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Targeted capture and sequencing for detection of mutations

causing early onset epileptic encephalopathy
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SUMMARY

Purpose: Early onset epileptic encephalopathies (EOEEs)
are heterogeneous epileptic disorders caused by various
abnormalities in causative genes including point muta-
tions and copy number variations (CNVs). In this study,
we performed targeted capture and sequencing of a
subset of genes to detect point mutations and CNVs
simultaneously.

Methods: We designed complementary RNA oligonu-
cleotide probes against the coding exons of 35 known
and potential candidate genes. We tested 68
unrelated patients, including 15 patients with previ-
ously detected mutations as positive controls. In
addition to mutation detection by the Genome Analy-
sis Toolkit, CNVs were detected by the relative depth
of coverage ratio. All detected events were

confirmed by Sanger sequencing or genomic micro-
array analysis.

Key Findings: We detected all positive control mutations.
In addition, in 53 patients with EOEEs, we detected 12 path-
ogenic mutations, including 9 point mutations (2 nonsense,
3 splice-site, and 4 missense mutations), 2 frameshift muta-
tions, and one 3.7-Mb microdeletion. Ten of the 12 muta-
tions occurred de novo; the other two had been previously
reported as pathogenic. The entire process of targeted
capture, sequencing, and analysis required | week for the
testing of up to 24 patients.

Significance: Targeted capture and sequencing enables
the identification of mutations of all classes causing
EOEEs, highlighting its usefulness for rapid and compre-
hensive genetic testing.

KEY WORDS: Target capture, Sequencing, Mutation,
Copy number variation, Genetic testing.

Early onset epileptic encephalopathies (EOEEs), occur-
ring before 1 year of age, are characterized by impairment
of cognitive, sensory, and motor development by recurrent
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clinical seizures or prominent interictal epileptiform dis-
charges (Berg et al., 2010). Ohtahara syndrome (OS), West
syndrome (WS), early myoclonic encephalopathy (EME),
migrating partial seizures in infancy (MPSI), and Dravet
syndrome (DS) are the best known epileptic encephalopa-
thies recognized by the International League Against Epi-
lepsy (ILAE; Berg et al,, 2010). However, many infants
with similar features do not strictly fit the parameters of
these syndromes.

To date, 11 genes have been shown to be associated with
EOEEs (Mastrangelo & Leuzzi, 2012). The identification of
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causative mutations associated with EOEEs and their
related phenotypes is useful for genetic counseling, and
possibly for management of the patients; however, it is
time-consuming and arduous to screen all known disease-
causing genes one by one using Sanger sequencing or
high-resolution melting curve analysis (Wittwer, 2009). In
addition, copy number variations (CNVs) involving causa-
tive genes can also cause EOEEs (Saitsu et al., 2008; Mei
et al., 2010; Saitsu et al., 2011, 2012b). Array comparative
genomic hybridization (CGH) and multiplex ligation-
dependent probe amplification (MLPA) are well established
for the detection of CNVs; however, it is often difficult for
array CGH to detect small CNVs such as a single-exon
deletion and for MLPA to screen multiple genes at a time
(Schouten et al., 2002; Dibbens et al., 2011; Mefford et al.,
2011; Stuppiaet al., 2012). Therefore, an integrated method
that detects both point mutations and CNVs for multiple
genes would be useful for comprehensive genetic testing in
EQEEs.

Recent progress in massively parallel DNA sequencing in
combination with target capturing has facilitated rapid
mutation detection (Ng et al., 2009). It has been reported
that CNVs involving disease-causing genes in patients with
breast or ovarian cancer can be detected by target capture
sequencing using the relative depth of coverage ratio
(Walsh et al., 2010, 2011; Nord et al., 2011). Targeted cap-
ture and sequencing of patients with epileptic disorders has
successfully identified potential disease-causing mutations
in 16 of 33 patients (Lemke et al., 2012), revealing its effi-
cacy for detecting mutations. However, the detection of
both point mutations and CNVs has not been reported in
patients with epilepsy.

In this study, we performed targeted capture and sequenc-
ing of a subset of 35 genes to detect mutations and CNVs
simultaneously in 68 patients with EOEEs. By analyzing
the relative depth of coverage ratio, we were able to detect

microdeletions, in which the numbers of deleted exons
varied from a single exon to all exons of two genes. In
combination with rapid sequencing using a benchtop
next-generation sequencer, our method provides a fast,
comprehensive, and cost-effective method for genetic
testing of patients with EOEE.

METHODS

Patients

We examined 68 patients (36 male and 32 female) with
EOEEs (20 patients with OS, 20 with WS, 3 with EME, 4
with MPSI, 2 with DS, and 19 with unclassified epileptic
encephalopathy). Diagnoses were based on clinical features
and characteristic patterns on electroencephalography. In
15 of 68 patients (10 male and five female), disease-causing
mutations or CNVs had been previously identified in our
laboratory, so these mutations were used as positive controls
(Table 1) (Saitsu et al., 2008, 2010a,b, 2011, 2012b,c;
Nonoda et al., 2013). Genomic DNA was isolated from
blood leukocytes according to standard methods. Experi-
mental protocols were approved by the Yokohama City Uni-
versity School of Medicine Institutional Review Board for
Ethical Issues. Written informed consent for genetic testing
was obtained from the guardians of all tested individuals
prior to analysis.

Target capture sequencing and variant detection

A custom-made SureSelect oligonucleotide probe library
(Agilent Technologies, Santa Clara, CA, U.S.A.) was
designed to capture the coding exons of 35 genes; 5 of them
were potential candidates for EOEEs based on unpublished
data (for a list of the 30 of 35 genes, see Table 2). We
designed 120-bp capture probes with 3x centered probe-
tiling, and avoiding 20-bp overlap to repeat region using the
Agilent e-Array Web-based design tool. To cover regions

Reported mutations or copy number Deletion
Case Sex Chr Genes variants (positive controls) Type size (kb) Refs
SNVs 27 F 9 STXBP! c.1328T>G (p.Met443Arg) Missense Saitsu etal. (2008)
69 M X CASK clA>G Missense Saitsu et al. (2012b)
241 M X CDKL5 c.145G>A (p.Glu49Lys) Missense -
Indels 9% M 9 STXBPI ¢.388_389del (p.Leul30AspfsX|1) Deletion Saitsu et al. (2010a)
313 M X CASK €.227_228del (p.Glu76ValfsX6) Deletion -
26 F 9 SPTAN/ c.6619_6621del (p.Glu2207del) Deletion Saitsu et al. (2010b)
220 M 9 STXBP! c.1381_1390del (p.Lys46 1 GlyfsX82) Deletion -
16 M 9 SPTANI €.6923_6928dup (p.Arg2308_Met2309dup)  Duplication Saitsu et al. (2010b)
309 M 9 SPTANI ¢.6908_691 6dup (p.Asp2303_Leu2305dup)  Duplication Nonodaetal. (2013)
CNVs 12 F 9 STXBPI,SPTANI  Del(9)(q33.33—q34.1 1) Microdeletion 2150 Saitsu etal. (2008)
2 M 9 STXBP! STXBPI Ex4 deletion Microdeletion 4.6  Saitsuetal (2011)
8 M X CASK CASK Ex2 deletion Microdeletion i Saitsu et al. (2012b)
102 F X MECP2 Del(X)(q28) Microdeletion -
204 M 9 STXBPI,SPTANI  Del(9)(g33.33-q34.11) Microdeletion 2850 Saitsu etal. (2011)
214 F X CDKL5 Del(X)(q22.13) Microdeletion 137 Saitsu etal. (2011)
SNVs, single nucleotide variants; Indels, insertion/deletions; CNVs, copy number variations.
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No. of coding Mean read %bases above 5x %bases above [0x
Gene Cytoband exons depth depth (%) depth (%)
ARHGEF9 Xqll.l—ql 1.2 10 206 100 100
ARX Xp21.3 5 44 59.4-94.4 38.7-90.6
CASK Xpli.4 27 201 95.9-100 95.9-100
CDKLS Xp22.13 20 238 100 100
COL4Al 13q34 52 287 98.3-100 98.3-100
COL4A2 13q34 47 190 100 99.1-100
FOXGI 14ql2 I 231 86.5-100 81.1-96.4
GABRG2 5q34 I 300 92.3 92.3
GRIN2A 16p13.2 13 310 100 100
KCNQ2 20q13.33 17 135 100 97.7-100
MAGI2 7q21.11 22 255 96-98.3 94.5-97.5
MAPKI0 4q21.3 12 304 . 100 100
MECP2 Xq28 3 217 96.2 96.2
MEF2C 5ql4.3 0 270 100 100
NTNGI Ipl3.3 9 298 100 100
PCDHI9 Xq22.1 6 212 100 100
PLCBI 20p12.3 32 293 100 100
PNKP 19q13.33 17 208 100 98.5-100
PNPO 17q21.32 7 210 100 100
SCNIA 2q24.3 26 345 100 100
SCN2A 2q24.3 26 323 100 100
SLC25A22 Iipl55 9 121 100 100
SLC2A1 1p34.2 10 209 100 98.8-100
SNPH 20p13 4 179 100 100
SPTAN/ 9q34.11 56 277 100 100
SRGAP2 1q32.1 20 320 96.6 96.6
ST3GALS 2pll2 8 302 93.6-100 93.6-99.9
STXBPI 9q34.11 20 306 100 100
SYNI Xpl1.23 13 131 93.4-100 81-100
SYP Xpl1.23 6 146 100 99.1-100

where we could not design probes with the above settings,
some probes from the SureSelect Human All Exon 50-Mb
kit (Agilent Technologies) were added to the probe libraries.
A total of 2,738 probes, covering 156 kb, were prepared.
Exon capture, enrichment, and indexing were performed
according to the manufacturer’s instructions. Twenty-four
captured libraries were mixed and sequenced on an Illumina
MiSeq (Illumina, San Diego, CA, U.S.A.) with 150-bp
paired-end reads. Image analysis and base calling were
performed using the Illumina Real Time Analysis Pipeline
version 1.13 and CASAVA software v.1.8 (Illumina) with
default parameters. Sequence reads were aligned to the
reference human genome (GRCh37: Genome Reference
Consortium human build 37) with Novoalign (Novocraft
Technologies, Selangor, Malaysia). After conversion of the
SAM file to a BAM file with SAMtools (Li et al., 2009),
duplicate reads were marked using Picard (http://picard.
sourceforge.net/) and excluded from downstream analysis.
Local realignment around insertion/deletions (indels) and
base quality score recalibration were performed using the
Genome Analysis Toolkit (DePristo et al., 2011). Single-
nucleotide variants (SNVs) and indels were identified using
the Genome Analysis Toolkit UnifiedGenotyper and fil-
tered according to the Broad Institute’s best-practice guide-
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lines v.3 except for HaplotypeScore filtering. We excluded
variants found in 147 exomes from healthy individuals pre-
viously sequenced in our laboratory. Variants were anno-
tated using ANNOVAR (Wang et al., 2010). Candidate
disease-causing mutations were confirmed by Sanger
sequencing on a 3500xL Genetic Analyzer (Applied Biosys-
tems, Foster City, CA, U.S.A.). The Human Gene Mutation
Database professional 2012.3 (BIOBASE GmbH, Wolfenb-
uettel, Germany) was used to check whether the variants
had been previously reported.

Copy number analysis using target capture sequence
data

Copy number changes were analyzed based on the rel-
ative depth of coverage ratios (Nord et al., 2011). Raw
coverage on the target regions was calculated by SAM-
tools using BAM files, in which duplicate reads were
excluded. Raw coverage was normalized and corrected
for GC content and bait capture bias. Next, the ratios
were calculated by comparing the sample-corrected cov-
erage to the median-corrected coverage for the other 23
samples. A sliding window (20 bp) was used to identify
CNVs for which the majority of bases had a ratio <0.6
(loss) or >1.4 (gain). We visually inspected the ratio
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data and judged whether the call was true or likely to be
a false positive. A flow chart of our variant detection
and copy number analysis scheme is illustrated in Fig.
S1.

Genomic microarray analysis and cloning of deletion
breakpoints

The microdeletion involving SCNIA and SCN2A was
confirmed using a CytoScan HD Array (Affymetrix, Santa
Clara, CA, U.S.A.) according to the manufacturer’s proto-
col. Copy number alterations were analyzed using the Chro-
mosome Analysis Suite (ChAS; Affymetrix) with NA32
(hg19) annotations. The junction fragment spanning the
deletion was amplified by long polymerase chain reaction
(PCR) using several primer sets based on putative break-
points according to the microarray data. Long PCR was per-
formed in a 20-pl volume, containing 30 ng genomic DNA,
1x buffer for KOD FX, 0.4 mm each dNTP, 0.3 um each
primer, and 0.3 U KOD FX polymerase (Toyobo, Osaka,
Japan). The deletion junction fragments were obtained
using the following primers: #409-F (5'-TCCACAGTTTA-
CAAACATCTTTTCATGG-3") and #409-R (5'-AGAAAT-
TGGCTTGGTCAGTACCAGCA-3) (1.6-kb amplicon).
PCR products were electrophoresed on agarose gels stained
with ethidium bromide, purified with ExoSAP (USB
Technologies, Cleveland, OH, U.S.A.), and sequenced with

et Seqi shsing for Parients ih

BIGDYE TERMINATOR CHEMISTRY v.3 according to
the manufacturer’s protocol (Applied Biosystems).

REsuLTS

Target capture sequencing yielded an average of 26 Mb
per sample (range 1741 Mb per sample) on the target
regions, resulting in an average read depth of 255 (range
across all samples: 173-437). The coverage of the protein-
coding sequences of the 30 target genes is shown in Table 2.
Overall, 98.6% of targeted coding sequence bases were
covered by 10 reads or more; however, some genes such
as ARX and FOXGI were less well covered because of
embedded repeat sequences (Fig. S2). To validate the
performance of target capture sequencing for detecting
mutations and CNVs, we analyzed 15 samples in which
disease-causing mutations or microdeletions had been iden-
tified previously in our laboratory (Saitsu et al., 2008,
2010a,b, 2011, 2012b; Nonodaet al., 2013). All nine control
point mutations and six control microdeletions were detected
(Table 1; Fig. 1). These data indicate that our target capture
sequencing method was able to detect both point mutations
and microdeletions, including deletion of a single exon.

Examination of 53 previously unresolved EOEE patients
by targeted capture and sequencing revealed mutations in
12 patients (Table 3). Every patient harbored a different

A Relative Depth of Coverage Ratio
<
- STXBPI - SPTANI
o - -
5
22
n
=
<
o
B CDKL5 c STXBPI
i LALE R L& §.5 $bh HIR K] 4 4
o T CE WL PR I ) ™t o b
[ ~ -
< oI - .
g g o .
z o . & Qo fo
g O 2 i )
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Figure 1.
Detection of three known microdeletions by target capture sequencing. (A) Relative depth of coverage ratio for patient 2. Coverage
ratios for each target gene are indicated by different colors. A microdeletion including STXBP/ and SPTAN is clearly observed. (B, C)
Relative depth of coverage ratio for patient 214 in the CDKL5 region and patient 22 in the STXBP/ region, respectively. Black vertical
lines indicate exons and horizontal lines indicate introns (top). Red vertical lines show bait regions that were judged to be “deleted.” A
number of exons of CDKL5 were deleted in patient 214 (bidirectional arrow in B), and a single exon of STXBP /| was deleted in patient
22 (arrow in C).
Epilepsia © ILAE
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Deletion
Case Sex Diagnosis Chr  Gene Mutation Type size (kb) Inheritance References
SNVs 329 M OS/EME 9 STXBP!  ¢247-2A>G Splice site De novo -
402 M os 9 STXBPI  c.902+1G>A Splice site De novo Milh etal.
(2011)
423 F os 9 STXBPI  c246+1G>A Splice site Denovo -
403 F MAEorDS 2 SCNIA  <.580G>A (p.Asp|94Asn) Missense Not found in Mancardi etal.
the mother (2006)
415 F EOEE 2 SCNIA  c3714A>C (p.Glul238Asp) Missense Notdetermined Harkinetal.
: (2007)
416 M EOEE X CDKL5  ¢.533G>A (p.Argl78Gln} Missense De novo Liang et al.
(2011)
418 F WS, severe 2 SCN2A  <c.632G>A (p.Gly2l 1 Asp)in Missense De novo -
hypotonia NM_001040143 (variant 3)
244 F Epilepsy X CASK c.55G>T (p.Gly19X) Nonsense De novo -
+ PCH
404 F EOEEs X MECP2  c.844C>T (p.Arg282X) Nonsense De novo -
Indels 336 F os 9 STXBPI  c.1056del (p.Asp353ThrfsX3) Deletion De novo -
397 F DS 2 SCNIA  c.342_344delinsAGGAGTT  Deletion— Denovo -
(p.Phel 14LeufsX6) insertion
CNV 409 F MPS! 2 SCN2A,  Microdeletion Microdeletion 3,726 De novo -
SCNIA
OS, Ohtahara syndrome; EME, early myoclonic encephalopathy; MAE, myoclonic astatic epilepsy; DS, Dravet syndrome; WS, West syndrome; PCH, pontocere-
bellar hypoplasia; MPSI, malignant migrating partial seizures in infancy; SNVs, single nucleotide variants; CNVs, copy number variations; EOEEs, early onset epileptic
encephalopathies.

mutation. Of these 12 mutations, 9 were single-nuclectide
variants (2 nonsense, 3 splice-site, and 4 missense muta-
tions) and two were small indels leading to frameshifts. The
other mutation was a microdeletion. All these 11 point
mutations were confirmed by Sanger sequencing. Four of
the mutations (STXBPI c.902+1G>A, SCNIA ¢.580G>A,
SCNIA c3714A>C, and CDKL5 c.533G>A) have been
reported in individuals with EOEEs, so are recurrent (Man-
cardi et al., 2006; Harkin et al., 2007; Azmanov et al.,
2010; Liang et al., 2011; Mith et al., 2011). Nine of the 11
mutations occurred de novo. The other two could not be
tested because the paternal sample for one patient (SCNIA
¢c.580G>A) and parental samples for another patient
(SCNIA ¢.3714A>C) were unavailable.

CNV analysis of the 53 patients revealed a microdeletion
involving SCNIA and SCNZA at 2q24.3 in patient 409
(Fig. 2A). To investigate this mutation further, we per-
formed genomic microarray analysis and identified an
-approximately 3.7-Mb microdeletion (Fig. 2B). The dele-
tion contained 13 RefSeq genes including SCN2A and
SCNIA. Breakpoint-specific PCR analysis of the patient
and her parents confirmed that the rearrangement occurred
de novo (Fig. 2C). The sequence of the junction fragment
confirmed a 3,726,029-bp deletion (chr2: 164,420,771—
168,146,801) (Fig. 2D).

DiIsCcUSSION

Several bench-top high-throughput sequencing platforms
are now available (Glenn, 2011; Loman et al., 2012; Quail
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et al., 2012). We selected Illumina MiSeq because it
provides reasonable sequence throughput (1.6 Gb per run),
a low error rate, a short run time (27 h), and sufficiently
long reads (150 bp). We captured genomic DNA fragments
of target genes by 3x tiling complementary RNA oligonu-
cleotide probes (Nord et al., 2011) and sequenced 24 sam-
ples per MiSeq run, achieving sufficient coverage (a mean
read depth of 255) over the target regions. This high cover-
age enabled us to detect point mutations and CNVs simulta-
neously, and long reads enabled us to detect small indels
(Krawitz et al., 2010). Mapping by Novoalign, we were
able to detect indels ranging in size from a 10-bp deletion to
a 9-bp duplication.

By evaluating depth of coverage ratios (Nord et al.,
2011), we detected six control microdeletions and one novel
microdeletion, ranging in size from 4.6 kb to 3.7 Mb. To
date, CNVs causing EOEEs have been analyzed by array
CGH and MLPA (Mulley & Mefford, 2011). Array CGH
can detect genome-wide CNVs, but its standard resolution
is relatively low (>10 kb). On the other hand, MLPA can
detect CNVs in specific genes, including single exon dele-
tions; however, it is difficult to screen many genes at a time
because MLPA is limited to 50 target exons per reaction
(Stuppia et al., 2012). In addition, copy number analysis
using MLPA can be affected by single nucleotide variants
and indels in regions corresponding to the MLPA probes
(Stuppia et al., 2012). In contrast, targeted capture and
sequencing can analyze all targeted genes to detect muta-
tions and CNVs simultaneously. CNVs as small as a single
exon can be identified. Because all the procedures—from
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the capture of target genes to the detection of mutations and
CNVs—can be done within a week, our workflow provides
a fast, sensitive, and comprehensive genetic testing method
for patients with epilepsy.

Whole-exome sequencing will reveal novel mutations in
unexpected genes in patients with EOEEs. For example,
KCNQ?2 mutations, which cause benign familial neonatal
seizures (Biervert et al., 1998; Charlier et al., 1998), were
identified in patients with OS by whole exome sequencing
(Saitsu et al., 2012a). Similarly, screening known and
potential candidate genes in patients with EOEEs will reveal
novel mutations in unexpected genes, in addition to muta-
tions in well-known genes.

In our target capture analysis, some exons of genes such
as ARX and FOXG1 were insufficiently sequenced because
repeat sequences hampered the design of capture probes.
Repeat sequences also interfere with appropriate mapping of

sequence reads, resulting in low coverage. For these exons,
Sanger sequencing should be added for complete analysis.
In conclusion, a rapid and efficient system of target
capture sequencing can be applied to the comprehensive
genetic analysis of EOEEs. Point mutations, small indels,
and CNVs are all detected by this method, confirming
the potential of this approach for efficient genetic testing.
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