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Table 1
Demographic and clinical characteristics of the study participants.
Healthy Schizophrenia p value
volunteers patients
Male/female 21721 17/19 0.81
Age (year) 379 +£13.0 398 + 126 0.52
Education (year) 147 £ 25 139 + 32 027
Inpatient/outpatient 21/15
First-episode/second and later 2/34
Duration of illness (year) 168 £+ 11.3
Antipsychotic medication (mg/day}* 604.8 + 459.2
PANSS total 61.8 & 19.3
Positive 153 + 56
Negative 149 £ 62
General 31.7 + 104

PANSS; positive and negative syndrome scale.
*: Chlorpromazine equivalent.

2.6. Statistical analysis

Statistical analyses were performed by using SPM5 software. Differ-
ences in gray matter volume and rCBF between the patients and con-
trols were assessed by using the subjects' age, gender, and education
years as nuisance variables. We evaluated the gray matter volume, con-
trolling for the whole brain volume. When the rCBF differences were an-
alyzed, we added the regional gray matter volume derived from the
individual segmented gray matter volume image as a covariate using Bi-
ological Parametric Mapping (BPM) (Casanova et al., 2007). Since the
gray matter volume values are different in various brain regions, each
voxel of the rCBF image was adjusted by gray matter volume in the
BPM analysis. Only differences that met the following criteria were
deemed significant. In this case, a seed level of p < 0.001 (uncorrected)
and a cluster level of p < 0.05 (uncorrected) were adopted. We next ex-
amined the possible correlation between rCBF and PANSS subscales of
the subjects controlling for age, gender and regional gray matter volume
by multiple regression model. The same p values shown above were
regarded as significant. Skeletonized FA data were analyzed to identify
differences between the two groups, controlling for age, gender and
education years using the FSL “Threshold-Free Cluster Enhancement
(TFCE)” option in “randomize” with 10 000 permutations (Nichols and
Holmes, 2002; Smith and Nichols, 2009). The significance level was

set at the p-value of less than 0.05 with the family-wise error (FWE)
rate correction for multiple comparisons.

3. Results

The demographic and clinical characteristics of the participants
are shown in Table 1. There was no significant difference in age,
gender, or education years between the patients with schizophrenia
and controls.

We evaluated the gray matter volume differences by performing
a DARTEL analysis. A significant gray matter volume reduction was
found in the left inferior prefrontal cortex in the patients compared
to the controls (Fig. 1). No significant increase was detected in the
patients.

We then examined the possible differences in rCBF between the
two groups by using SPM5 with regional gray matter volume, age,
gender, and education years as nuisance variables. There was a sig-
nificant rCBF reduction in the left inferior prefrontal cortex and bilat-
eral occipital cortices in the patients compared to the controls
(Fig. 2). No significant increase in rCBF was detected in any region
in the patients. Using the Wake Forest University (WFU) PickAtlas
(Maldjian et al., 2003), we then performed small volume corrections
(SVCs) for inferior frontal gyri defined by the Automated Anatomical
Labeling (AAL) atlas (Tzourio-Mazoyer et al., 2002). For this SVC
analysis, FWE-corrected voxel level threshold of p <0.05 was applied
to account for multiple comparisons of the results (Table 2).

As for the relationships between the clinical variables and rCBF, we
could not detect any significant correlations, however we found a nom-
inal negative correlation between PANSS negative scale and rCBF in bi-
lateral superior temporal gyri, left inferior prefrontal cortex, and left
thalamus at trend level (Fig. 3).

When we examined the DTI results, we observed significant re-
ductions of FA values in the left superior temporal region, left external
capsule, and left inferior frontal region in the schizophrenia patients
compared to the controls (Fig. 4). No significant increase in FA was de-
tected in any region in the patients.

4. Discussion

To our knowledge, this is the first study of ASL-based rCBF changes in
schizophrenic patients that took the regional gray matter volume into

Fig. 1. Regional gray matter volume changes in schizophrenia. There were significant reductions of gray matter volume in the left prefrontal cortex of the patients with schizophrenia

(p <0.001, uncorrected). L: left, R: right.
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Fig. 2. Regional cerebral blood flow (rCBF) changes in schizophrenia. There were significant reductions of rCBF in the left prefrontal cortex and bilateral occipital cortices of the patients

with schizophrenia (p < 0.001, uncorrected). L: left, R: right.

account. Using the pCASL method, we found that there were significant
rCBF reductions in the left inferior prefrontal cortex and bilateral occip-
ital cortices in patients with schizophrenia compared to the healthy
subjects. In particular, the reduced rCBF in the left inferior prefrontal
cortex accords with the structural changes observed in volumetric and
DTI analyses in schizophrenic patients.

Structural abnormalities of the frontal cortex in schizophrenic pa-
tients have been suggested by many studies of MR volumetric images
(reviewed in Honea et al., 2005; Glahn et al., 2008) and DTI
(reviewed in Ellison-Wright and Bullmore, 2009). Altered function
in the frontal cortex in schizophrenia has also been reported by func-
tional MR imaging (fMRI) studies (e.g., Cannon et al., 2005; Ragland
et al., 2005) and ASL studies (Scheef et al., 2010; Pinkham et al.,
2011; Walther et al,, 2011). In addition, other studies using SPECT
found that patients with schizophrenia have decreased rCBF, partic-
ularly in the frontal lobes and/or left hemisphere (Weinberger et al.,
1988; Andreasen et al., 1992; Vita et al., 1995; Kanahara et al., 2009).

In the present study, we found abnormalities in the inferior prefron-
tal region of the schizophrenic patients by volumetric imaging, DTI, and
pCASL with partial volume effect correction, and these results are com-
patible with the above-mentioned previous findings. Longitudinal MRI
studies suggested a progressive loss of prefrontal gray matter in schizo-
phrenia (Sporn et al., 2003; Ota et al., 2009). Inferior prefrontal cortex
was associated with the performance in cognitive switching by the
MRI volume study (Ohtani et al., 2014). A volume and functional MRI
study also supported that deficits in default mode network deactivation
explained by the left inferior frontal gyrus thinning are related to im-
paired executive function in schizophrenia (Pujol et al., 2013). It is
also known that the severity of schizophrenic negative symptoms is
well correlated with the hypoactivity of the inferior prefrontal region
and bilateral superior temporal regions (Pinkham et al.,, 2011), and
these detections were compatible with our results that showed a

Table 2
Differences of cerebral blood flow between schizophrenia patients and healthy volunteers
in the inferior frontal gyri.

X y z Cluster size FWEp Z score

Inferior frontal gyri —52 44 -8 10 0.022 398

nominal correlation between PANSS negative scale and rCBF in bilateral
superior temporal gyri and left inferior prefrontal region. Since the ma-
jority of our patients were chronic cases, the observed brain change in
the inferior prefrontal region may have arisen due, in part, to the pro-
gressive change and symptomatological change.

ASL studies of schizophrenia revealed several rCBF changes (Horn
et al., 2009; Scheef et al., 2010; Pinkham et al., 2011; Walther et al.,
2011). As shown in Table 3, the results of these studies differ sub-
stantially. For the frontal cortex, however, three of these four studies
reported reduced rCBF, which is compatible with our results. We
found rCBF reduction in bilateral occipital cortices of the individuals
with schizophrenia, which is consistent with the study by Pinkham
et al. (2011) in medicated schizophrenic patients and the study by
Scheef et al. (2010) in drug-free subjects. Several studies obtained
evidence of deficits of schizophrenia in visual processing, using elec-
troencephalography (EEG) (Butler et al., 2001, 2005; Doniger et al.,
2002), and other studies documented the abnormal EEG activities
in the occipital lobe of patients with schizophrenia (Spencer et al.,
2003, 2004). Neuroimaging studies of schizophrenia also revealed the
decrease of white matter integrity in occipital white matter adjacent
to the splenium of the corpus callosumn that may originate in visual per-
ception area (Agartz et al., 2001; Ardekani et al., 2003; Butler et al.,
2005). Butler et al., detected the relationship between the evoked po-
tential deficits and white matter intensity in the optic radiations
(2005). Thus, it seems likely that the occipital lobe is involved in some
aspects of the pathophysiology of schizophrenia. For other brain re-
gions, previous studies pointed to reduced rCBF in temporal and parietal
regions (Vita et al., 1995; Kanahara et al., 2009). The discrepancy be-
tween the previous results and ours may be attributable, at least in
part, to the different methodology used for the ASL, particularly our
study's consideration of the partial volume effect. Since this is the first
ASL study that took this effect into account, further studies are neces-
sary to draw any conclusion regarding rCBF changes in schizophrenia
beyond structural brain changes.

In conclusion, our pCASL study with partial volume effect correction
together with the volumetry and DTI data demonstrated hypoactivity in
the left prefrontal area beyond structural abnormalities in schizophre-
nia patients. There were also hypofunction areas in bilateral occipital
cortices, although the accompanying structural abnormalities were
not apparent. Further studies are warranted to delineate the rCBF




Fig. 3. Correlations between rCBF and symptomatology. There were no significant correlations between rCBF and PANSS subscales, however we found a nominal negative correlation be-
tween PANSS negative scale and rCBF in bilateral superior temporal gyri, left inferior prefrontal cortex, and left thalamus at trend level (p = 0.006).

Fig. 4. Anisotropic changes in schizophrenia. There were significant reductions of fractional anisotropy (FA) in the left superior temporal region, left external capsule, and left inferior fron-
tal region of the patients with schizophrenia (threshold-free cluster enhancement [TFCE], p < 0.05 family-wise error [FWE]). The background image is the standard MNI152 brain template.

Green voxels represent the FA white matter skeleton.

changes in schizophrenia based on ASL. Consideration of the partial vol-
ume effect might be an important factor in evaluations of rCBF using
ASL.
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Table 3
Overview of regional cerebral blood flow changes in patients with schizophrenia using arterial spin labeling,
Study Subjects
Horn et al. (2009) 13 Patients with schizophrenia and 13 None
healthy controls
Pinkham et al. (2011) 30 Patients with schizophrenia and 24

healthy controls

11 Nonmedicated patients with schizophrenia
and 25 healthy controls

11 Patients with schizophrenia and 14
healthy controls

Scheef et al. (2010)

Walther et al. (2011)

Left frontal lobe, bilateral occipital lobes,

and bilateral parietal lobes

Bilateral frontal lobes, bilateral parietal lobes,
bilateral temporal lobes, and left cuneus
Right prefrontal lobe, left temporal lobe, left None
parahippocampal gyrus, and right thalamus.

Left putamen/superior corona
radiata and right middle temporal lobes
Cerebellum, brainstem, and thalamus
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