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Isoform-specific tau antibodies RD3 and RD4 are useful
tools for investigating expression and localization of three-
repeat (3R) and four-repeat (4R) tau isoforms. Recently,
transition from 3R to 4R tau in Alzheimer’s disease (AD)
was proposed based on immunohistochemical studies with
RD3 and RD4 [3]. Here, we show that two factors influence
immunoreactivity to these antibodies. First, deamidation at
the RD4 epitope abrogates immunoreactivity to RD4, and
second, presentation of RD3 and RD4 epitopes is recipro-
cally affected by protease. Asparagine at position 279 in the
RD4 epitope is predominantly deamidated to aspartic acid
in pathological tau in AD brains [2, 4]. Consequently, the
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presence of 4R tau in AD pathologies may be underestimated
when RD4 is used. However, anti-4R (available from Cosmo
Bio Co., Ltd.) raised against RD4 peptide with N279D sub-
stitution stained both wild-type and deamidated 4R tau, and
strongly stained RD3+4/RD4— tangles and smearing tau
fragments in Sarkosyl-insoluble fraction of AD brain [2].

It was reported that RD3 stained abundant ghost tangles
in entorhinal cortex and tangles in CA1, but failed to stain
fine processes of tangles and threads [3], while RD4 failed
to detect ghost tangles in entorhinal cortex [3]. To under-
stand these findings, we examined the influence of protease
on immunoreactivity. Paraffin sections of AD brains were
treated with 10 pg/mL Proteinase K (Pro-K) for 30 min
after autoclaving (Ac) and formic acid (FA) treatment. RD3
staining was strongly enhanced (Fig. la, b). Conversely,
RD4 immunoreactivity almost completely disappeared
after Pro-K treatment (Fig. 1c, d). Not only ghost tangles
but also RD3—/RD4+ tangles and their processes became
RD3-positive after Pro-K treatment (Fig. 1a, b), strongly
suggesting that the RD3 epitope was buried in tau filaments
of intracellular tangles and threads, and was exposed by
Pro-K treatment. Contrary to expectation, anti-4R stain-
ing was also enhanced by Pro-K treatment (Fig. le, f). It is
possible that the recognition site of anti-4R is distinct from
that of RD4 and is exposed by Pro-K treatment of sections.
Anti-4R antibody may recognize the carboxyl-half of the
antigen peptide, while RD4 recognizes the amino-terminal
half around N279. Pro-K treatment was also effective in
immunostaining of free-floating AD sections with a lower
concentration.

To confirm these findings biochemically, Sarkosyl-
insoluble fractions from two AD brains were treated with
trypsin or Pro-K, then immunoblotted with RD3, RD4,
anti-4R and anti-pS396 (Fig. 1g—j). RD3 strongly stained
many bands and smears, as seen with pS396 (Fig. 1g, j),
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Fig. 1 a—f Immunostaining of
AD sections after Ac and FA
treatment before (a, ¢, e) and
after (b, d, f) Pro-K treat-
ment, using RD3 (a, b), RD4
(¢, d) and anti-4R (e, f). Bar
100 pm. g—j Immunoblots of
Sarkosyl-insoluble tau from two
AD brains, before (Con) and
after treatments with trypsin or
Pro-K, using RD3 (g), RD4 (h),
anti-4R (i) and pS396 (j). k-1
Computed cross-section through
a paired helical filament (k)
[reproduced from Ref. [1], with
permission of the publisher],

a predicted folding model of
3R and 4R tau in PHF (1). RD3
and RD4 epitopes are indicated
by blue and red, respectively.
4R tau specific insertion is
indicated by underlining. The
deamidation site N279 is indi-
cated by asterisks. Phospho-
rylation of Ser396 is indicated.
Possible trypsin, pronase and
Pro-K cleavage sites are indi-
cated in green, purple and dark
blue arrows, respectively. The
protease-resistant domain of
PHF is indicated as PHF-core
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whereas RD4 only labeled the 64/68 kDa doublet and some
fragments at ~25 kDa (Fig. 1h). Anti-4R strongly stained
the smears and fragments (Fig. 1i), suggesting that tau in
these RD4-negative anti-4R-positive bands and smears is
deamidated at N279. The weak RD4 and strong anti-4R
immunoreactivities were completely abolished after trypsin
or Pro-K treatment (Fig. 1h, i). This result is inconsistent
with the immunohistochemistry, but protease sensitivity is
likely different in fixed tissues. In contrast, the RD3 epitope
was retained in the fragments, and RD3 strongly reacted
with the protease-resistant 10-25 kDa bands after trypsin
or Pro-K treatment (Fig. 1g). pS396 epitope was removed
by Pro-K but not trypsin, suggesting a location outside the
PHF core. Trypsin may not cleave the KSP site because
of phosphorylation of Ser396. These results demonstrate
reciprocal effects of protease treatment on RD3 and RD4
epitopes, indicating that RD4 epitope in tau in AD is sus-
ceptible to proteases, while RD3 epitope is highly resistant.

These results are consistent with previous findings. Wis-
chik et al. identified two types of amino acid sequences,
QPGGGKVQIVYK... (3R tau) and IKXVPGG... (4R tau),
in 12-kDa tau fragment comprising the pronase-resistant
core of PHFs [6] (see Fig. 1k). We identified HQPGGG...
(3R tau) and HVPGGG... (4R tau) in 7-15 kDa trypsin-
resistant fragments of PHF-tau in AD brains [5]. In both
cases, 3R and 4R tau isoforms were detected, but the
4R tau N-terminus lacked the RD4 epitope. Based on
these observations and a computed cross-section of PHF
(Fig. 1k) [1], we propose a schematic model of tau folding
in PHF (Fig. 11). Analysis of the cross-sectional density in
the PHF core on electron micrographs indicates the pres-
ence of two C-shaped morphological units, which corre-
spond to the two strands of PHF, each with three domains
(Fig. 1k) [1]. The RD3 epitope is buried in the PHF core
and is normally masked by the N- or C-terminal region of
tau, but is exposed in ghost tangles and/or in PHFs attacked
by proteases. The RD4 epitope, which is mostly deami-
dated in PHF, is located slightly outside the core, where
it can be digested by proteases (Fig. 11). This model can
explain the epitope masking of RD3 and RD4 and the
reciprocal effects of degradation or protease treatment on
the immunoreactivities.

This study indicates that differential presentation of
epitopes can occur as a result of folding and processing,

even when the epitopes are located in close proximity. Tau
in PHFs appears to be processed gradually by intracellular
proteases and more extensively in extracellular space dur-
ing AD progression. We suggest that changes in immunore-
activity to antibodies reflect aging of tau in tangles or PHFs,
which are composed of both 3R and 4R tau isoforms. We
also show that Pro-K treatment of sections after Ac and FA
treatment is useful for unmasking buried epitopes.
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Abstract

Background: Cases of Frontotemporal Lobar Degeneration (FTLD) and Motor Neurone Disease (MND) associated with
expansions in C90RF/2 gene are characterised pathologically by the presence of TDP-43 negative, but p62 positive,
inclusions in granule cells of the cerebellum and in cells of dentate gyrus and area CA4 of the hippocampus.

Results: We screened 84 cases of pathologically confirmed FTLD and 23 cases of MND for the presence of p62
positive inclusions in these three brain regions, and identified 13 positive cases of FTLD and 3 of MND. All cases
demonstrated expansions in C9ORF72 by Southern blotting where frozen tissues were available. The p62 positive
inclusions in both cerebellum and hippocampus were immunostained by antibodies to dipeptide repeat proteins
(DPR), poly Gly-Ala (poly-GA), poly Gly-Pro (poly-GP) and poly Gly-Arg (poly-GR), these arising from a putative non-ATG
initiated (RAN) sense translation of the GGGGCC expansion. There was also some slight, but variable, immunostaining
with poly-AP antibody implying some antisense translation might also occur, though the relative paucity of
immunostaining could reflect poor antigen avidity on the part of the antisense antibodies. Of the FTLD cases with DPR,
6 showed TDP-43 type A and 6 had TDP-43 type B histology; one had FTLD-tau with the pathology of corticobasal
degeneration. There were no qualitative or quantitative differences in the pattern of immunostaining with antibodies
to DPR, or p62, proteins between TDP-43 type A and type B cases. Ratings for frequency of inclusions immunostained
by these poly-GA, poly-GP and poly-GR antibodies broadly correlated with those for immunolabelled by p62 antibody

in all three regions.

Conclusion: We conclude that DPR are a major component of p62 positive inclusions in FTLD and MND.

Keywords: Frontotemporal lobar degeneration, C9ORF72, p62 inclusions, Dipeptide repeat proteins

Background

Frontotemporal Lobar Degeneration (FTLD) is a clinical,
pathological and genetically heterogeneous condition. The
major clinical syndromes principally involve personality and
behavioural change (behavioural variant frontotemporal
dementia, or bvFTD) or language alterations of a fluent
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(semantic dementia) or non-fluent (progressive non-fluent
aphasia) nature [1]. All three syndromes can be accompan-
ied by Motor Neurone Disease (MND) though the combin-
ation of FTD and MND is most common. Histologically,
around half of cases have tau-based pathology, half have
TDP-43-based pathology, and about 5% have FUS-based
pathology [2,3]. Importantly, around 40% of all cases have
a strong family history of similar disease, irrespective of
clinical or histological subtype [1].

By 2007, causative mutations had been identified in tau
(MAPT) [4] and progranulin (GRN) [5,6]. Nonetheless, it

© 2013 Mann et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication

waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
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was well known at that time that a number of large, inde-
pendent FTD + MND kindreds demonstrated linkage to
chromosome 9 in the region 9p21.2-p13.3 [7-10]. Subse-
quently, three GWAS studies for MND [11-13], and one
for FTLD [14] identified a susceptibility locus within this
linked region, with strongest association coming from a
80 kb haplotype block containing 3 genes, MOBKL2B,
IFNK and C9ORF72. It has now been shown that this
at least some of this association is due to the presence
of a large hexanucleotide (GGGGCC) in C9ORF72 gene
in patients with both FTLD and MND [15,16]. The
expansion occurs in the first intron or the promoter
region of the gene, depending upon the transcript iso-
form in question, and can number up to as many as
1500 repeats. The expansion is found in about one in
every twelve patients with FTLD, but this varies depend-
ing on geographical region with the expansion being rare
in Asia [16].

Pathologically, most FTLD cases with the expansion
[15-20], like many non-mutational cases of FTLD [2,21,22],
show inclusion bodies within neurones (NCI) and glial
cells of the cerebral cortex and hippocampus that contain
the nuclear transcription factor, TDP-43, and are said bear
a TDP-43 histological subtype termed FTLD-TDP type B
(according to [23]), compatible with a clinical diagnosis
of FID and MND. Others, however, show a TDP-43
histological type characterised by the presence of many
short neurites (DN) along with NCI within the outer
layers of the cerebral cortex, and termed FTLD-TDP
type A [23]. Nonetheless, irrespective of TDP-43 histo-
logical type, expansion carriers also show a unique path-
ology within the hippocampus [17] and cerebellum
[17-19,24] characterised by NCI that are TDP-43 nega-
tive, but immunoreactive to p62 protein.

P62 is a marker for proteins destined for proteasomal
degradation though the precise target protein within
such NCI remains uncertain, and the pathogenetic mech-
anism underlying the hexanucleotide expansion remains
unclear. Nonetheless, this is likely to result from one,
or a combination, of three possible mechanisms: i)
haploinsufficiency leading to loss of CY9orf72 protein
[15,16], ii) the expansion might form nuclear foci of
toxic RNA and sequester other RNA-binding proteins
such as Pur Alpha (Pur «) [25], or iii) RAN (repeat asso-
ciated non ATG-initiated) translation of the expanded
repeat region may lead to the ‘inappropriate’ formation
of dipeptide repeat proteins (DPR) which may aggregate
and confer neurotoxicity [26,27].

Here, we show that DPR are at least one of the target
protein(s) within the TDP-43 negative, p62-positive
NCI in cases of FTLD associated with hexanucleotide
(GGGGCCQC) expansions, and that such peptides are not
associated with other histological forms, or genetic sub-
types, of FTLD.

Page 2 of 13

Methods

Patients

Brain tissues were available in the Manchester Brain Bank
from a series of 84 patients with FTLD and 23 with MND.
All patients were from the North West of England and
North Wales. All FTLD cases fulfilled Lund-Manchester
clinical diagnostic criteria for FTLD [28,29], and all those
with MND fulfilled El Escorial criteria [30]. All brains had
been obtained with full ethical permission following con-
sent by the next of kin.

Histological methods
Serial paraffin sections were cut (at a thickness of 6 um)
from formalin fixed blocks of temporal cortex (with hippo-
campus) and cerebellar cortex. Sections within the series
were immunostained by routine methods for amyloid p
protein (Ap), tau, TDP-43 and FUS proteins, employing
microwaving in 0.1 M citrate buffer, pH 6.0 for antigen
retrieval [2]. Pathologically, of the 84 patients with FTLD,
30 had FTLD-tau (9 with FTLD-tau Picks (PiD), 7 with
MAPT mutation, 11 with CBD and 3 with PSP), 52
had FTLD-TDP (24 with type A histology, 22 with type
B histology, 6 with type C histology), 1 had FTLD-FUS
(aFTLD-U) and 1 had FTLD-ni. (see [23] for definitions).
Further sections from each case within the series were
screened for the presence of p62-immunoreactive NCI
by immunostaining with p62-lck ligand (rabbit polyclonal
antibody (B D Biosciences, Oxford, UK) 1:100) employing
a standard ABC Elite kit (Vector, Burlingame, CA, USA)
with DAB as chromagen, and again microwaving in 0.1 M
citrate buffer, pH6.0 for antigen retrieval. Positive cases
were defined where p62 positive, TDP-43 negative NCI
within either the cerebellum (see [18]) or hippocampus
(see [17]) could be clearly seen under low power object-
ive (x20) and the majority of high power fields (x40)
contained at least 2 NCI. Negative cases were either com-
pletely devoid of p62 immunostaining, or small amounts
of apparently extracellular and ‘extraneous’ p62 positive
particulate material was observed in occasional high
power fields.

Dipeptide antibody staining

A non-ATG initiated translation of the expansion would
putatively result in DPRs derived from either from for-
ward (sense) (poly Gly-Pro, {poly-GP), poly Gly-Ala (poly-
GA) and poly Gly-Arg, (poly-GR)) or reverse (antisense)
(poly Ala-Pro (poly-AP), poly Pro-Gly (poly-PG) and poly
Pro-Arg (poly-PR)) directions. Consequently, we commis-
sioned a series of custom made rabbit polyclonal anti-
bodies, raised against such putatively translated proteins.
Briefly, peptides consisting of 15 repeats with an additional
N terminal cysteine were synthesised and N-terminally
conjugated to keyhole limpet haemocyanin prior to im-
munisation. All steps in the preparation were performed
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by Genentech. Antibodies were successfully raised against
poly-GP, poly-GR, poly-AP and poly-PR proteins. How-
ever, it was not possible to generate antibodies to poly-GA
and poly-PG proteins.

Serial sections from those cases showing p62-positive
pathology, and those from 11 (non-p62 positive) cases
with other histological and genetic forms of FTLD, other
neurodegenerative disorders and healthy controls (see
Table 1) were immunostained for DPR. Antibodies were
employed in standard IHC (as above) though, in this in-
stance, antigen unmasking was performed by pressure
cooking in citrate buffer (pH 6, 10 mM) for 30 minutes,
reaching 120 degrees Celsius and >15 kPa pressure Fol-
lowing titration to determine optimal immunostaining,
antibodies were employed at dilutions of 1:500 (poly-AP
and poly-PR), 1:750 (poly-GR) or 1:2000 (poly-GP).

Further sections from the series were immunostained
with poly-GA (and poly-GP and poly-GR) antibodies
courtesy of Dr M Hasegawa. These antibodies were raised
against poly-(GA)g, poly-(GP)s and poly-(GR)g peptides
with cysteine at N-terminus. The peptides were conju-
gated to m-maleimidobenzoyl-N-hydrosuccinimide ester-
activated thyroglobulin. The thyroglobulin-peptide complex
(200 pg) emulsified in Freund’s complete adjuvant was
injected subcutaneously into a New Zealand White rabbit,
followed by 4 weekly injections of peptide complex emulsi-
fied in Freund’s incomplete adjuvant, starting after 2 weeks
after the first immunization. Immunoreactivities of these
antisera were characterized by ELISA as follows. The
peptide immunogens were coated onto microtiter plates.
The plates were blocked with 10% fetal bovine serum
(FBS) in PBS, incubated with the rabbit antisera diluted
in 10% FBS/PBS at room temperature for 1.5 h, followed
by incubation with HRP-goat anti-rabbit IgG (Bio-Rad) at
1:3000 dilution, and reacted with the substrate, 0.4 mg/mL
o-phenylenediamine, in citrate phosphate buffer (24 mM
citric acid, 51 mM Na,HPQ,). The absorbance at 490 nm
was measured using Plate Chameleon (HIDEX). All anti-
bodies were used for imminohistochemistry at dilution
of 1:2000, and pretreated as above. Sections were also
immunostained with the anti-dipeptide repeat antibody
CI9RANT [26] (gift from L Petrucelli) at 1:3000 dilution.

Microscopic analysis

Sections of cerebellum and hippocampus immunostained
for p62 and each of our own 4 DPR antibodies, and the
poly-GA antibody supplied by M Hasegawa were assessed
for the presence of DPR immunostained NCI within granule
cells of the cerebellum, and dentate gyrus cells and CA4
pyramidal cells of the hippocampus at x20 magnification.
The frequency of DPR-immunoreactive NCI was assessed
according to:

0 = no immunostained NCI present in any field.
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1 = very few immunostained NCI present, in some but
not all fields.

2 =a moderate number of immunostained NCI present
in each field.

3 = many immunostained NCI present affecting most
cells in each field.

4 =very many immunostained NCI present, affecting
nearly all cells in every field.

Southern blotting

Frozen brain tissue for Southern blotting was available for
most cases employed in the study. Southern blotting was
performed using a PCR DIG labelled probe adjacent to the
expansion. The PCR probe consisted of 851 bp amplicon
using the following primers, forward 5 CCCACACCTGC
TCTTGCTA 3’; reverse 5" CGTTCTGTGTGATTTTTA
GTGATGA 3.

Briefly, samples were digested overnight with 20 u of Xbal
(New England Biolabs). Samples were electrophoresed in
0.8% agarose 1 xTBE gels run at 1.5 volts/cm for 18 hours.
Following standard protocols [31], gDNA was transferred
to positively charged nylon membrane. Membranes were
fixed using UV light at 365 nm for 3 minutes using a
GE Image quant 350. Membranes were hybridized and
detected as per the DIG detection Manual (Roche Applied
Science). Signals were visualised using the GE Image
quant 350 after 1 to 4 hours.

Expansion sizing and analysis

Expansion sizing was carried out using ImageQuant TL
software (Version 7, GE Healthcare) sizing the repeat num-
ber against the DIG labelled lambda Hind III labelled size
standard included on each gel (Roche Applied Science).
Positive control (gDNA isolated from the B-Lymphocyte
cell line ND06769 obtained from the NINDS Repository—
Coriell) and negative control were included on each blot,
and were required to show a band of the expected size
or no signal on hybridisation respectively for each blot
to pass quality control.

Statistical analysis

Rating data from semiquantitative asssessments was
entered into an excel spreadsheet and analysed using
Statistical Package for Social Sciences (SPSS) software
(version 17.0). Mann—Whitney test was used to compare
rating data between pairs of groups. A p-value of less than
0.05 was considered statistically significant. Regression
analysis using Intercooled Stata Version 9 (StataCorp)
was carried to out to investigate effects between repeat
length, age of onset and disease duration.

Results
Screening the 84 FTLD and 23 MND cases with p62
revealed 16 cases, 13 with FTLD (cases #1-13) and 3



Table 1 Selected clinical and pathological details of cases investigated by dipeptide immunostaining

Case M/F Clinical diagnosis Pathological diagnosis Family history Onset (y) Duration (y) Brain weight (g)
1 M FTD FTLD-TDP type A 2 brothers, 2 sisters FTD 49 9 1050
2 M FTD FTLD-TDP type A brother MND**, mother and grandmother FTD 60 8 1210
3 F FTD FTLD-TDP type A none available 59 5 1140
4 M FTD FTLD-TDP type A father dementia 64 8 1100
5 M FTD FTLD-TDP type A father similar presentation, paternal grandmother 'AD’ 63 2 na
6 M FTD FTLD-TDP type A yes 78 4 1200
7 M FTD +MND FTLD-TDP type B ?paternal aunt said to be ‘strange’ 60 2 na
8 M FTD + MND FTLD-TDP type B mother FTD 57 2 1210
9 M FTD FTLD-TDP type B mother dementia 54 12 na
10 F FTD FTLD-TDP type B mother and sister FTD 51 19 na
1 F FTD + MND FTLD-TDP type B father ‘AD’, sister MND, paternal nephew MND 63 2 na
12 F FTD + MND FTLD-TDP type B sister MND, brother FTD, mother ‘multiple sclerosis’ 68 5 1363
13 M FTD Corticobasal degeneration father and 5 sisters had Huntington's disease 59 70 1271
14 M MND MND brother FTD**, mother and grandmother FTD 60 5 1350
15 F MND MND none available 40 5 1330
16 M MND MND brother MND, sister FTD + MND 53 1250
17 M FTD FTLD-tau Pi none ) 69 6 na
18 F FTD FTLD-tau MAPT +16 mother: early onset dementia; brother: MND 48 15 1100
19 M Corticobasal Syndrome FTLD-tau CBD nore 65 na 1020
20 M FTD FTLD-TDP A mother AD, brother AD (but with behavioural problems) 66 7 980
21 F FTD + MND FTLD-TDP B none available 50 2 1050
22 F sD FTLD-TDP C none 70 2 1522
23 F Alzheimer’s disease Alzheimer's disease none 74 12 1220
24 M Huntington’s disease Huntington'’s disease none available 48 24 na
25 M Huntington’s disease Huntington'’s disease none available 56 19 1340
26 M Normal Normal control none 54% na 1720
27 F Normal Normal control none 53* na 1220

FTD = Frontotemporal dementia; MND = Motor Neurone Disease; SD = semantic dementia; FTLD = Frontotemporal Lobar Degeneration; na = data not available/applicable; * = age at death; ** = cases #2 and 14 were brothers.
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with MND (cases #14-16) (Table 1) showing p62 posi-
tive, TDP-43 negative NCI within granule cells of the
cerebellum and other cerebellar cell types, and in granule
cells of the dentate gyrus, and pyramidal cells of CA4,
CA3 and CA2 regions of the hippocampus, as described
previously [17-19,24]. Twelve of the 13 FTLD cases
showed TDP-43 proteinopathy, classifiable [23] as either
type A (6 cases) or type B (6 cases): the other case had
tauopathy compatible with corticobasal degeneration (CBD)
(Table 1). Eight of the FTLD cases had presented with
bvFTD clinically, 4 with FTD + MND and one (with CBD
pathology) with a combination of FTD and corticobasal
syndrome. All MND cases bore typical TDP-43 patho-
logical changes in motor neurones of brain stem nuclei
and spinal c¢ord (where this was available for analysis).

Frozen tissue was available for 12 of the 16 cases show-
ing p62 pathological changes in cerebellum and hippo-
campus. These included 9 cases with FTLD (cases #1-3, 7,
9-13) and all 3 cases with MND (cases #14-16) (Table 1).
All 12 of these cases demonstrated a pathological ex-
pansion in C9ORF72 by Southern blotting. Expansion
size ranged from ~5 kb (~450 repeats) to in excess of
23 kb (over 3600 repeats) (Figure 1). No expansions
were detected in cases where no p62 pathological
changes were observed. There was no correlation be-
tween repeat size and age of disease onset or duration
(see Additional file 1: Figure S1).

p62 immunostaining

In FTLD cases, on p62 immunostaining, NCI in granule
cells of the cerebellum appeared as small rounded or oat-
shaped bodies, though occasionally larger, more rounded
and solid NCI were observed (Figure 2a). These were
very abundant in case #1, common in cases #4, 7 and
10, moderately plentiful in cases #2 and 5, occasional in
cases #3, 8 and 12, and rare in cases #6, 9 and 11
(Table 2). Similar, more granular, NCI were usually present
in basket cells (Figure 2b), especially when granule cell
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inclusions were frequent, but none were seen within
Golgi neurones, or within Bergmann glia. In some cases,
occasional Purkinje cells (Figure 2c) and neurones in the
dentate nucleus (Figure 2d) contained small, spicular or
granular p62-immunoreactive structures, but these were
not immunoreactive with TDP-43 antibodies. In most
cases, occasional cells resembling astrocytes were seen
to contain p62 immunoreactive intranuclear inclusions,
these being located deep in the granule cell layer. All
cases also showed abundant, small, rounded NCI within
granule cells of the dentate gyrus (Figure 2e), along with
spicular or granular inclusions within pyramidal cells of
areas CA2/3 and CA4 (Figure 2f), less commonly in
CA1 and subiculum (Table 2).

In MND cases, cerebellar granule cell NCI were abun-
dant in cases #14 and 16, but were rare in case #15
(Table 2). In all cases, p62 positive NCI were also ob-
served within granule cells of the dentate gyrus, and
similar (to FTLD cases) small, spicular or granular p62-
immunoreactive inclusions were seen within pyramidal
cells of areas CA2/3 and CA4, less commonly in CAl
and subiculum. Both of these kinds of changes were
occasionally present in cases #14 and 15 but were moder-
ately common in case #16 (Table 2).

In all FTLD and MND cases variable, but often many,
pyramidal neurones, chiefly within the deeper layers of
the adjoining cerebral (temporal) cortex also contained
NCI similar to those in the hippocampus CA regions
(not shown).

DPR immunostaining
Results of immunostaining for DPR are shown in Table 2.
All FTLD and MND cases showed similar patterns of
immunostaining though there were quantitative differ-
ences between cases with respect to the number of inclu-
sions immunostaining.

As with p62 immunostaining, immunostaining with both
our own custom anti poly-GP and poly GR antibodies and
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Figure 1 Southern blotting of FTLD and MND cases bearing expansions in C9ORF72. Lane 1: Marker, Lane 2: Negative control brain, Lane 3:
NDO06769, Lane 4: 01/06 FTD case #3, Lane 5: MND case #15, Lane 6: FTD/MND case #11, Lane 7: FTD case #10, Lane 8 CBD case #13, Lane 9: FTD
case #1; Lane 10: control FTD case with tauopathy, Lane 11: FTD case #9, Lane 12: FTD/MND case #12, Lane 13: FTD case #2; Lane 14: MND case
#14, Lane 15: FTD/MND case #7, Lane 20: MND case#16. Lanes 16-19 show expansions in other clinically diagnosed cases of MND (positive controls)
where no brain tissue was available.




