by dopaminergic modulation. As reported from our
previous study (Kanno and Ishiura, 2011), each Hesr
was expressed in dopaminergic neurons throughout the
SN and VTA. This suggests that the HESR family can
influence DAT expression in dopaminergic neurons in
vivo, as observed in our previous culture studies (Kanno
and Ishiura, 2011). In fact; DAT mRNA was signifi-
cantly higher in Hesrl KO than in wild-type mice at
postnatal day O (Fuke et al., 2006). These data seem rea-
sonable, in that our previous studies demonstrated the
inhibitory effect of HESR1 on a DAT reporter gene in
maminalian cell lines (Fuke et al., 2005; Kanno and Ish-
iura, 2011). Additionally, it has been reported that PPI
is lower in DAT KO mice (Geyer et al,, 2001). This is
the phenotype opposite to that of the Hesrl KO mice,
and, if the DAT levels are higher in adult Hesrl KO
mice, then the molecular dynamics are correlated with
the phenotype. However, in this study, DAT and TH
proteins, the expression levels of which are thought to
reflect the amounts of dopamine innervation or
enzymatic activity, were comparable between wild-type
and KO mice of both Hesr strains. Moreover, the
DAT mRNA level in adult Hesrl KO mice was
actually lower than in the wild type, contrary to our
expectations.

These results are puzzling, and further investiga-
tions will provide possible explanations. Many environ-
mental and pharmacological manipulations during the
developmental stages have been reported to affect PPI
(Geyer et al.,, 001) suggesting that upregulated DAT in
the developmental phase (Fuke et al.,, 2006) could alter
some of the neuronal substrates that affect PPI. In fact,
HESR family members have been described in develop-
mental signaling (Dahlqvist et al., 2003; Takizawa et al.,
2003; Zavadil et al., 2004) and in the differentiation and
maintenance of the dopaminergic nervous system (Stull
et al., 2001; Farkas et al., 2003; Sanchez-Capelo et al.,
2003). Thus, the physiological functions of the HESRs
should be further investigated, focusing on target genes
other than DAT or dopamine-related genes because
many HESR target genes exist (Fischer and Gessler,
2007).

HESRs had not been reported in clinical studies of
psychiatric or developmental disorders, but recent stud-
1es have suggested involvement of HESR1 in such dis-
orders, sometimes interacting with other factors, as
described below. HESR 1 was reportedly upregulated in
cell lines derived from the patients of autism-spectrum
disorder (Seno et al,, 2011). We previously demon-
strated that HESR1 with a naturally occurring nonsy-
nonymous SNP at codon 94 (Lue94Met, SNP 1D
rs11553421) in the HLH domain did not have the abil-
ity to repress DAT reporter gene expression (Fuke
et al., 2005). Additionally, this SNP converts HESR 1
from an androgen receptor corepressor to a coactivator
and abolishes HESR 1-mediated activation of p53 (Vil-
laronga et al., 2010), which has been reported as a schiz-
ophrenia susceptibility gene (Allen et al.,, 2008). The
VNTRs of DAT1 (Cook et al., 1995) and DAT expres-
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sion level (Krause et al., 2003) are associated with
ADHD, features of which are shared with autism-

“spectrum disorder to a certain degree (Rommelse et al.,

2010). Therefore, HESRs may be involved in psychiat-
ric disorders, developmental delay, and some behavioral
traits.

CONCLUSIONS

The present study demonstrates that the lack of Hesrl
leads to an alteration in sensitivity to dopamine.accompa-
nied by enhanced PPI. This suggests that expression of
Hesrl could influence sensorimotor gating at the physio-
logical level. The functional relationship between HESRs
and other target genes involved in sensorimotor gating
should be investigated further.
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Nonredundant Function of Two Highly
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It is common for neurotransmitters to possess muitiple
receptors that couple to the same intracellular signaling
molecules. This study analyzes two highly homologous
G-protein-coupled octopamine receptors using the model
animal Caenorhabditis elegans. In C. elegans, the amine
neurotransmitter octopamine induces activation of cAMP
response element-binding protein (CREB) in the choliner-
gic SIA neurons in the absence of food through activation
of the Gg-coupled octopamine receptor SER-3 in these
neurons. We also analyzed another Gg-coupled octop-
amine receptor, SER-6, that is highly homologous to
SER-3. As seen in ser-3 deletion mutants, octopamine-
and food-deprivation-mediated CREB activation was
decreased in ser-6 deletion mutants compared with wild-
type animals, suggesting that both SER-3 and SER-6 are
required for signal transduction. Cell-specific expression
of SER-6 in the SIA neurons was sufficient to restore
CREB activation in the ser-6 mutants, indicating that
SER-6, like SER-3, functions in these neurons. Taken
together, these results demonstrate that two similar G-
protein-coupled receptors, SER-3 and SER-6, function in
the same cells in a nonredundant manner. © 2014 Wiley
Periodicals, Inc.

Key words: G-protein-coupled receptor; CREB; octop-
amine; C. elegans; food deprivation

Amine neurotransmitters, such as dopamine, nor-
adrenaline, and serotonin, signal primarily through
G-protein-coupled receptors (GPCRs). Each neurotrans-
mitter is capable of binding multiple receptors, which in
turn couple different G proteins, allowing a single neuro-
transmitter to activate multiple intracellular signaling
pathways. In many cases, multiple receptors bind to the
same neurotransmitter and activate the same intracellular
signaling cascades. The oy-adrenergic receptors, for
example, consist of three subtypes, oy, gy, and a4 All
three receptors bind to both adrenaline and noradrenaline,
couple to G protein Gg, and induce activation of phos-
pholipase C. The physiological significance of having

© 2014 Wiley Periodicals, Inc.

multiple receptors with the same function is not well
understood. Studies in receptor-knockout mice suggest
that these receptors may not be entirely redundant, in
part because expression of each receptor is restricted to
distinct cell types (Chen and Minneman, 2005).

Recent studies have shown that GPCRs are capable
of regulating each other through the formation of hetero-
dimers in vivo and in doing so acquire new functions
(Gupta et al., 2010; Pei et al., 2010; He et al.,, 2011). Func-
tionally similar receptors have been shown to form hetero-
dimers when expressed heterologously in cultured cells,
suggesting that these types of receptors can work coopera-
tively. For example, the ayp-adrenergic receptor facilitates
internalization of the a,-adrenergic receptor by forming a
hetero-oligomer, without affecting the pharmacology or
signaling of either receptor (Stanasila et al., 2003). Simi-
larly, the oy,-adrenergic receptor is capable of binding the
opg-adrenergic receptor, facilitating its expression on the
surface of the cell (Hague et al., 2004). This heterodimer
behaves as a single functional entity with increased signal-
ing (Hague et al., 2006). Together, these interactions sug-
gest that similar receptors may perform nonredundant
functions when expressed in the same cell. This study ana-
lyzes two homologous receptors, SER-3 and SER-6,
which likely couple to the same G protein signaling in the
model organism Caenothabditis elegans:

Amine neurotransmitters regulate activation of
cAMP response element-binding protein (CREB) in C.
elegans (Suo et al., 2006, 2009). CREB is a transcription
factor that plays essential roles in a variety of biological
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processes (Lonze and Ginty, 2002; Johannessen et al.,
2004). It binds to specific DNA sequences called cAMP
response elements (CRE) and regulates expression of its
target genes upon phosphorylation (Mayr and Montminy,
2001). Using a reporter for CREB activation, we previ-
ously found that CREB is activated in the cholinergic
SIA neurons in the absence of food (Suo et al, 2006).
This signaling is mediated by the amine neurotransmitter
octopamine, which is considered to be the biological
equivalent of mamimalian noradrenaline (Roeder, 1999),
because food-deprivation-mediated CREB activation was
decreased in the octopamine-deficient mutant thh-1 and
CREB can be activated by addition of exogenous octop-
amine. SER-3, a putative Gg-coupled octopamine recep-
tor, and EGL-30, an a subunit of Gq, function in the SIA
neurons to induce CREB activation. Furthermore, this
octopamine signaling is suppressed by dopamine through
activation of the dopamine receptors DOP-2 and DOP-3
(Suo et al., 2009).

In addition to SER-3, C. elegans has another puta-
tive octopamine receptor, SER-6, that is highly homolo-
gous to SER-3. SER-6 has been shown to bind
octopamine and is believed to couple Gq because of its
ability to activate inward currents upon octopamine treat-
ment when heterologously expressed in Xenopus oocytes,
which presumably is mediated by endogenous Ca®*-
gated chloride channels (Mills et al., 2012). In this study,
we show that SER-6 is involved in octopamine-mediated
CREB activation and functions in SIA neurons, similarly
to SER-3. Interestingly, loss of either SER-3 or SER-6
leads to diminished signaling, indicating that both recep-
tors are required for normal signaling. These two similar
octopamine receptors are therefore working in the same
cells and function in a nonredundant manner in vivo.

MATERIALS AND METHODS
Strains

Culturing and genetic manipulation of C. elegans were
performed as described previously (Brenner, 1974). The alleles
used in this study were as follows: ser-3(ad1774) 1 (Suo et al..
2006), ser-6(tm2104) IV and ser-6(tm2146) IV (gifts from the
National BioResource Project [NBRP|, Ministry of Education,
Culture, Sports, Science and Technology [MEXT], Tokyo,
Japan), octr-1(0k371)X. (Wragg et al,, 2007), tyra-3(0k325)X
(Wragg et al., 2007), unc-64(e246) II (Brenmer, 1974), tbh-
1{ok1196) (Suo et al, 2006), and tzls3[cre::gfp; lin-15(+)
(Kimura et al., 2002). All mutants used in the CREB activity
assay carry cre:;gfp reporter. These mutants were generated by
mating tzIs3 males with other mutants. The resulting genotypes
were confirmed by PCR. thh-1(ok1196);1z1s3, ser-3(ad1774);1-
zIs3, and unc-64(c246)I11;tzIs3 were constructed previously
(Suo et al., 2006).

Cloning of ser-6

Total C. elegans RNA was extracted from all stages of a
wild-type Bristol N2 strain using Trizol reagent (Gibco BRL,
Rockville, MD). The cDNA of SER-6 was synthesized using a
gene-specific primer (5'-TACATACAATTGAATTTCAG-?)

and the Prime Script 1st strand cDNA synthesis kit (TaKaRa).
PCR was carried out with a SER-6 reverse primer (5'-GAA
CAATTATTACTGAACTGC-3') and an SL1 primer (5'-
GGTTTAATTACCCAAGTTTGAG-3") matching the 5'-
rans-spliced leader sequence found on C. elegans RINAs (Blaxter
and Liu, 1996) using PfuUltra High-Fidelity DNA Polymerase
(Stratagene, La Jolla, CA). The resulting PCR product was cloned
into pCR-Blunt (Invitrogen, Carlsbad, CA) and sequenced.

Phylogenetic Analysis

The amino acid sequences of SER-6 and other biogenic
amine receptors of human and invertebrates were aligned with
ClustalW (DNA Databank of Japan), using relatively well-
conserved regions excluding the N terminus, second extracellu-
lar loop, third intracellular loop, and the C terminus of these
receptors. The phylogenic tree was drawn with PHYLIP by the
Fitch-Margoliash method and visualized with TreeView.

Analyses of CRE-Mediated Gene Expression

CREB activation assays were performed as described pre-
viously (Suo et al., 2006, 2009). Briefly, animals carrying cre::gfp
were synchronized by a hypochlorite treatiment, and the result-
ing eggs were placed on NGM plates seeded with Escherichia coli
OP50 (Brenner, 1974). Animals were incubated for 2 days at
20°C, transferred to new NGM plates, and incubated for an
additional 24 hr. Animals were then transferred onto assay plates
and incubated for 4 hr at 20°C. Each assay plate contained 1.7%
AgarNoble (BD Diagnostics, San Jose, CA) with or without 3
mg/ml octopamine-hydrochloride (Sigma-Aldrich, St. Louis,
MO), with bacterial food spread on its surface. For food-
depletion assays, synchronized animals were incubated on
NGM plates seeded with or without OP50 at 20°C for 6 hr.
For soaking assays, synchronized animals were incubated for 4
hr at 20°C on 60-mm NGM plates seeded with bacterial food
and overlaid with ~5 ml water. After incubation, animals were
collected in M9 buffer (Brenner, 1974) cbntaining 50 mM
NalN3 and mounted on glass slides. The number of SIA neurons
expressing green fluorescent protein (GFP) was counted for
each animal using a fluorescence microscope (Olympus BX53)
to quantify CREB activation. All counting was performed by
an experimenter blinded to the genotype and incubation condi-
tions of the animals. Statistical significance was evaluated by an
analysis of variance followed by a Tukey-Kramer multiple-
comparisons test in GraphPad Prism. Images of animals were
obtained with the fluorescence microscope.

Analyses of ser-6 Expression Patterns

The transcriptional reporter fusion gene ser-6::gfp was
generated using the fusion PCR method as described elsewhere
(Hobert, 2002) using the primers YS54fusionA (5-GTTAA
GCTCCTCGAACTTTCGG-3'), Y54fusionB (5'-AGTCGA
CCTGCAGGCATGCAAGCTGCCCAGCGTCAGTGATA
GC-3'), Y54fusionE (5'-CTCTCAAACTTTCCGGCGC-3'),
fusionD (5'-AAGGGCCCGTACGGCCGACTAGTAGG-3",
fusionF (5-GGAAACAGTTATGTTTGGTATATTGGG-3'),
and fusionC (5'-AGCTTGCATGCCTGCAGGTCGACT-3/).
The region corresponding to 5.0-kb upstream and a part of
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exon 1 of ser-6 gene was amplified with the primers
Y54fusionA and Y54fusionB by LA Taq (TaKaRa) using
genomic DNA as the template. The resulting PCR' product
was fused to 2-1876 of pPD95.75. ser-6:;gfp was injected into
N2 wild-type animals together with ceh-17::dsred (Pujol et al.,
2000; Suo et al., 2006), fbh-:l::dsrca’ (Alkema et al., 2005; Suo
et al., 2006), pBluescript (Stratagene), and the transformation
marker pRF4, which contains the dominant roller mutation rol-
6(su1006) (Kramer et al., 1990), as described by Mello et al.
(1991). Concentrations of the injected plasmids were 30, 10,
10, 30, and 20 ng/ul, respectively. Images of transformants
were obtained with a confocal laser microscope (Leica inverted
microscope DMI6000 B).

Cell-Specific Rescue of ser-6

To express ser-6 in the SIA neurons, cDNA of ser-6 was
fused to the ceh-17 promoter, which induces gene expression in
only the SIA and ALA neurons. The coding sequence of ser-6
was amplified with the corresponding forward (5'-TTCGCC
ACCGGTAAAAATGATTTTGCTATC-3) and reverse (5'-
AAATAAGCGGCCGCTCAAAATTTTGGCTTC-3) primers
by PfuUltra High-Fidelity DNA Polymerase (Stratagene) using
subcloned ser-6 cDNA as the template. The PCR product was
digested with the restriction enzymes Agel and Nof and cloned
into Agel- and Noi-digested ceh-17::dop-21 (Suo et al., 2009) to
obtain ceh-17::ser-6. ceh-17::5er-6 was then injected into ser-
6(tm2104);tzIs3 together with the transformation marker lin-
44::gfp (Murakami et al., 2001) and pBluescript (Stratagene). The
concentrations of the injected ceh-17::5er-6, lin-44::gfp, and pBlue-
script were 10, 20, and 70 ng/pl, respectively. Animals carrying
lin-44.:gfp, reflected by expression of GFP in the tail hypodermis,
were analyzed in the rescue experiments.

Generation of Heterozygous Mutants and
Overexpression of ser-3 and ser-6

To generate heterozygous mutant animals, ser-
3(ad1774);ser-6(tn2104);tzIs3 males, unc-64(e246)I1L;tzIs3 her-
maphrodites, ser-3(ad1774);unc-64(e246)IIL;tzIs3  hermaphro-
dites, or ser-6(tm2104);unc-64(e246)I1L;tzIs3 hermaphrodites
were mated before each assay. wnc-64 homozygous animals
exhibit an uncoordinated phenotype (Unc; Brenner, 1974).
Only non-Unc F1 animals were tested, because Unc animals
result from self-fertilization.

To obtain strains that overexpress SER-6 in the SIA neu-
rons, ceh-17::ser-6 was injected into ser-3(ad1774);tzIs3, together
with lin-44::¢fp and pBluescript (Stratagene). The concentrations
of the injected expression plasmids, lin-44::gfp, and pBluescript
were 10, 10, and 80 ng/pl, respectively. CREB activation was
analyzed using transformants that express GFP in the tail
hypodermis.

To obtain strains that overexpress SER-3 in the SIA neu-
rons, the ceh-17::ser-3 fusion construct (Suo et al., 2006) was
injected into ser-3(ad1774);1z13 together with lin-44.:gfp and
pBluescript (Stratagene). The concentrations of the injected
expression plasmids, fin-44::gfp, and pBluescript were 10, 10,
and 80 ng/ul, respectively. The transformant was then mated
with tzIs3 males, and the sibling tzIs3 animals carrying the cehi-
17::ser-3 fusion construct were mated with ser-6(1m2104);tzIs3
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males to obtain ser-6(tm2104);tzIs3 carrying the ceh-17::ser-3
fusion gene:

RESULTS

SER-6 Is Highly Homologous to the Gg-Coupled
Octopamine Receptor SER-3

SER-6 was identified as an amine neurotransmitter
receptor by comparing the amino acid sequences of amine
receptors between human and C. elegans (Chase et al,,
2004). Srinivasan et al. (2008) showed that ser-6 deletion
mutants have a defect in serotonin-induced reduction of
fat storage. Furthermore, Mills et al. (2012) showed that
SER-6 is required for octopamine-mediated alteration of
octanol sensitivity. SER~6 has also been shown to func-
tion as an octopamine receptor and possibly couple to the
Gq signal pathway by an electrophysiological experiment
using Xenopus oocyte heterologously expressing SER-6
(Mills et al., 2012).

We cloned cDNA of ser-6 and compared the amino
acid sequence of SER-6 with that of SER-3 (Fig. 1A,B).
SER-3 is likely a Gq—coufled octopamine receptor and
increases intracellular Ca®* concentration in response to
10 nM octopamine when expressed in HEK293 cells
(Petrascheck et al., 2007). As expected, SER-3 and SER-
6 were highly homologous. The phylogenic tree includ-
ing human and invertebrate amine receptors (Fig. 1C)
shows that SER-6 is homologous to other Gg-coupled
octopamine receptors of invertebrates, including SER-3
and insect octopamine receptors AmOAMB and
DmOAMB (Han et al.,, 1998; Grohmann et al., 2003).
Among mammalian amine receptors, SER-6 was most
closely related to the human o;-adrenergic receptors,
which are also Gg-coupled receptors.

SER-6 Is Involved in Octopamine-Dependent
CREB Activation in the SIA Neurons

In C. elegans, CREB activation can be detected by
fluorescence in animals carrying a cre:;gfp reporter, in which
CRE is fused to a GFP sequence (Kimura et al., 2002).
Using this reporter, we have shown that food deprivation
induces CREB activation in the SIA neurons (Suo et al,,
2006, 2009). This response appears to be mediated through
octopamine, because exogenously applied octopamine sim-
ilarly activates CREB in the SIA neurons, and mutants in
the tbli-1 gene, which encodes a tyramine B-hydroxylase
required for octopamine synthesis (Alkema et al.,, 2005),
exhibit decreased response to food deprivation. SER-3 has
been shown to function in the SIA neurons to transmit
octopamine signaling through EGL-30, the o subunit of
Gq. Here, we determined whether SER-6 is also involved
in this CREB activation.

Animals carrying cre::;gfp were exposed to 3 mg/ml
octopamine for 4 hr or deprived of food for 6 hr. The
number of SIA neurons in each animal expressing GFP
was then counted to quantify CREB activation. Wild-~
type animals exhibited significant GFP expression in the
SIA neurons following octopamine treatment or food
deprivation (Fig. 2B,E). C. elegans has four SIA neurons

— 210 —



674 Yoshida et al.

Fig. 1. Gene structure of ser-6 and comparison berween SER-6 and other
amine receptors. ser-6 cIDNA was cloned, and the structurc of this gene
was identified. Black bars indicate the region deleted in the m:2104 and
tm2146 alleles (A). The amino acid sequence ot SER-6 was aligned with
SER-3 (B). Predicted transmembrane (TMs) regions arc overscored.
Amino acid residues conserved between SER-6 and SER-3 are indicated
by gray shading. Numbers in parentheses represent the number of amino
acids not shown in the figure. According to the phylogenic tree of SER-6
and other biogenic amine receptors of human and invertebrates, SER-3
and SER-6 arc highly homologous (C). The amino acid sequences of cach
receptor were aligned with ClustalW using relatively conserved regions,
excluding the N terminus, second extracellular loop, third intraccllular
loop, and C terminus. The phylogenic tree was calculated by using the
PHYLIP package and the Fitch-Margoliash method. Receptor sequences
uscd and the GenBank aceession numbers arc as follows: C. elegans octop-
amine receptors (ceSER-3, NP491954; ceOCTR-1, CCD83472.1), C.
elegans  dopamine receptors  (celDOP-1, CCII68411.1; ccDOP-2,

(SIADL, SIADR, SIAVL, and SIAVR) and there was no
apparent difference in GFP expression rates of these four
neurons. As reported previously, this CRE-mediated
gene expression was dependent on SER-3, with ser-3
mutants showing decreased responses to exogenous
octopamine and food deprivation (Fig. 2F). Next, we
examined two deletion alleles of ser-6, tm2104 and
tm2146, and found that octopamine-mediated GFP
expression was decreased in both mutants (Fig. 2D,G,H).
These results suggest that SER-6 is also required for
octopamine-dependent CREB activation in the SIA neu-
rons. CREB activation levels induced by food deprivation
were also decreased in ser-6 animals (Fig. 2G,H), suggest-
ing that SER-6 is involved in food deprivation-induced
CREB activation in the SIA neurons.

The response to food deprivation was significantly
attenuated in octopamine-deficient tbh-1 mutants (Fig. 2J).
However, a small response was observed, consistent with
previous reports (Suo et al, 2006), suggesting that the
response to food deprivation is partially octopamine inde-
pendent. The level of CREB activation observed in the
ser-3 mutants in the absence of food was similar to that of
thh-1. We also analyzed thh-1;ser-3 double mutants and
found that tbh-1;ser-3 responded to food deprivation
slightly more strongly than ser-3 and tbh-1 single mutants

CBY85347.1; ceDOP-3, NP_001024907.21 ceDOP-4, CCD65696.1),
C. elegans tyramine receptors (ccTYRA-2, CCID83463.1; ccTYRA-3,
CCD83479.1; ceSER-2, NP_001024335.1), C. elegans serotonin recep-
tors (ceSER-1, CCD63419.1; ceSER-4, CCD73768.1; ceSER-7,
CCD83456.1), inscct o-adrencrgic-like  octopamine  rcceptors
(dmOAMB, AAC17442; amOAMB, CAD67999; paOA1, AAPY3817.1;
bmOAR 1, NP_

001091748.1), human dopamine receptors (hD1, P21728; hD2, P14416;
hD3, P35462; hD4, P21917; hD5, P21918), human serotonin receptors
(h5HT1a, 138209; h3HT1b, JN0268; h5HT1d, A533279; h5HTle,
A45260; hSHT1f, A47321; h5HT2a, A43956; h5HT2b, S43687:
h5HT2¢, JS0616; h5HT4, Q13639; h5HT7, A48881), and human adre-
nergic receptors (halA, NP000671; halB, NP000670; halD,
NP000669: ha2A, A34169; ha2B, A37223; ha2C, A31237; hB1,
QRHUBT; hB2, QRHUB2; hB3, QRHUB3). A human tracc aminc
receptor 3 (hTAR3, AAO24660) was used as an out group. bin, Bombyx
tnori; pa, Periplaneta americana; dm, Drosophila melanogaster, am, Apis mellifera.

~oCTEN 7

(Fig. 2K). The reason for this increase is unknown. How-
ever, because CREB activation was not decreased by the
tbh-1 mutation in the double mutants, it is likely that the
CREB activity observed in the ser-3 mutants is octopamine
independent. In contrast, the level of CREB activation in
the ser-6 mutants was higher than that in the tbh-1 mutants,
and the level of CREB activation in the tb/i- 1;ser- 6 mutants
was similar to that in the tbh-1 mutants (Fig. 2L). These
results suggest that some octopamine-dependent signaling
is occurring in the absence of ser-6. These experiments
were repeated in ser-3;ser-6 double mutants, and their
responses to exogenous octopamine and food deprivation
were similar to those of the ser-3 mutants (Fig. 2I).

CREB is activated in the SIA neurons when animals
are soaked in water, and this soaking response is inde-
pendent of octopamine (Suo et al., 2006). ser-6 mutants

_ responded normally to soaking (Fig. 2G), exhibiting

robust activation of CREB. This result confirms that the
SIA neurons are present in ser-6 mutants and that CREB
can be activated in these neurons under certain condi-
tions. Reduced octopamine-mediated CREB activation
seen in the ser-6 mutants is therefore not the result of
abnormal development of SIA neurons.

In addition to SER-3 and SER-6, the C. elegans
genome contains another octopamine receptor, OCTR-
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Fig. 2. Octopaminc- and food deprivation-induced CREB activation in
the SIA neurons. Animals carrying cre:;gfp were cultured on agar plates con-
taining 0 (A,C) or 3 mg/ml (B, D) octopamine. Fluorcscent images werce
obtained from wild-type background animals (A,B) and ser-6(tm2104)
mutants (C,D) after 4 hr of incubation. GFP expression was induced by
exogenous octopamine in the SIA ncurons of wild-type but not ser-6
mutants. The bracket marked with an asterisk indicates autofluorescence of’
the intestine. Wild-type, ser-3(ad1774), ser-6(tn2104), ser-6(tn2146), ser-
3(ad1774);ser-6(tn2104), tbh-1(ok1196), tbh-1(ok1196);ser-3(ad1774), tbh-
1(ok1196);ser-6(tm2104), octr-1(0k371), and tyra-3(0k325) mutants carrying
crez:gfp were incubated on plates containing 0 -or 3 mg/ml octopamine
(OA) for 4 hr, incubated on NGM plates with or without tood for 6 hr, or

1, as well as the tyramine receptor TYRA-3, which has
been shown to bind octopamine, albeit weakly (Wragg
et al., 2007). We therefore investigated whether OCTR-1
and TYRA-3 are involved in octopamine-mediated
CREB activation. The octr-1 and tyra-3 mutants responded
normally to exogenous octopamine and food deprivation,
suggesting that these receptors are not involved in the
octopamine-mediated CREB activation seen in the SIA
neurons (Fig. 2M,N).

SER-6 Functions in the SIA Neurons to Activate
CREB

The observation that octopamine-induced CREB
activation was reduced in both ser-3 and ser-6 single
mutants indicates that both SER-3 and SER-6 are required
for CREB activation. Furthermore, the observation that
the response to food deprivation in ser-3;ser-6 double
mutants was not smaller than that of either ser-3 or ser-6
single mutants also suggests that SER-3 and SER-6 are not
redundant. One possibility is that they function in different
neurons. Notably, it has been shown that both SER-3 and
SER-6 are required for regulation of octanol sensitivity by
octopamine and that they function in different neurons for
this regulation (Mills et al., 2012). Another possibility is
that SER-3 and SER -6 function in the same (SIA) neurons
and there may be some interaction at the molecular level.
It has been previously reported that ser-6 is expressed in a
subset of head and tail neurons (Srinivasan et al., 2008).
However, it has not been determined whether ser-6 is
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soaked in water (SO) in the presence of food for 4 hr. The number of
GFP-expressing SIA neurons per animal was then determined (E-N).
Error bars indicatc the standard crrors of the mean. At least 33 animals were
tested. *1P < 0.001 (Tukey—Kramer multiple-comparisons test) comparcd
with +OA of wild-type animals. *2P < 0.001 compared with —food of
wild-type animals. *3P < 0.001 compared with —food of ser-6(tmn2104)
mutants. *4P > 0.05 compared with —food of ser-3 mutants. *5P < 0.001
compared with —food of thh-7 mutants and ser-3 mutants. *6P > 0.05
compared with —food of thh-1 mutants. *7P < 0.001 comparcd with
—food of ser-6(t12104) mutants. Scale bars = 10 pm. {Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.com.]

expressed in the SIA neurons. We generated a ser-6::gfp
reporter fusion gene in which 5 kb of upstream sequence
plus a portion of exon 1 are fused to the gfp gene. This
tusion gene was coinjected along with the ceh-17::dsred
reporter. The ceh-17 promoter was used because it induces
gene expression in only the four SIA neurons and one
additional neuron (the ALA neuron; Pujol et al., 2000).
The ceh-17::dsred reporter therefore labels the SIA neurons
with DsRed expression. A tbh-1::dsred reporter construct
was also introduced to label the octopaminergic RIC neu-
rons. In these transformants, GFP expression was observed
in multiple neurons, with GFP colocalizing with DsRed
(Fig. 3), suggesting that ser-6 is expressed in both the SIA
and the RIC neurons. ‘
To determine whether SER-6 functions in the SIA
neurons, we performed a cell-specific rescue experiment.
We introduced the ceh-17::ser-6 fusion construct, in which
the ceh-17 promoter was fused to SER-6 cDNA, into ser-
6(tm2104) mutant animals. These transformants should
express SER-6 in only the SIA and ALA neurons. As
shown in Figure 4, the transgenic animals responded to
exogenous octopamine as robustly as did the wild-type
animals, suggesting that expression of SER-6 in the SIA
neurons is sufficient to restore CREB activation upon
octopamine. CREB activation of the transformants in
response to food deprivation was not significantly different
from that of the wild-type animals, also suggesting that
SER-6 functions in the SIA neurons for food-deprivation
response. However, there was no significant difference -
between CREB activation levels for food deprivation of
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merge

Fig. 3. Expression pattern of ser-6. Fluorescent (A-C) and correspond-
ing differential interference contrast (D) images were obtained from
N2 animals carrying the ser-6:gfp, ceh-17::dsred, and tbh-1::dsred con-
structs. The SIA- and RIC-neuron-specific promoters, celi-17 and tbh-
1, respectively, were used to label the SIA and RIC neurons with
DsRed. Merged images show the colocalization of GFP and DsRed.
Arrowheads indicate SIA neurons. Arrows indicate RIC neurons.
Scale bar =10 pum. [Color figurc can be viewed in the online issuc,
which iIs available at wileyoniinelibrary.com.]

ser-6 animals and the transformants. Therefore, it remains
possible that ser-6 also functions in other cells.

Both SER-3 and SER-6 Are Required for Normal
CREB Activation in SIA Neurons

The present results suggest that SER-3 and SER-6
function in the same cells and that both of these receptors
are required for normal signaling, despite having similar
functions. One explanation for the decreased CREB
activation seen in ser-3 and ser-6 single mutants is a
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Fig. 4. SIA-neuron-specific rescue of the ser-6 CREB activation phe~
notype. The transgenes ceh-17::ser-6 and lin-44::gfp were introduced
into a ser-6(tm2104) mutant carrying cre:igfp. The ceh-17 promoter
induces gene expression in only the SIA and ALA neurons. The lin-
44::9fp construct was used as a cotransformation marker. Transform-
ants were incubated on plates containing 0 or 3 mg/ml octopamine
for 4 hr or on NGM plates with or without food for 6 hr (C). At
least 72 animals were tested. Error bars indicate the standard errors of
the mean. CREB activity in wild-type animals and ser-6(tm2104)
mutants shown in Figurc 2E,G is reprinted (A,B). *1P<0.001
(Tukey—Kramer multiple-comparisons test) compared with +OA of
ser-6 mutants. *2P>0.05 compared with +OA of wild-type animals.
*3P < 0.001 compared with —food of wild-type animals. *4P > 0.05
compared with —food of wild-type animals.

decrease in the total number of octopamine receptors. A
specific level of octopamine receptor may be required for
normal signaling, and removal of either of these two
genes results in an insufficient quantity of octopamine
receptors. To address this possibility, we assayed CREB
activation in double heterozygous ser-3/+;ser-6/+ ani-
mals. The double heterozygous animals responded slightly
more weakly to exogenous octopamine treatment than
wild-type animals (Fig. 5B). However, the response of
the double heterozygous animals was much stronger than
that of the ser-3 or ser-6 single mutants, which was essen-
tially zero (Figs. 2F—H, 5B). This result suggests that hav-
ing both ser-3 and ser-6 is important for CREB activation
rather than the quantity of octopamine receptor genes.
The response to food deprivation was not different
between ser-3/+;ser-6/+ double heterozygous animals
and wild-type animals (Fig. 5A,B). Furthermore, we ana-
lyzed the ser-3/ser-3;ser-6/+ and ser-3/+;ser-6/ser-6 het-
erozygous animals and found that ser-3/ser-3;ser-6/+
were similar to ser-3 single mutants (P> 0.05; Figs. 2F,
5C) and that ser-3/+;ser-6/ser-6 were similar to ser-6 sin-
gle mutants (P> 0.05; Figs. 2G, 5D) with respect to their
response to food deprivation. These results suggest that
removing one copy of the ser-3 or ser-6 gene has litde
effect on the response to food deprivation, which further
supports the idea that normal CREB activation requires
the existence of both octopamine receptors rather than
just a specific quantity of receptor.

To address the effect of the gene dosage further, we
next assessed CREB activation in animals overexpressing
either SER-3 or SER-6. SER-3 was overexpressed in the
SIA neurons of the ser-6 deletion mutant using the ceh-
17::ser-3 fusion construct, and SER-6 was overexpressed in
the SIA neurons of ser-3 deletion mutant using the ceh-
17::ser-6 fusion construct. These animals therefore lacked
either SER-6 or SER-3 but overexpressed the other recep-
tor in the SIA neurons, in addition to endogenous expres-
sion. It has been shown that multiple copies (typically over
100 copies) of genes are retained in transgenic animals
when transformed by injection (Fire et al., 1991). In ser-3
mutants overexpressing SER-6, CREB activation induced
by exogenous octopamine or food deprivation was similar
to that for ser-3 deletion mutants alone (P> 0.05; Figs. 2F,
5E). This result suggests that SER-6 alone cannot induce
activation of CREB, even when SER-6 is overexpressed.
In ser-6 mutants overexpressing SER-3, some spontaneous
CREB activation was observed on the control plates that
did not contain octopamine but did contain food (Fig. 5F,
first bar). However, this activation was not seen on NGM
plates containing food (Fig. 5F, third bar); the cause of this
difference is unknown. One possible explanation is that,
because control plates for octopamine treatment contained
less salts and peptone than NGM plates, these compounds,
or the difference in the condition of the bacteria growing
on these plates, might have affected CREB activation in
this strain. Nonetheless, a moderate increase in CREB acti-
vation was observed upon exogenous octopamine treat-
ment in the ser-3-overexpressing animals (Fig. SF),
suggesting that SER-3 can partially respond to exogenous
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Fig. 5. Octopamine- and food deprivation-mediated CREB activity in
heterozygous and overexpressing animals. Double heterozygous ani-
mals (B), ser-3/ser-3;ser-6/+ amimals (C), ser-3/+ser-6/ser-6 animals
(D), ser-6-overexpressing animals (E), and ser-3-overexpressing animals
(F) carrying cre:;gfp were incubated on plates containing 0 or 3 mg/ml
octopamine for 4 hr, incubated on NGM plates with or without food
for 6 hr, or soaked in water (SO) in the presence of tood for 4 hr.

octopamine without SER-6 when overexpressed. In con-
trast, the level of CREB activation induced by food depri-
vation in ser-3-overexpressing animals was not different
from that of ser-6 mutants (P> 0.05). Collectively, these
results suggest that both ser-3 and ser-6 are required for full
activation of CREB regardless of their quantity and that
ser-3 but not ser-6 can partially function by itself only when
it is overexpressed.

DISCUSSION

It is common for neurotransmitters to possess multiple
receptors that couple to the same intracellular signaling.
When expressed in a heterologous system, such function-
ally similar receptors function in a nonredundant manner
through receptor—receptor interactions. This study ana-
lyzed two homologous octopamine receptors of C. elegans,
SER -3 and SER-6, which have been shown to couple to
the same class of G proteins (Petrascheck et al., 2007; Mills
et al,, 2012). These receptors were both required for
octopamine-mediated CREB activation in the SIA neu-
rons. Cell-specific rescue experiments revealed that SER-
6, like SER-3, functions in the SIA neurons, indicating
that these receptors function in the same cells. These results
suggest that SER-3 and SER-6 act together to transmit
octopamine signaling in the SIA neurons.

Using SER-3- and SER-6-overexpressing animals,
we further demonstrated that both SER-3 and SER-6 are
required for normal CREB activation by octopamine;
overexpression of one receptor in the absence of the other
could not fully restore normal CREB activation. ser-3-
overexpressing animals did respond to exogenous octop-
amine in the absence of ser-6, although the response was
much weaker than that in the wild-type animals. In con-
trast, SER-6 could not activate CREB without SER-3
even when overexpressed. These results indicate that,
when overexpressed, SER-3 can partially bypass. the
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The number of GFP-expressing SIA neurons per animal was then
determined. At least 43 animals were tested. Error bars indicate stand-
ard errors of the mean. CREB activity in wild-type animals shown in
Figure 2E is reprinted (A). *1P<0.01 (Tukey-Kramer multiple-
comparisons test) compared with +OA of wild-type animals.
*2P>0.05 compared with —food of wild-type animals. *3P<(.001
compared with ~OA of ser-3(oe);ser-6 animals.

requirement for SER-6. In addition, CREB activation by
food deprivation was stronger in ser-6 mutants than in ser-
3 mutants or ser-3;ser-6 double mutants (Fig. 2), suggest~
ing that SER-3 can also partially activate CREB without
SER-6 in this condition. One possible mechanism in
which SER-3 and SER-6 function cooperatively is that
SER-6 functions in part to assist the function of SER-3
by controlling the quantity of functional SER-3. Another
possibility is that SER-3 and SER-6 form a dimer and that
the heterodimer transmits stronger signals than monomers
or homodimers. It has been shown that structurally similar
GPCRs can form heterodimers and that dimerization
affects their membrane expression as well as their signaling
strength (Stanasila et al., 2003; Hague et al., 2004, 2006). It
also remains possible that, even though SER-3 and SER-6
are structurally similar, they transmit different intracellular
signals in vivo and these signals converge to activate
CREB fully. Further efforts, including expression of SER-
3 and SER-6 in a heterologous expression system, would
be required to elucidate the precise mechanisms by which
these receptors function cooperatively.

We found that SER-3 and SER-6 are coexpressed
in the SIA neurons. Although both SER-3 and SER-6
are also expressed in other neurons, the expression pat-
terns of these receptors overlap only partially. Neurons
expressing only SER-3 or SER-6 are unlikely to be able
to respond to octopamine stimulation by fully activating
CREB, unlike the SIA neurons. It therefore is possible
that, by utilizing multiple functionally similar receptors
differentially expressed across several cells types, the nerv-
ous system diversifies its sensitivity to neurotransmitters,
allowing for more complex neuronal regulation.
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DEE%2HIFT w2 (NCT00428935), L 75T,
DM TbHREL LS wIREREFETEIEEZ O
%, %%, DM2 ZBALT% MBNLI OEEETIZX 3
RAFIAVTRBESLOND I L e, DML L EEE
DHUBEHRESEZEINS, Z0E», MBNLI 2% &
RNA 2 55| s g EX 3B EE R b D (pentami-
dine) BROH>THY, foci DEE, A7F4 v
BEOWE LD 5 hiz2d,

CELF1 i3 % OEEEED S S » S IEM B+ 2 SHfivs
BHTHD, U BI{IENS Z & TCELF1 OBRENE
6T 32 L 3ESNT WIS, FE, ) VB LEAIT
Lo THIEId N5 CELF1 OHEENER B2 L b o
T&E7z,

¥ ¥, ZERNA X & 5 PKC#&E® %4 L7 CELF1
OB VBILRATSA YV TEBERT&ERI T, X
2, AKTIR28FBHDx VU vEBE2Y) vBEL, &%
#iRE T D CELF1 % % #14 L TR ED mRNA A0
BRI R E LS ¥ 5823,

— 7, CCND3 & CDK4 13 S302 % V ~ B4t L,
CELF1 0EIFR&IEE R W EE T 529, B,
S302 43 Bt ¥ 3 &, CELF1 3 elF2a (eukary-
otic initiation translation factor 2«) WHESL, &E&
R L TE<L Z T mRNA OBR2EET 3, ZhiT
Lo THREHE LTV 2 EEFICRFACKECES
T 550N % 7 ® (cyclin-dependent kinase in-
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hibitor, p21, cyclin D1, myocyte enhancer factor 2A 72
£), CELF1 OBIFREIEERED, TOR T I v
HEEERR, DM OBRICEFET 2 2 e 3 Sh
%,

DM T, EE RNA IZ X - T GSK3p 8iFEE{En
Tw3 RANEBRIZ X > TEEENTZRET I 2B
TFRICEBHDREWIEHEY b D2 PFMIETH) .
D7z, GSK3B 12X >TCCND3 D283 FBEHD A v
FoUBEECBTZ) VRIEMEEINTEY, 20O
£, CCND3 0af@EEES N, BALTw5a 2 MR
wonlz, Thick->7T, CELF1 D S302 B ) 3%
) VEBEAMEE S N, % OBREEEESET DA TY
5,

B ED X > 2k, 5, CELF1 O8Y VBt 2HE
L, S302icB8B173 ) vEBEOARET 2RENEEh
%, B, CELF1 08V YBILIX PKCHERITH 3
Ro 31-8220%9, S302 B3V Bt GSK3s8 D
EXTH 2 TDZD-8 BB Z & BhiroTWnb,

3. EERA~NDIFER

1) 3Fbrz=7

2F =7 DM OBBHRERD 12T, wolk
AMIHE L 1 BADSE T 2 2 TS 222, v
ERTH 2, CDM DBRECIHEERLASNS T L
F2wh, KRIEEREE T, BREFCEL S
s, 4 =7 R & ZERBOHFERRE MEN A
NS A4 A BEE B, BiERCEEYS 2 5T
HWH 5, ‘

A PETRBLODOER L > THETZ 2D
TE&2, FMVTLFxZINVOBEEERLZBRS D
B, sV RETHE, BRHTERETHS A ¥
VI3 T (NCT01406873), A ¥y Vv Fr e
MCEWERMND R W EINBIMTAPAEDSIE M) ¥
VIZE M AE (NCT01939561) % THAIRREALHEA TH
D, VIR BFREERSREE T3,

) BEMICLZIHNET

ETHEOHEBIC L > T ERBIINBZHFHET R
DM®Db3 1DDFERTH S, L L, MOHEERI
%< A 5N BEERHROIEFOHREIIA SRV,
FOhbY, BEHEOERBEDS L, HiEEO/NELD
FHohTe e, Zhid, FRIEPEEERTWS
ZEERBERT S, ,

ZFIT, BRMEFIEEE52 52 L THEBOETEE
GRBIENTEZEEZON, AT IS FhRVEY
THHrTFEFuztr¥ 7y RFuoxiFuy (DHEA) 3%

H&nk, LoL, 5 1/I480EKRERT DHEA %
BECEORE L LERTIE, B TeRizEs
Tz (NCT00167609) 0

—7, BOHRILEROELA VR Y VERERT 1

(IGF-1) 2BWwWiEREERTOILTWS, VarE

F > bDt MGF-1 (thIGF-1) D¥@EEASE W2,
KED Moxley D7 NV—7"1%, VaryEFr ok b
IGF1 #4% 5 3 (thIGFBP3) :rHE&H 2RI R
rhIGF1rhIGFBP3 % DM BE 25 L, R, KiE
B E OB & KRB OWBELTRD & N72d8, Fif7 L s
DHERA SN (NCT00233519, % T4H),

3) tOMDER :

DM TRNFREEL LIc X > THROBEDIRSH S|
EIANDBEND B, 20124F, —BETF LI L
T DBEETHBAFNT 2= F— b DIREZ X Y
ERVUEB L L& S 7z (NCT01421992)

EhHDOIC

DM 32 DEEBEFIUERES N T S5H 20 FEL 2
BoTwRnh, B2 AON 2RV ERNZIEEED
EHBR IO, 72, AON ZHWwEER, 88
2 mRNA, VW TIRZEFANI—FF2REEHBOH
BHEHEETZZ L5, DM IZEST, FoME L nE
ERTHENRBEEERD 352 L8 FEAINS,

i3z, DM OREBBICET 2881, WERER
+5ThH s, Hl2E, DM2 Tk, MBNLL D¥E# &
CLCNIDAT7 Ay 7E2EIXDML LtRAETHBZ K
L2 hbhbod, TOIFT =T REECEBETEATY
5, INBATI74 YV 7EBEDNOFERE (32
ZTRNTE) BDEETEIIERERT B, £/,
MEF2A®° MEF2C R ¥ DA TS5 4 vy 7 REIZEL
Tk, DMEBEHNTRZ, MOMEHEETHRDS
NBZEDd, WDBDATFTIA VY 7 RBENTRY
ThruEEbRB I N TS, 8512, DM TOARYS
AV TREOREIL, EEBZHIEBTEDLN
3, UL, EHERATTA ¥ > TR0 ARAY]

DEZEEI DR, ORI EEN-EET
b5, ‘ :

X @k
1) Furling D, Lam le T, Agbulut O, Butler-Browne GS,
" Morris GE: Ghanges in myotonic dystrophy protein
kinase levels and muscle development in congenital
myotonic dystrophy. Am J Pathol 162: 1001-1009, 2003

BRAIN and NERVE 66% 38 2014435

— 222 —



2)

4)

5)

6)

7)

8)

10)

11)

12)

13)

Eriksson M, Hedberg B, Carey N, Ansved T: De-
creased DMPK transcript levels in myotonic dystro-
phy 1 type ITA muscle fibers. Biochem Biophys Res
Commun 286: 1177-1182, 2001

Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet
A, et al: Non-ATG-initiated translation directed by
microsatellite expansions. Proc Natl Acad Sci U S A
108: 260-265, 2011

Taneja KL, McCurranch M, Schalling M, Housman D,
Singer RH: Foci of trinucleotide repeat transcripts in
nuclei of myotonic dystrophy cells and tissues. J Cell
Biol 128: 995-1002, 1995 )

Michalowski S, Miller JW, Urbinati CR, Paliouras M,
Swanson MS, et al: Visualization of double-stranded
RNAs from the myotonic dystrophy protein kinase

gene and interactions with CUG-binding protein. Nu- .

cleic Acids Res 27: 3534-3542, 1999

Ho TH, Savkur RS, Poulos MG, Mancini MA, Swan-
son MS, et al: Colocalization of muscleblind with RNA
foci is separable from mis-regulation of alternative
splicing in myotonic dystrophy. J Cell Sci 118: 2923-
2933, 2005

Savkur RS, Phillips AV, Cooper TA: Aberrant regula-
tion of insulin receptor alternative splicing is associat-
ed with insulin resistance in myotonic dystrophy. Nat
Genet 29: 40-47, 2001

Salisbury E, Sakai K, Schoser B, Huichalaf C,
Schneider-Gold C, et al: Ectopic expression of cyclin
D3 corrects differentiation of DM1 myoblasts through
activation of RNA CUG-binding protein, CUGBPI.
Exp Cell Res 314: 2266-2278, 2008
Kuyumcu-Martinez NM, Wang GS, Cooper TA: In-
creased steady-state levels of CUGBP1 in myotonic
dystrophy 1 are due to PKC-mediated hyperphosphor-
ylation. Mol Cell 28: 63-78, 2007

Jin J, Wang GL, Salisbury E, Timchenko L, Timchen-
ko NA: GSK3beta-cyclin D3-CUGBP1-elF2 pathway
in aging and in myotonic dystrophy. Cell Cycle 8; 2356~
2359, 2009

Kimura T, Nakamori M, Lueck JD, Pouliquin P,
Aoike F, et al: Altered mRNA splicing of the skeletal
muscle ryanodine receptor and sarcoplasmic/endo-
plasmic reticulum Ca?*-ATPase in myotonic dystro-
phy type 1. Hum Mol Genet 14: 2189-2200, 2005
Tang ZZ, Yarotskyy V, Wei L, Sobvzak K, Nakamori
E, et al: Muscle weakness in myotonic dystrophy
associated with misregulated splicing and altered
gating of Cay 1.1 calcium channel. Hum Mol Genet 21:
1312-1324, 2012

Fugier C, Klein AF, Hammer C, Vassilopoulos S,
Ivarsson Y, et al: Mis-regulated alternative splicing of
BIN1 is associated with T tubule alterations and

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

24)

25)

B 263

muscle weakness in myotonic dystrophy. Nat Med 17:
720-725, 2011

Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler
TM, et al: Reversal of RNA missplicing and myotonia
after muscleblind overexpression in a mduse poly
(CUG) model for myotonic dystrophy. Proc Natl Acad
Sci U S A 103: 111748-111753, 2006

Mankodi A, Takahashi MP, Jiang H, Beck CL,
Bowers W], et al: Expanded CUG repeats trigger
aberrant splicing of CIC-1 chloride channel pre-mRNA
and hyperexcitability of skeletal muscle in myotonic
dystrophy. Mol Cell 10: 35-44, 2002

Jacobs AE, Benders AA, Oosterhof A, Veerkamp JH,
van Mier P, et al: The calcium homeostasis and the
membrane potential of cultured muscle cells from
patients with myotonic dystrophy. Biochim Biophys
Acta 1096: 14-19, 1990

Tang W, Sencer S, Hamilton SL: Calmodulin modula-
tion of proteins involved in excitation-contraction
coupling. Front Biosci 7: d1583-d1589, 2002

Klesert TR, Cho DH, Clark JI, Maylie J, Adelman J, et
al: Mice deficient in Six5 develop cataracts: implica-
tions for myotonic dystrophy. Nat Genet 25: 105-109,
2000

Wheeler TM, Sobeczak K, Lueck JD, Osborne RJ, Lin
X, et al: Reversal of RNA dominance by displacement
of protein sequestered on triplet repeat RNA. Science
325: 336-339, 2009

Wheeler TM, Leger AJ, Pandey SK, Macleod AR,
Nakamori M, et al: Targeting nuclear RNA for in
vivo correction of myotonic dystrophy. Nature 488:
111-115, 2012

Gonzalez-Barriga A, Mulders SA, van de Giessen J,
Hooijer JD, Bijl S, et al: Design and analysis of effects
of triplet repeat oligonucleotides in cell models for
myotonic dystrophy. Mol - Ther Nucleic Acids, 2013
Mar 19; 2: e81. doi: 10. 1038/mtna. 2013. 9

Warf MB, Nakamori M, Matthys CM, Thornton CA,
Berglund JA: Pentamidine reverses the splicing
defects associated with myotonic dystrophy. Proc
Natl Acad Sci U S A 106: 18551-18556, 2009
Huichalaf C, Sakai K, Jin B, Jones K, Wang GL, et al:
Expansion of CUG RNA repeats causes stress and
inhibition of translation in myotonic dystrophy 1
(DM1) cells. FASEB J 24: 3705-3719, 2010

Jones K, Wei C, lakova P, Bugiardini E, Schneider-
Gold C, et al: GSK3beta mediates muscle pathology in
myotonic dystrophy. J Clin Invest 122: 4461-4472, 2012
Wang GS, Kuyumcu-Martinez MN, Sarma S, Mathur
N, Wehrens XH, et al: PKC inhibition ameliorates the
cardiac phenotype in a mouse model of myotonic
dystrophy type 1. J Clin Invest 119: 3797-3806, 2009

BRAIN and NERVE 66#%3% 2014 5’3 A

— 223 —






