two
resident proteins of the ESC-bearing KDEL-like motifs. PDI binds
preferentially Erolca, whereas ERp44 equally retains Erola and
Prx4. The different binding properties of Erola and Prx4 increase
the robustness of ER redox homeostasis.

Secretory or membrane proteins attain their native state in
the ER,® under the assistance of a vast array of resident chaper-
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ones and enzymes. Formation, cleavage, or rearrangement of
disulfide bond is catalyzed by oxidoreductases of the protein
disulfide isomerase (PDI) family, which in humans lists over 20
members (1). The CXXC motifs in thioredoxin-like active
domains, so-called a-domains, mediate disulfide interchange
reactions. Redox-inactive domains, or b-domains, of similar
structure but lacking CXXC motifs are frequently found in PDI
family members. In PDI, for instance, the two redox-active
domains (a- and a’-domain) are separated by the b- and b’-do-
mains (a-b-b’-a’). The b’-domain provides a hydrophobic
pocket onto which client proteins and ER oxidoreductin-1
(Erol) molecules dock (2, 3).

ERp44 has an a-b-b’ domain organization (4) and plays
important roles in the early secretory compartment (ESC) (5).
Unlike PDI and other KDEL-bearing proteins, ERp44 accumu-
lates in the ER-Golgi intermediate compartment (ERGIC) and
cis Golgi (6, 7). In its a-domain, ERp44 has a conserved redox
motif, CRFS, whose cysteine (Cys-29) is used to form mixed
disulfides with IgM, adiponectin, and other client proteins for
thiol-dependent quality control (8 —=10). ERp44 binds and reg-
ulates Erola and B, two key ESC-resident oxidases (11), and
displays pH-dependent conformational change in ESC to
prominently retrieve Erol and premature secretory proteins
from the ERGIC to the ER (12).

Upon transferring disulfide bonds to incoming client pro-
teins, PDI can be efficiently reoxidized by members of the Erol
family (Erola and ErolB in mammals). As these flavoproteins
use oxygen as an electron acceptor generating hydrogen perox-
ide as a byproduct, the question arose as to how professional
secretory cells could fold abundant proteins rich in disulfide
bonds with limiting oxidative stress. A solution of this paradox
came with the discovery that peroxiredoxin 4 (Prx4) can pro-
mote de novo disulfide bond formation by utilizing hydrogen
peroxide (13, 14). Furthermore, it has been recently revealed
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that mice with double knock-out of both oxidases exhibit lower
birth rate and scurvy, whereas mice with single knock-out (Erol
or Prx4) exhibit modest effect, indicating mutual complemen-
tarity between Erol and Prx4 (15). Surprisingly, however, nei-
ther Prx4 nor Erol contains known ER retention signals (sup-
plemental Fig. 1). Erole interacts with PDI and ERp44 (16) and
to a minor extent with other family members, including ERp57,
ERp46, ERp18, P5, and ERp72 (17-19) In line with their prefer-
ential binding, ERp44 and PDI can efficiently retain overex-
pressed Erola (20). On the other hand, it has been unclear how
Prx4 is retained in the ER (21).

In this study, we investigated the mechanisms that control
the intracellular localization of Prx4. Our findings reveal that
Prx4 shares a similar stepwise retention mechanism with
Erola, in which ERp44 functions as a backup for PDI; when PDI
is down-regulated, Erol @ and Prx4 are retained by ERp44 in the
downstream compartment of the ER. Such dynamic regulation
of two main ER oxidases seems important for maintaining
redox homeostasis in the ESC because the expression of Erola
and Prx4 endowed with KDEL motifs caused hyperoxidizing
environment in the ER.

EXPERIMENTAL PROCEDURES

Cells and Antibodies—HeLa and HEK293 cells were cultured
in Dulbecco’s modified Eagle’s medium with 10% fetal
bovine serum and antibiotics. The primary antibodies used
in the experiments were: mouse monoclonal anti-GFP
(Roche Applied Science, Basel, Switzerland), mouse monoclo-
nal anti-HA (Cell Signaling Technology), mouse monoclonal
and rabbit polyclonal anti-FLAG (Sigma-Aldrich), mouse
monoclonal anti-Prx4 (Abcam, Cambridge, UK), mouse mono-
clonal anti-Erola (Abcam for Western blot and Santa Cruz
Biotechnology for immunofluorescence), mouse monoclonal
anti-B-actin (Millipore), mouse monoclonal anti-ERGIC53
(Enzo Chemical Laboratories), rabbit polyclonal anti-ERp46
(Santa Cruz Biotechnology), chicken polyclonal anti-P5 (Santa
Cruz Biotechnology), rabbit polyclonal anti-PDI (StressGen
Biotechnologies Corp.), rabbit polyclonal anti-ERp44 (reported
by Ronzoni et al. (22)), rabbit polyclonal anti-ERp72 (Santa
Cruz Biotechnology), and rabbit polyclonal calnexin (Cell Sig-
naling). The secondary antibodies used in the experiments
were: HRP-anti-rabbit IgG, HRP-anti-mouse IgG, Alexa Fluor
488 anti-rabbit or -mouse, and Alexa Fluor 546 anti-rabbit or
-mouse (Invitrogen).

Construction of Plasmids—Human Prx4, PDI (wild type or
AA mutant), or Erola (wild type or C94A mutant) cDNA with
a FLAG tag or with a FLAG tag and KDEL sequence at the C
terminus was generated by PCR from a Matchmaker Pretrans-
formed Human HeLa library (Clontech) and subcloned into
pcDNA3.1. The vectors for the expression of HA-ERp44-WT,
C29S, and HA-ERp57 were as described previously (9).
DsRed2-ER was purchased from Clontech. ERp44 C29A was
generated by site-directed mutagenesis: (forward, 5-GTA
AAT TTT ATG CTG ACT GGG CTC GTT TCA GTC AGA
TGT TGC-3'; reverse, GCA ACA TCT GAC TGA AAC GAG
CCC AGT CAG CAT AAA AAT TTA C-3'). The ER-targeted
redox-sensitive GFP iE variant (ERroGFPiE) was generated
from ERroGFPiL (kind gift from Prof. Neil J. Bulleid) by site-
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directed mutagenesis: (forward, 5'-GGA ATA CAA CTATAA
CTG CGA AAG CAA TGT ATA CAT CAC GGC AG-3%;
reverse, 5'-CTG CCG TGA TGT ATA CAT TGC TTT CGC
AGT TAT AGT TGT ATT CC-3').

Transfection, Secretion Assay, and Western Blot—Plasmids
and siRNAs were transfected using Effectene® (Qiagen) or
Lipofectamine RNAIMAX (Invitrogen), respectively, according
to the manufacturer’s instructions. For secretion assays, cells
were incubated in Opti-MEM for an additional 4—6 h. Secreted
materials were precipitated with 15% trichloroacetic acid
(TCA) or immunoprecipitated with antibodies and then
resolved by SDS-PAGE under reducing or nonreducing condi-
tions. For detection of ERroGFPiE, lysates immunoprecipitated
with anti-GFP were loaded. Fluorograms or Western blot
images were acquired with the ChemiDoc-It imaging system
(UVP, Upland, CA) or with the FLA-9000 Starion (Fujifilm Life
Science) and quantified with ImageQuant 5.2 as described by
Anelli et al. (7). Cells were extracted with 1% Nonidet P-40, 150
mm NaCl, 50 mm Tris-HCI (pH 8.0), and 20 mMm N-ethyl-
maleimide. The detergent-soluble fractions of cell lysates were
analyzed by Western blot.

Oligonucleotides—Stealth™ RNA siRNAs were obtained
from Invitrogen. The sequences were as follows: siPDI-1,
5'-AAU GGG AGC CAA CUG UUU GCA GUG A-3'; siPDI-2,
5-AUA AAG UCC AGC AGG UUC UCC UUG G-3
siERp44-1, 5'-AUA GAG UAU ACC UAU AUU CAC UGG
G-3'; siERp44-2, 5'-UUA AUU GCC GAG CUA CUU CAU
UCU G-3'; and siErole, 5'-GGG CUU UAU CCA AAG UGU
UAC CAU U-3’. Medium GC Stealth™ RNAi duplexes were
used as negative controls.

LC-MS/MS Analysis—Immunoprecipitation was coupled
with custom-made direct nano-flow liquid chromatography-
tandem mass spectrometry system (Tokyo, Japan). FLAG-
tagged Prx4 and mutants thereof were expressed in HEK293 cells
and immunoprecipitated with anti-FLAG. Immunoprecipitates
were eluted with FLAG peptides and digested with Lys-C endo-
peptidase (Achromobacter protease I). Cleaved fragments were
directly analyzed by a direct nano-flow liquid chromatography-
tandem mass spectrometry (LC-MS/MS) system as described pre-
viously (23). Assays were repeated at least four times.

Immunofluorescence—HeLa cells were washed with phos-
phate-buffered saline (PBS) and fixed with 4% paraformalde-
hyde for 20 min at room temperature. Cells were permeabilized
with 0.2% Triton X-100 in PBS at room temperature for 5 min
followed by incubation in 1% normal goat serum and 1% bovine
serum albumin for 1 h. Cells were incubated with primary anti-
bodies for 1 h and then with Alexa Fluor-conjugated secondary
antibodies (from Invitrogen Molecular Probes) for 1 h, as indi-
cated. Confocal images were obtained using a LSM 700 confo-
cal microscope and analyzed by the Zen 2009 software (Carl
Zeiss, Jena, Germany).

Preparation of Human Recombinant Prx4, Erola, PDI, and
ERp44—Recombinant Erola and PDI were described previ-
ously (17, 24). Prx4 and ERp44 were expressed in Escherichia
coli BL21 (DE3) cells (Novagen) by induction with 0.3 mm iso-
propyl-1-thio-B-p-galactopyranoside at 30 °C for 6 h just after
the A4, reached 0.6. Harvested cells were sonicated in 20 mm
HEPES (pH 7.5) containing 20 mM imidazole and 150 mm NaClL

JOURNAL OF BIOLOGICAL CHEMISTRY 29587

592

¥10Z ‘81 Areniqe uo NYVHIVA VENINSL 18 /S10°0qf sasm//:diny woxy papeojumo(y



Two-step Retention of ER Oxidases

The supernatant from cell lysates was loaded onto a HisTrap
column (GE Healthcare) equilibrated with cell suspension
buffer and eluted with the same buffer containing 0.5 M imid-
azole. Eluted fractions were loaded onto a HiL.oad 16/60 Super-
dex 200pg isofraction column equilibrated with 20 mm HEPES-
NaOH (pH 7.5) containing 150 mm NaCl. Eluted fractions
containing oxidoreductases were desalted and loaded onto a
Resource Q column (GE Healthcare) equilibrated with 20 mm
Tris-HCI (pH 8.0). Fractions were eluted by a linear gradient of
NaCl. Purified proteins were concentrated and stored at —80 °C.

Surface Plasmon Resonance (SPR) Measurement—SPR anal-
yses were performed as described previously (17, 24). Briefly,
association or dissociation rate constants (k,,, or k) to immo-
bilized Erola (WT) or Prx4 were determined by SPR measure-
ments on a ProteOn XPR36 protein interaction array system
(Bio-Rad). Erola (WT)/Prx4 were coupled to the GLC sensor
chip (Bio-Rad) through amine coupling chemistry. As a control,
one channel was coupled with BSA to exclude background
binding. Sensorgrams were recorded simultaneously for several
concentrations (0.444-36 uM, in a 3-fold dilution series) of
purified oxidoreductases at 25 °C for a 2-min association phase
followed by a 10-min dissociation phase with 20 mm HEPES-
NaOH (pH 7.4 or pH 6.4), 150 mMm NaCl, 0.001% Tween, and 2
mMm EDTA as running and sample buffer. Sensorgrams were
analyzed by nonlinear regression analysis according to a two-
state model by the ProteOn Manager version 3.0 software (Bio-
Rad). Experiments were replicated at least three times.

Statistical Analysis—All data are presented as the means *
S.E. Statistical significance of the difference between groups
was evaluated using Student’s ¢ test. p < 0.05 was considered
significant. *, p < 0.05, **, p < 0.01, ***, p < 0.001.

Homologous Gene Analysis—To gain an evolutionary per-
spective, we searched and statistically analyzed homologous
genes of ER oxidoreductases using the Kyoto Encyclopedia of
Genes and Genomes (KEGG) database (25). The National Cen-
ter for Biotechnology Information (NCBI) database was also
searched for analysis of several sequences (www.ncbi.nlm.nih.
gov/protein/).

RESULTS

Interactions of Prx4 and Erola with PDI Family Proteins—
The ER oxidases Erola and Prx4 have at least two common
features; one is their function in oxidative protein folding, and
the other is their lack of intrinsic ER retention signals. Surpris-
ingly, the latter feature is 100% conserved among Erola
orthologs and 94.4% conserved among Prx4 in vertebrates
(KEGG database (25)) (supplemental Fig. 1). To identify pro-
teins involved in its subcellular localization, we performed LC-
MS/MS analyses of the material co-immunoprecipitated with
FLAG-tagged Prx4 and identified ERp44, PDI, ERp72, ERp46,
and P5 (supplemental Fig. 2) (see also Ref. 18), yielding a pattern
similar to what is reported for Erole. To further compare the
interactomes of the two enzymes and provide additional spec-
ificity controls, we overexpressed Prx4-FLAG or Erola-FLAG
in HeLa cells and analyzed the immunoprecipitates obtained
with or without prior cross-linking with dithiobis succinimidyl
propionate. Western blot analyses of the material specifically
eluted with FLAG peptides confirmed that both Prx4 and

29588 JOURNAL OF BIOLOGICAL CHEMISTRY

Erole interact with ERp44, PDI, ERp72, P5, and ERp46 (Fig.
1A). The similar binding patterns are in line with coordinated
roles of Prx4 and Erole in oxidative protein folding (26).

To confirm that endogenous ERp44 and Prx4 interact in
physiological conditions, we analyzed Ig-A producing J558L
murine myeloma cells or a transfectant secreting IgM (J[u,]
(27)). Clearly, endogenous Prx4 can be co-immunoprecipitated
with ERp44 in Ig-secreting cells (Fig. 1B).

Next, we investigated whether Erola and Prx4 co-localize
with ERp44 or PDI by immunofluorescence (Fig. 1C). Although
PDIis primarily localized in the ER, endogenous ERp44 recycles
between the ER and cis Golgi and accumulates preferentially in
the ERGIC (6, 7). Consistent with the results shown in Fig. 14,
both Erola and Prx4 showed co-localization with PDI and ERp44
in HeLa cells (Fig. 1C). Co-localization was stronger with PDJ, sug-
gesting that Erola and Prx4 were mainly localized in the ER and to
alesser extent in the ERGIC. In many cells, co-staining with ERp44:
and PDI was more evident for Prx4 than Erola (data not shown),
which may reflect the localization of part of Erol« in mitochon-
dria-associated ER membranes (28, 29).

Secretion of Overexpressed Prx4 Is Inhibited by ERp44 and
PDI—Confirming previous observations (30), overexpressed
Prx4 was clearly secreted by HeLa cells (Fig. 24, lane 2), imply-
ing that saturable mechanisms determine its intracellular
retention. Co-expression of ERp44 or PDI, but not of ERp57,
restored retention of overexpressed Prx4 (Fig. 24, lanes 3-5).
These secretory phenotypes were similar for Erola (Fig. 2B). In
the experiment shown, ERp57 partly inhibited secretion of
overexpressed Erola, albeit much less efficiently than ERp44 or
PDI (Fig. 2B, lane 5) (20). ERp57 cooperates with calnexin and
calreticulin to promote glycoprotein folding. The absence of
glycosylation sites in Prx4 may explain why co-expressed
ERp57 did not affect its secretion. Thus, ERp44 and PDI but not
ERp57 can retain overexpressed Prx4.

In thiol-dependent quality control, Cys-29 in the atypical
redox-active motif of ERp44 forms mixed disulfides with
Erol and client proteins such as IgM, adiponectin, or SUMF1/
FGE (sulfatase-modifying factor 1/formylglycine-generating
enzyme) (5). Clearly, Prx4-FLAG secretion was decreased in a
dose-dependent manner by wild type HA-ERp44 (WT) but not
by a mutant in which Cys-29 was replaced by a serine (yielding
ERp44 C29S, Fig. 2C). In contrast, a PDI mutant in which cys-
teine residues of the two CXXC motifs were replaced by alanine
residues (PDI-AA) inhibited Prx4 secretion almost as efficiently
as wild type molecules (Fig. 2D). Thus, the enzymatically active
cysteine residues of PDI are not necessary for retention of Prx4.

Because Prx4 shares similar retention mechanisms with Erola,
the two proteins could compete with each other. Accordingly,
secretion of Prx4-FLAG was dramatically increased by Erola-
FLAG co-expression (Fig. 2E, compare lanes 2 and 4). Also an
enzymatically inactive mutant of Erola (Erola-C94A) pro-
moted Prx4 secretion (Fig. 2E, lane 5). Conversely, secretion of
Erola-FLAG was not increased by co-expression of abundant
Prx4-FLAG (Fig. 2F, lanes 2 and 4).

PDI Preferentially Retains Erolo, whereas ERp44 Equally
Retains Erola and Prx4—The unidirectional competition
between Erola and Prx4 suggested that the former binds to its
retainers more efficiently than the latter. Therefore, we ana-
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FIGURE 1. Prx4 and Ero1« share similar partners and subcellular localizations. A, 24 h after transfection with pcDNA3.1, Prx4-FLAG, or Ero1a-FLAG, 10°
Hela cells were incubated with or without 0.25 um dithiobis succinimidyl propionate (DSP) on ice. Anti-FLAG immunoprecipitates (/P) were then eluted by FLAG
peptides and analyzed by Western blot with the indicated antibodies. Aliquots of the total Nonidet P-40 lysates from 10% cells ({INPUT) were loaded to estimate
(co)-immunoprecipitation efficiency. B, lysates from 107 mouse myeloma J558L cells or their derivative expressing nitrophenol-specific secretory Ig-u. chains
([ ]) were immunoprecipitated with anti-ERp44 and analyzed by Western blot with the indicated antibodies. The slightly more abundant Prx4 associated to
ERp44 in Ju,] cells may reflect physiological interactions in the presence of an abundant substrate (7). C, HeLa cells were fixed by 4% paraformaldehyde and
permeabilized by 0.2% Triton X-100. Co-localization of Prx4 or Erola with PDI or ERp44 was observed by immunofluorescence using the indicated fluoro-

chrome-conjugated antibodies, as described under “Experimental Procedures.” g, green. r, red.

lyzed their binding properties in vitro by surface plasmon res-
onance (SPR) assays and estimated the k,,, k.4 and K, values.
PDI bound Erole with ~5.5-fold stronger affinity than Prx4 at
pH 7.4, which is similar to the pH in the ER (1.94 and 10.6 um,
respectively, Fig. 3A and supplemental Fig. 3). In contrast, the
two enzymes displayed similar affinities for ERp44 at pH 6.4
(5.15 and 6.92 M, for Erole and Prx4, respectively). The affin-
ity of ERp44 to Erola and Prx4 was decreased at pH 7.4 in
comparison with that at pH 6.4 (Fig. 34 and supplemental Fig.
3), suggesting that ERp44 binds Prx4 more effectively at low pH
like in the distal ESC stations (10.4 and 17.9 um for Erola and
Prx4, respectively) (12). Extrapolating these in vitro results to
the cellular environment, PDI would preferentially retain
Erola in the ER.

OCTOBER 11,2013 +VOLUME 288-NUMBER 41

To challenge this possibility, we co-expressed increasing
amounts of PDI-FLAG with constant levels of Erola-FLAG
and Prx4-FLAG in HeLa cells. 24 h after transfection, culture
media and cell lysates were analyzed by Western blot (Fig. 3B)
and quantified (Fig. 3D). Consistent with the in vitro results
shown in Fig. 34, Erola secretion was primarily inhibited by
PDI, whereas higher levels of expression of PDI were required
toretain Prx4 (Fig. 3, Band D). In contrast, HA-ERp44 inhibited
secretion of Erola-FLAG and Prx4-FLAG to similar extents.
Collectively, these results indicate that PDI binds and retains
Erola more efficiently than Prx4.

Sequential Interactions of Erola and Prx4 with PDI and
ERp44 in ESC—In view of their different distributions along
ESC (7, 8), PDI and ERp44 might exert sequential effects on the
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FIGURE 2. Dynamic retention of Prx4 by ERp44 and PDI. A and B, Hela cells were co-transfected with Prx4-FLAG (A) or Ero1a-FLAG (B) and HA-ERp44,
PDI-FLAG, or HA-ERp57 as indicated. 24 h after transfection, cells were cultured in FBS-free Opti-MEM medium for 5 h. The spent medium was subsequently
precipitated with 15% TCA (A) or anti-FLAG antibodies (B) and analyzed by Western blot with the indicated antibodies. C, Prx4-FLAG was co-expressed in Hela
cells with increasing amounts of HA-ERp44-WT or the C29S mutant (9). 24 h after transfection, cells were handled as described for panels A and B. When
compared with cells overexpressing Prx4-FLAG alone (lane 2), Prx4 secretion was inhibited by high levels of ERp44-WT (lanes 3-5) but not by ERp44-C29S (lanes
6-8). D, wild type (PDI-WT-FLAG) or a mutant PDI (PDI-AA-FLAG) in which all four cysteines in the a- and a’-domains had been mutated to alanine were
co-expressed with Prx4-FLAG in Hela cells and handled as above. When compared with cells overexpressing Prx4-FLAG alone (lane 2), both PDI-WT and the AA
mutant retained Prx4 (Janes 4 and 5). E and F, wild type (Ero1a-FLAG) or an enzymatically inactive variant (Ero1a-C94A-FLAG) was co-expressed with Prx4 in
Hela cells. Clearly, Prx4 secretion was dramatically increased by co-expression of either Ero1a-FLAG or Ero1a-C94A-FLAG. In the experiment shown in panel F,
Prx4-FLAG was co-expressed with Ero1a-FLAG in Hela cells. Unlike what observed in panel E, retention of Erola was not competed by Prx4-FLAG
co-expression.

CELL

localization/retention of Erola and Prx4. Therefore, we com-
pared the effects of silencing ERp44, PDI, or both on the secre-
tion of endogenous Prx4 and Erola by HeLa cells (Fig. 4A4).
Individual siRNAs for ERp44 or PDI effectively silenced the
respective targets (Fig. 44, lanes 7-12, right panel). Lowering
the levels of ERp44: greatly promoted secretion of endogenous
Prx4 (Fig. 44, lanes 1-3, upper), but only marginally affected

29590 JOURNAL OF BIOLOGICAL CHEMISTRY

Erola retention (Fig. 44, lanes 1-3, lower, and Fig. 4C, upper).
Thus, under physiological conditions, PDI seems to retain
Erola sufficiently. Neither endogenous Prx4 nor Erola was
released by lowering the levels of PDI alone in HeLa cells (Fig.
4A, lanes 4 and 5, and Fig. 4C, middle). Considering that ERp44
is localized downstream with respect to PDI in the ESC, we
surmised that ERp44 acted as a backup retention machinery in
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urified human Ero1a or Prx4 proteins were immobilized on a biosensor chip, and

PDI or ERp44 was injected as analyte. The affinity of PDI for Ero1« is about 5.5-fold stronger than Prx4, whereas ERp44 interacts similarly with Ero1« or Prx4. B~E,

Prx4-FLAG and Ero1a-FLAG were co-expressed with increasing amounts of PD
were cultured in Opti-MEM for 4 h. Aliquots from cell lysates or anti-FLAG imm
(D and E) and quantified by densitometry. n = 3. %, p < 0.05, ***, p < 0.001.

the absence of PDI (Fig. 4C, middle). Accordingly, the simulta-
neous silencing of ERp44 and PDI allowed secretion of both
endogenous Erolaand endogenous Prx4 by HeLa cells (Fig. 44,
lane 6). Backup mechanism by ERp44 was further confirmed by
immunofluorescence of Hela cells transfected with nonspe-
cific siRNA or specific PDI. Endogenous PDI was efficiently
silenced by RNAI (supplemental Fig. 4). As expected, co-local-
ization of ERp44 with Erola and Prx4 was increased in PDI-
silenced cells (Fig. 5B), whereas such a condition did not affect
the morphology of the ER or ERGIC (supplemental Fig. 4), sug-
gesting that retention of Erole and Prx4 in ESC depends mostly
on ERp44 in the absence of PDL Thus, sequential interactions with
PDI and ERp44 underlie the intracellular retention of Prx4 and
Erola. Erola displays higher affinity for PDI, but in its absence, it
can be retrieved by ERp44. On the other hand, Prx4 is mainly
retained by ERp44 because of its lower affinity for PDI (Fig. 3A).
Lack of ER Retention Signals in Two ER Oxidases Is Important
for ER Redox Homeostasis—In virtually all vertebrates, Erola
and Prx4 do not harbor ER retention signals (25) (supplemental
Fig. 1). As Erola and Prx4 play major roles in oxidative protein

pCEYE
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I-FLAG (Band D) or HA-ERp44 (Cand E) in Hel.a cells. 24 h after transfection, cells
unoprecipitates (IP) from the spent medium were analyzed by Western blotting

folding, we surmised that the stepwise retention/localization
mechanism of these two ER oxidases in higher eukaryotes may
be important for ER redox regulation. To monitor ER redox
balance, therefore, we exploited ERroGFPiE. This sensor co-lo-
calized with ER-targeted DsRed2 (supplemental Fig. 5). As
shown by Birk et al. (31), ERroGFPiE can be resolved into two
bands under nonreducing conditions corresponding to its
reduced (i.e. DTT-treated) and oxidized (i.e. dipyridyl disulfide-
treated) isoforms (Fig. 54, lanes 2—-4). As indicated by the accu-
mulation of reduced ERroGFPIE and consistent with the notion
that Erole is a prominent ER oxidase, its knockdown caused
hypo-oxidizing condition in the ER (Fig. 54, lane 7). Next, we
monitored the ER redox state in cells expressing KDEL-ex-
tended or wild type Erola. Surprisingly, expression of Erola-
KDEL caused a more oxidizing shift in ERroGFPIE than wild
type Erola (Fig. 5A, lanes S and 6). Similar results were
obtained appending a KDEL motif to Prx4 (Fig. 5B). The co-ex-
pression of Erola with Prx4-KDEL caused a much more dra-
matic oxidative shift to the redox balance in the ER (Fig. 5B,
lane 6). Taken together, our results strongly suggest that the
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FIGURE 4. Silencing ERp44 allows secretion of endogenous Prx4, but not Ero1a. A, secretion of endogenous Prx4 or Ero1a by Hela cells was analyzed with
RNAi for nonspecific (NS) ERp44 or PDI {lanes 1-5) or both (lane 6) by specific siRNAs. 72 h after transfection, cells were cultured in Opti-MEM for 6 h and analyzed
as described in the legend for Fig. 2. B, immunofluorescence of Hela cells transfected with nonspecific siRNA (siNS) or PDI siRNA (siPD/). Endogenous Prx4 or
Erolawas co-stained with endogenous ERp44. In PDI-silenced cells the co-localization of Prx4 or Ero1« with ERp44 was more intense, consistent with a backup

role of ERp44. siERp44, ERp44 siRNA. C, strategy utilized to dissect the retention of Erola and Prx4.

dynamic, stepwise retention mechanisms of Erol« and Prx4 are
important for fine-tuning the redox status along the ESC.

DISCUSSION

Our studies have established that two ER oxidases, Erolaand
Prx4, share a noncanonical retention mechanism in the ER.
Knockdown of PDI exerted little effect on the secretion of
Erola and Prx4, whereas knockdown of ERp44 allowed secre-
tion of endogenous Prx4. This observation suggests that Prx4
retention is controlled mainly by ERp44 under physiological
conditions. On the other hand, knockdown of both ERp44 and

29592 JOURNAL OF BIOLOGICAL CHEMISTRY

PDI caused marked secretion of Erole and Prx4. The different
affinity of PDI for Erola and Prx4 partially explains why the
former was mainly retained by PDI in the ER. After PDI knock-
down, the localization of both Erola and Prx4 was changed
from an ER pattern to a more vesicular pattern containing
ERp44. Taken together, these observations strongly suggest
that Erola and Prx4 are mainly retained by PDI in the proximal
ESC. Because of its lower affinity for PDI, some Prx4 continu-
ously reaches the distal ESC stations, from which it is retrieved
by ERp44 in a pH-dependent manner, as described for overex-
pressed Erola or IgM subunits (12). In this scenario, ERp44
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FIGURE 5. Increased oxidation of ERroGFPIiE upon co-expression of Ero1aKDEL and/or Prx4KDEL. A and B, ERroGFPiE is transiently overexpressed in Hela
cells. Reductive or oxidative shift in the ER redox of cells indicated was detected in nonreducing Western blot and quantified. The average ratios of intensity of
the oxidized band to the reduced band are depicted in graphs, which are standardized by the ratio of samples of nontreated (NT) cells (fane 2).n = 3.%,p < 0.05,
¥*, p < 0.01. DPS, dipyridyl disulfide; si-a, Ero1a siRNA; si-EroTe, Erola siRNA; Ox/Red, oxidized/reduced.

acts as a backup system. This multistep retention seems con-
served throughout evolution; indeed, almost all vertebrates so
far reported lack KDEL-like motifs (supplemental Fig. 1).

It is noteworthy that appending KDEL-like motifs to Erola
or Prx4 caused hyperoxidizing conditions in the ER (Fig. 5). As
suitable redox homeostasis is required for efficient as well as
accurate oxidative protein folding in the ER (26), our results
argue in favor of a physiological role for the dynamic retention
of the two ESC oxidases.

An important result emerging from our studies is that ERp44
binds Prx4 more strongly at acidic pH. ERp44 is a unique PDI
family member whose conserved CRFS active motif limits its
potential function as an oxidoreductase. As a chaperone cycling
in ESC, ERp44 preferentially binds its client proteins in the
acidic environment of cis Golgi to retrieve them into the ER
(12). Its lower affinity at neutral pH likely favors client release in
the ER.

Because of their similar interaction patterns, Erola and Prx4
largely co-localize; their vicinity may optimize productive fold-
ing while limiting H,O, production and oxidative stress. How-
ever, H,O, is not only a foe, but can be utilized as an intra- or
intercellular signaling device (32, 33). Therefore, it will be of
interest to determine whether the relative levels of Erol o, Prx4,
and their retainer molecules differ between cell types or differ-
entiation states. Besides its key potential role in maintaining
redox homeostasis, the dynamic retention mechanism of Erola
and Prx4 appears to generate a gradient of the two oxidases
within the ESC. Considering its possible regulation by pH, such
a gradient might have relevant functional consequences. Erola
has been detected on platelet surface in association with PDI,
where it might regulate integrin function (34). Particularly in
cells establishing close contacts (i.e. immunological or neural

OCTOBER 11, 2013 «VOLUME 288+-NUMBER 41

synapses), export of redox-active molecules might regulate the
intensity and duration of intercellular cross-talks.

The thiol group (-SH) of peroxidatic cysteine is oxidized by
H,0, to sulfenic acid (-SOH). At higher concentrations, H,0,
further oxidizes the sulfenic moieties to sulfinic (-SO,H) and
then sulfonic acid (-SOzH). Prx4 can undergo hyperoxidation
in the ER lumen (35); however, no sulfiredoxin activity has been
detected so far in the secretory compartment. Therefore, sulfi-
nylated or sulfonylated Prx4 is likely degraded or released, per-
haps acting as intercellular signals. Prx4 is retained by thiol-de-
pendent mechanisms (Fig. 1C), and modifications of the
peroxidatic cysteines might lead to secretion. However, Prx4
release was similar in cells overexpressing wild type Erola or an
enzymatically inactive mutant (Fig. 2E), suggesting that Erola
does not weaken Prx4 retention via H,O, production, but likely
via competitive binding. However, additional H,O, sources
may cause Prx4 hyperoxidation and release (15). It should be
important and interesting to examine whether and how the
interactive retention mode of Erola and Prx4 regulates oxida-
tive folding of nascent proteins and whether and how it can
adapt to changing physiological requirements.
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The Casein Kinase 2-Nrfl Axis Controls the Clearance of
Ubiquitinated Proteins by Regulating Proteasome Gene Expression
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Impairment of the ubiquitin-proteasome system (UPS) has been implicated in the pathogenesis of human diseases, including
neurodegenerative disorders. Thus, stimulating proteasome activity is a promising strategy to ameliorate these age-related dis-
eases. Here we show that the protein kinase casein kinase 2 (CK2) regulates the transcriptional activity of Nrfl to control the ex-
pression of the proteasome genes and thus the clearance of ubiquitinated proteins. We identify CK2 as an Nrfl-binding protein
and find that the knockdown of CK2 enhances the Nrfl-dependent expression of the proteasome subunit genes. Real-time moni-
toring of proteasome activity reveals that CK2 knockdown alleviates the accumulation of ubiquitinated proteins upon protea-
some inhibition. Furthermore, we identify Ser 497 of Nrfl as the CK2 phosphorylation site and demonstrate that its alanine sub-
stitution (S497A) augments the transcriptional activity of Nrfl and mitigates proteasome dysfunction and the formation of
p62-positive juxtanuclear inclusion bodies upon proteasome inhibition. These results indicate that the CK2-mediated phos-
phorylation of Nrfl suppresses the proteasome gene expression and activity and thus suggest that the CK2-Nrf1 axis is a poten-
tial therapeutic target for diseases associated with UPS impairment.

ccumulation of misfolded and ubiquitinated proteins is a
ommon pathological feature of various human diseases,
such as amyotrophic lateral sclerosis (ALS), inclusion body my-
opathies, alcoholic and nonalcoholic steatohepatitis, and neuro-
degenerative disorders, including Alzheimer’s, Parkinson’s, and
Huntington’s disease (1-3). Multiple lines of evidence suggest that
both the ubiquitin-proteasome system (UPS) and autophagy are
responsible for the clearance of ubiquitinated proteins that would
accumulate in these age-related diseases. It has been demonstrated
that the 26S proteasome can degrade soluble ubiquitinated pro-
teins but not the insoluble aggregates, which are targeted by the
autophagy-lysosome pathway (4-7). Impairment of proteasome
activity is known to cause proteins that are normally turned over
by the UPS to aggregate and form inclusion bodies. Thus, it is
expected that the upregulation of proteasome activity could pre-
vent inclusion body formation and mitigate the progression of
neurodegenerative and related diseases that are caused by the ac-
cumulation of abnormal proteins.

Nrfl (nuclear factor E2-related factor 1 or Nfe2l1) is a member
of the Cap‘n’Collar (CNC) family of basic leucine zipper (bZip)
transcription factors, which also includes p45 NF-E2, Nrf2, and
Nrf3 (8, 9). Nrfl regulates its target gene expression through either
the antioxidant response element (ARE) or the Maf recognition
element (MARE) by heterodimerizing with small Maf proteins (8,
9). Several gene targeting studies have implicated Nrfl in the reg-
ulation of cellular homeostasis in embryos, hepatocytes, and oste-
oclasts (10-14). Recent studies have revealed that Nrfl also plays
an essential role in'maintaining neuronal cells and that the loss of
Nrfl induces neurodegeneration and abnormal accumulation of
ubiquitinated protein aggregates in neurons (15, 16). The impair-
ment of protein homeostasis that is induced by Nrfl deficiency
may be due to the decreased expression of proteasome subunits in
these neurons (16). Indeed, Nrfl controls the expression of pro-
teasome subunit genes in mammalian cells under proteasome
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dysfunction (17, 18). Therefore, it is critically important to reveal
the role of Nrfl in the regulation of proteasome gene expression
and to elucidate the molecular mechanisms underlying the regu-
lation of Nrfl activity.

In this study, we reveal that the vast majority of proteasome
subunit genes and some proteasome-associated genes are under
the transcriptional control of Nrfl. We identify the protein kinase
casein kinase 2 (CK2) as an Nrfl-interacting protein and demon-
strate that CK2 controls proteasome gene expression and activity
by suppressing the transcriptional activity of Nrfl. A mutation of
the CK2 phosphorylation site of Nrfl enhances the proteasome
activity and reduces the formation of juxtanuclear inclusion bod-
ies. Thus, our work proposes that the CK2-Nrfl axis could be a
new regulatory target for the efficient clearance of ubiquitinated
proteins.

MATERIALS AND METHODS

Antibodies. The antibodies utilized in this study were normal rabbit IgG
(Santa Cruz), anti-Flag (M2; Sigma), anti-a-tubulin (DM1A; Sigma), an-
tihemagglutinin (anti-HA) (Y-11; Santa Cruz), anti-green fluorescent
protein (ann GFP) (B-2; Santa Cruz), anti-Nrfl (H-285; Santa Cruz),
anti-MafK (C-16; Santa Cruz), anti-CK2a (1AD9; Santa Cruz), anti-
CK2a' (abl0474; Abcam), anti-CK2B (6D5; Santa Cruz), anti-p62/
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