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melanocytes, as well as in the cytoplasm of choroidal vascular
endothelial cells. Jalliffa and associates also reported that SIRT1
mRNA was detected in the outer nuclear layer (ONL), inner nuclear
layer (INL), and ganglion cell layer (GCL) of the retina by in situ
hybridization (Jaliffa et al., 2009). In the human eye, expression of
SIRT1 was detected in the lens epithelium of patients with senile
cataract (Zheng and Lu, 2011; Lin et al,, 2011), and retinas (Maloney
et al, 2012). For the normal human corneal epithelium, Alves
et al. reported that 50% showed negative expression of SIRT1 and
30% weak expression, and 20% were considered significantly
immunoreactive using 10 corneal specimens (Alves et al,, 2012).

5. Neuroprotective effect of SIRT1 against Wallerian
degeneration

The optic nerve is formed by the axons of retinal ganglion cells,
which are the second neurons in the visual pathway. When
experimental transection of the optic nerve is done, the ganglion
cells are severed from their axons. Therefore, the ganglion cell
axons (constituting the optic nerve, optic chiasm and optic tract up
to the lateral geniculate nucleus) would be expected to undergo
anterograde degeneration, since the transection of a peripheral
nerve causes degeneration of the distal segment. This phenomenon
is known as Wallerian degeneration. It is considered that SIRT1
contributes to preservation of neurons from Wallerian degenera-
tion (Tang and Chua, 2008; Zhang et al., 2011).

The neuroprotective effect of SIRT1 against Wallerian degen-
eration was first observed in a study of slow Wallerian degener-
ation (WIdS) mutant mice (Perry et al, 1990). WIdS mutant mice
exhibit a significant delay in the onset of axonal degeneration after
physical or chemical injury (Coleman and Perry, 2002; Coleman,
2005). WIdS protein is composed of the N-terminal 70 amino
acids of ubiquitin fusion degradation protein 2a (Ufd2a), which is a
ubiquitin assembly protein, plus the complete sequence of nico-
tinamide mononucleotide adenylyltransferase 1 (Nmnatl), an
enzyme that directly catalyzes the synthesis of nicotinamide
adenine dinucleotide (NAD} (Conforti et al., 2000; Mack et al,,
2001; Coleman, 2005). Both Nmnat1 activity and the short N-
terminal have been shown to make a contribution to WIdS-
mediated axonal protection (Hilliard, 2009; Conforti et al., 2009;
Avery et al,, 2009; Coleman and Freeman, 2010). The Nmnat-1
portion of the fusion protein is essential for the prevention of
axonal damage (Araki et al., 2004; Conforti et al,, 2007; Sasaki
et al,, 2009; Babetto et al, 2010). Axonal protection by WIdS is
mediated through overexpression of Nmnat-1 via activation of a
SIRT1-dependent process, while neuroprotection is blocked by the
SIRT1 inhibitor sirtinol and by SIRT1 silencing with siRNA (Araki
et al., 2004; Sasaki et al., 2009; Babetto et al,, 2010). However,
other findings have suggested that increased Nmnat1 activity and
SIRT1 do not fully account for the neuroprotective activity of the
WIdS gene (Wang et al.,, 2005; Conforti et al, 2007; Sasaki et al,,
2009), suggesting that NAD delays axonal regeneration by a local
protective effect. Thus, the role of SIRT1 in axonal degeneration
remains controversial as to whether the axonal protection is
mediated by SIRT1-dependent (Araki et al., 2004) or SIRT1—in-
dependent mechanisms (Wang et al.,, 2005).

6. Neuroprotective effect of SIRT1 in retinal damage

SIRT1 also appears to have a neuroprotective effect in retinal
damage. The retina is part of the nervous system, but various fac-
tors (including aging, UV radiation, and oxidative stress) can induce
permanent damage to its architecture (Fletcher, 2010). SIRT1 is
localized in most layers (including the ONL, INL, GCL, and RPE) of
the normal mouse retina (Jaliffa et al., 2009). In SIRT1-deficient

adult mice, multiple retinal cell layers were significantly thinner
than in normal eyes and the inner and outer nuclear layers were
disorganized (Cheng et al,, 2003). The inner and outer photore-
ceptor cell segments are also difficult to detect in SIRT1-deficient
adult mice, indicating that SIRT1 has an important role in ocular
morphogenesis (Cheng et al., 2003).

SIRT1 protects the retinal cells from DNA damage such as
oxidative stress-related retinal damage (Peng et al,, 2010, 2011),
apoptotic retinal death (Anekonda and Adamus, 2008), and anti-
inflammation (Shindler et al., 2007; Kubota et al., 2011). On the
other hand, the breakdown of SIRT1 causes retinal damage through
multiple mechanisms. First both Oct4 and SIRT1 expression is
decreased in aged retinal pigment epithelium cells (RPEs) or light-
injured rat retinas (Peng et al., 2011). Second, light exposure up-
regulate retinal activator protein-1 and reduce retinal SIRT1 activ-
ity in mice (Kubota et al., 2010). Third, diabetes-induced retinal
inflammation mediated by downregulation of the adenosine
monophosphate (AMP)-activated protein kinase (AMPK) pathway,
is responsible for SIRT1 deactivation and NF-kB activation (Kubota
et al,, 2011; Zheng and Lu, 2011).

Oxidative stress is a subproduct of dysfunctional energy ho-
meostasis (Wu et al, 2006). SIRT1 maintain energy homeostasis
and anti-apoptotic mechanisms essential for optimal normal brain
function to balance oxidative stress in the normal adult central
nervous system (Wu et al., 2006). Jaliffa et al. reported that SIRT1
maintain survival pathways, balanced energy homeostasis, and
physiological DNA repair mechanisms in photoreceptor cells to
treat inherited retinal degenerative diseases (Jaliffa et al., 2009).

Several experimental studies have demonstrated a neuro-
protective effect of SIRT1 against retinal and optic nerve damage.
For example, intravitreal injection of SIRT1 activators prevents RGC
loss in a dose-dependent manner through stimulating SIRT1
enzymatic activity in mice with optic neuritis (Shindler et al., 2007).
This neuroprotective effect is blocked by sirtinol, a SIRT1 inhibitor
(Shindler et al.,, 2007). Absence of E2fs, the transcription factor for
SIRT1, cause downregulation of the p53 deacetylase activity of
SIRT1, resulting in p53 hyperacetylation and an increase of
apoptosis in the mouse retina (Chen et al., 2009). Bhattacharya et al.
reported that P53 acetylation Lys379 increases through the inhi-
bition of SIRT1 and SIRT2 in primary RPE cultures from human
donor eyes (Bhattacharya et al,, 2012). They concluded that phar-
macologic treatments to block p53 phosphorylation or acetylation
may protect RPE cells from apoptosis. SIRT1 gene transfer accom-
panied by Oct 4 rescues retinal cell loss and improves electroreti-
nographic responses in rats with retinal phototoxicity (Peng et al.,
2011). Furthermore, upregulation of SIRT1 by resveratrol protects
cultured retinal cells from antibody-induced apoptotic death
{Anekonda and Adamus, 2008). Resveratrol is a natural polyphenol
found in red grapes and red wine that has been shown to enhance
SIRT1 activity (Howitz et al., 2003; Baur, 2010; Haigis and Sinclair,
2010) (Fig. 4). Resveratrol also has a protective effect against
phototoxic degeneration of the mouse retina in vivo (Kubota et al.,
2010). These results suggest that SIRT1 is able to protect against
diseases caused by oxidative stress-induced retinal damage, such as
AMD, while anti-aging therapy with resveratrol could be an alter-
native treatment for retinal damage.

7. Protective effect of SIRT1 against senile cataract

Lin et al. reported that the SIRT1 expression in lens opacity was
lower in patients >51 years old than in those <51 years old and was
negatively associated with age (Lin et al., 2011). This indicates that
decreased SIRT1 expression in the lens epithelium is associated
with the grade of cataract and with patient age. Interestingly, Zheng
et al. reported that the SIRT1 expression in the lens epithelium
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Fig. 4. Chemical structures of SIRT1 activators. Resveratrol is a polyphenolic com-
pound found in grapes and wine and is a known activator of SIRT1. Resveratrol has a
structure similar to that of an estrogen agonist and can bind to estrogen receptors. The
experimental drugs SRT1720 is a low molecular weight activator of SIRT1 that is 1000
times more potent than resveratrol.

decreases with age, but there is an increase among patients older
than 50 years who have senile cataract compared with persons
older than 50 years without cataract (Zheng and Lu, 2011). Addi-
tionally, they reported that expression of both forkhead box class O
(FOX0)3a and FOX04 decreased with age, but expression in pa-
tients older than 50 years with age-related cataract was equivalent
to that in persons younger than 40 years without cataract (Zheng
and Lu, 2011). On the other hand, p53 downstream of SIRT1 is
decreased in senile cataract (Zheng and Lu, 2011). Zheng et al.
concluded that downstream p53 is inhibited, while the FOXO
pathway is activated, in senile cataract, indicating that SIRT1 may
have a protective effect against senile cataract formation (Zheng
and Lu, 2011).

8. Protective effect of resveratrol and other SIRT1 activators
against cataract formation

Resveratrol (3,5,4’-trihydroxy-trans-stilbene) is a natural prod-
uct occurring in grapes and various other plants {Fremont, 2000).
The chemical structure of resveratrol is similar to that of the syn-
thetic estrogen agonist, diethylstilbestrol (Gehm et al, 1997)
(Fig. 4). Thus, resveratrol might acts as a mixed agonist/antagonist
for estrogen receptors (Bowers et al., 2000). The effect of resveratrol
on alternative splicing is dependent on SIRT1, SIRT3, and SIRT4
(Markus et al., 2011; Schirmer et al., 2012). Resveratrol has been
reported to activate sirtuin (Costa Cdos et al., 2011), inducing the
deacetylation of PGC-1a (Lagouge et al., 2006; Pallas et al., 2009),
and resveratrol therefore has the ability to suppress cataract for-
mation (Doganay et al., 2006; Barden et al., 2008; Pearson et al.,
2008). Doganay et al. reported that resveratrol can prevent so-
dium selenite-induced oxidative stress and experimental cataract
formation in rats (Doganay et al., 2006). This protective effect was
supported by a higher level of glutathione and lower level of
malondialdehyde in the lens and erythrocytes (Doganay et al.,
2006). Pearson et al. reported that resveratrol-fed elderly mice
showed a marked reduction of age-related diseases and cataract
formation (Pearson et al., 2008). These results suggest that activa-
tion of SIRT1 by resveratrol has a protective effect against cataract
formation. Barden et al. showed that grape seed proanthocyanidin
extract reduced the production of reactive oxygen species in
cultured canine lens epithelial cells by reducing tertiary butyl
hydroperoxide-induced activity of the mitogen-activated protein

kinase (MARK), which is a marker of stress-induced cell signaling,
and phosphoinositide-3 kinase (PI3K) pathways, resulting in the
prevention of cataract (Barden et al., 2008).

Recently, a series of experimental SRT drugs (SRT1720, SRT2183,
and SRT1460) are reported to activate SIRT1 (Howitz et al., 2003;
Milne et al, 2007; Dittenhafer-Reed et al, 2011). These small
molecules are a potent activator of SIRT1 that is 1000 times more
potent than resveratrol (Milne et al., 2007). However, the contro-
versial mechanism of SIRT1 activation by SRT1720 has been re-
ported (Pacholec et al., 2010) and several studies demonstrated that
SRTs and resveratrol are not specific activator of SIRT1 (Beher et al,,
2009; Zarse et al., 2010).

9. Summary

This review focused on the role of sirtuins in ocular aging. Many
animal studies have shown that SIRT1 regulates ocular aging and
the resistance of ocular tissues to oxidative stress by deacetylation
of several proteins in an NAD-+-dependent manner. Considering
these data, SIRT1 is an attractive candidate for the development of
therapeutic strategies to prevent ocular aging. However, it is un-
clear whether these animal data are applicable to ocular diseases in
humans. Some clinical trials of SIRT1 activators have already been
started for a variety of diseases, including cardiovascular disease,
cancer, diabetes, and Alzheimer’s disease. Future clinical trials
should focus on further defining the role of SIRT1 in ocular aging.
SIRT1 or SIRT1 activators may have the potential to prevent ocular
aging, cataract, AMD, and glaucoma.
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